Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Biol Rep ; 50(3): 1981-1991, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36536184

RESUMEN

BACKGROUND: Fibroblast growth factors (FGFs) are key factors affecting diabetic wound healing. However, the FGF family's expression patterns in skin and wounds influenced by both diabetes and sex are still unknown. METHODS AND RESULTS: In this study, normal and Streptozotocin (STZ)-induced type 1 diabetic C57BL/6J male and female mice were used to study the FGF family's expression in non-wound skin and wounds. We found that the expression patterns of Fgfs were affected by sex in both normal and diabetic animals during wound healing. In normal control mice, sex difference had a limited effect on basal skin Fgf expressions. However, it significantly influenced Fgf expressions in wounds. Type 1 diabetes reduced basal and wound-induced skin Fgf expressions. Female mice had far lower wound-induced skin Fgf expressions in diabetic mice. In addition, sex differently influenced Fibroblast growth factors receptor (Fgfr) expression patterns of non-wound skin and wounds in both normal and diabetic mice. Moreover, female mice had a lower relative level of Fibronectin leucine-rich repeat transmembrane protein 2 (FLRT2) - a FGFR activation marker gene - in wound and blood plasma. Correspondingly, the wound areas of female animals were larger than that of male animals in the early stage of wound healing (less than 3-day injury). CONCLUSION: Our research shows that the FGF family have different expression patterns in normal and diabetic wound healing in mice of different sex. Additionally, we also provide the signatures of individual FGFs in diabetic wound healing, which deserve further investigation.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Ratones , Femenino , Masculino , Animales , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Estreptozocina/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Caracteres Sexuales , Ratones Endogámicos C57BL , Piel/metabolismo , Receptores de Factores de Crecimiento de Fibroblastos/genética , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Glicoproteínas de Membrana/metabolismo
2.
Biol Sex Differ ; 11(1): 9, 2020 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-32156311

RESUMEN

Fibroblast growth factors (FGFs) belong to a large family comprising 22 FGF polypeptides that are widely expressed in tissues. Most of the FGFs can be secreted and involved in the regulation of skeletal muscle function and structure. However, the role of fasting on FGF expression pattern in skeletal muscles remains unknown. In this study, we combined bioinformatics analysis and in vivo studies to explore the effect of 24-h fasting on the expression of Fgfs in slow-twitch soleus and fast-twitch tibialis anterior (TA) muscle from male and female C57BL/6 mice. We found that fasting significantly affected the expression of many Fgfs in mouse skeletal muscle. Furthermore, skeletal muscle fibre type and sex also influenced Fgf expression and response to fasting. We observed that in both male and female mice fasting reduced Fgf6 and Fgf11 in the TA muscle rather than the soleus. Moreover, fasting reduced Fgf8 expression in the soleus and TA muscles in female mice rather than in male mice. Fasting also increased Fgf21 expression in female soleus muscle and female and male plasma. Fasting reduced Fgf2 and Fgf18 expression levels without fibre-type and sex-dependent effects in mice. We further found that fasting decreased the expression of an FGF activation marker gene-Flrt2 in the TA muscle but not in the soleus muscle in both male and female mice. This study revealed the expression profile of Fgfs in different skeletal muscle fibre types and different sexes and provides clues to the interaction between the skeletal muscle and other organs, which deserves future investigations.


Asunto(s)
Ayuno/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Caracteres Sexuales , Animales , Biología Computacional , Femenino , Factores de Crecimiento de Fibroblastos/sangre , Masculino , Ratones Endogámicos C57BL
3.
Artículo en Inglés | MEDLINE | ID: mdl-31379736

RESUMEN

Urotensin-II (U-II) is an endogenous peptide agonist of a G protein-coupled receptor-urotensin receptor. There are many conflicting findings about the effects of U-II on blood glucose. This study aims to explore the effects of U-II on glucose metabolism in high-fat diet-fed mice. Male C57BL/6J mice were fed a 45% high-fat diet or chow diet and were administered U-II intraperitoneally for in vivo study. Skeletal muscle C2C12 cells were used to determine the effects of U-II on glucose and fatty acid metabolism as well as mitochondrial respiratory function. In this study, we found that chronic U-II administration (more than 7 days) ameliorated glucose tolerance in high-fat diet-fed mice. In addition, chronic U-II administration reduced the weight gain and the adipose tissue weight, including visceral, subcutaneous, and brown adipose tissue, without a significant change in blood lipid levels. These were accompanied by the increased mRNA expression of the mitochondrial thermogenesis gene Ucp3 in skeletal muscle. Furthermore, in vitro treatment with U-II directly enhanced glucose and free fatty acid consumption in C2C12 cells with increased aerobic respiration. Taken together, chronic U-II stimulation leads to improvement on glucose tolerance in high-fat diet-fed mice and this effect maybe closely related to the reduction in adipose tissue weights and enhancement on energy substrate utilization in skeletal muscle.

4.
Eur J Pharmacol ; 859: 172523, 2019 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-31279667

RESUMEN

Many drugs with anti-diabetic effects regulate glucose consumption in peripheral tissues. Via cellular glucose consumption assays, we identified that coptisine, a main effective constituent from the plant Coptis chinensis, enhanced hepatic and skeletal muscle glucose consumption. We further explored its effects on glucose metabolism in diabetic animals to elucidate its mechanism of action. Our results showed that coptisine did not show cytotoxicity. Intragastric administration of coptisine for ten days in normal ICR mice markedly decreased fasting blood-glucose levels without significant effects on body weight. In alloxan-induced type 1 diabetic mice, intragastric administration of coptisine for 28 days decreased fasting and non-fasting blood-glucose levels as well. In type 2 diabetic KKAy mice, intragastric administration of coptisine for nine weeks improved glucose tolerance. It decreased fasting/non-fasting blood-glucose and fructosamine levels. Coptisine decreased low-density lipoprotein and total cholesterol levels, however, had no significant effect on triglyceride levels. Coptisine increased AMPK phosphorylation while decreasing Akt phosphorylation in HepG2 hepatic cells and C2C12 myotubes. Coptisine also reduced mitochondrial respiration in isolated and cellular mitochondria, suggesting that coptisine lowered cellular energy levels. In particularly, coptisine administration (10-6 M) decreased the mitochondrial oxygen consumption rate (OCR) with a greater extracellular acidification rate (ECAR), resulting in an oxidative-to-glycolysis phosphorylation shifted for cellular energy generation. Our results demonstrate that coptisine acts as an enhancer of peripheral glucose consumption could improve glucose metabolism in diabetic animals. Coptisine may serve as a novel anti-diabetic agent and warrant further evaluation.


Asunto(s)
Berberina/análogos & derivados , Glucemia/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Hipoglucemiantes/farmacología , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Berberina/farmacología , Berberina/uso terapéutico , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/patología , Activación Enzimática/efectos de los fármacos , Espacio Extracelular/efectos de los fármacos , Espacio Extracelular/metabolismo , Células Hep G2 , Humanos , Hipoglucemiantes/uso terapéutico , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Ratas
5.
Biochem Biophys Res Commun ; 514(2): 407-414, 2019 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-31056256

RESUMEN

Skeletal muscle secretes myokines, which are involved in metabolism and muscle function regulation. The role of fasting on myokine expression in skeletal muscle is largely unknown. In this study, we used gastrocnemius skeletal muscle RNA sequencing data from fasting male mice in the Gene Expression Omnibus (GEO) database. Adopted male and female C57BL/6J mice that fasted for 24 h were included to examine the effect of fasting on myokine expression in slow-twitch soleus and fast-twitch tiabialis anterior (TA) skeletal muscle. We found that fasting significantly affected many myokines in muscle. Fasting reduced Fndc5 and Igf1 gene expression in soleus and TA muscles in both male and female mice without muscle phenotype or gender differences, but Il6, Mstn and Erfe expression was influenced by fasting with fibre type- and gender-dependent effects. Fasting also induced muscle atrophy marker genes Murf1 and Fbxo32 and reduced myogenesis factor Mef2 expression without muscle fibre or gender differences. We further found that the expression of transcription factors Pgc1α, Pparα, Pparγ and Pparδ had muscle fibre type-dependent effects, and the expression of Pgc1α and Pparα had gender-dependent effects. The sophisticated expression pattern of myokines would partially explain the complicated cross-talk between skeletal muscle and other organs in different genders and muscles phenotypes, and it is worth further investigation.


Asunto(s)
Citocinas/genética , Ayuno/fisiología , Regulación de la Expresión Génica , Músculo Esquelético/metabolismo , Caracteres Sexuales , Animales , Citocinas/biosíntesis , Femenino , Fibronectinas/genética , Factor I del Crecimiento Similar a la Insulina/genética , Interleucina-6/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Fibras Musculares Esqueléticas/clasificación , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/genética , Miostatina/genética , Fenotipo , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...