Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 43(1): 113626, 2024 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-38157298

RESUMEN

Exercise training can stimulate the formation of fatty-acid-oxidizing slow-twitch skeletal muscle fibers, which are inversely correlated with obesity, but the molecular mechanism underlying this transformation requires further elucidation. Here, we report that the downregulation of the mitochondrial disulfide relay carrier CHCHD4 by exercise training decreases the import of TP53-regulated inhibitor of apoptosis 1 (TRIAP1) into mitochondria, which can reduce cardiolipin levels and promote VDAC oligomerization in skeletal muscle. VDAC oligomerization, known to facilitate mtDNA release, can activate cGAS-STING/NFKB innate immune signaling and downregulate MyoD in skeletal muscle, thereby promoting the formation of oxidative slow-twitch fibers. In mice, CHCHD4 haploinsufficiency is sufficient to activate this pathway, leading to increased oxidative muscle fibers and decreased fat accumulation with aging. The identification of a specific mediator regulating muscle fiber transformation provides an opportunity to understand further the molecular underpinnings of complex metabolic conditions such as obesity and could have therapeutic implications.


Asunto(s)
Fibras Musculares Esqueléticas , Músculo Esquelético , Animales , Ratones , Apoptosis , Inmunidad Innata , Músculo Esquelético/metabolismo , Obesidad/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(34): e2302738120, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37579159

RESUMEN

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is characterized by various disabling symptoms including exercise intolerance and is diagnosed in the absence of a specific cause, making its clinical management challenging. A better understanding of the molecular mechanism underlying this apparent bioenergetic deficiency state may reveal insights for developing targeted treatment strategies. We report that overexpression of Wiskott-Aldrich Syndrome Protein Family Member 3 (WASF3), here identified in a 38-y-old woman suffering from long-standing fatigue and exercise intolerance, can disrupt mitochondrial respiratory supercomplex formation and is associated with endoplasmic reticulum (ER) stress. Increased expression of WASF3 in transgenic mice markedly decreased their treadmill running capacity with concomitantly impaired respiratory supercomplex assembly and reduced complex IV levels in skeletal muscle mitochondria. WASF3 induction by ER stress using endotoxin, well known to be associated with fatigue in humans, also decreased skeletal muscle complex IV levels in mice, while decreasing WASF3 levels by pharmacologic inhibition of ER stress improved mitochondrial function in the cells of the patient with chronic fatigue. Expanding on our findings, skeletal muscle biopsy samples obtained from a cohort of patients with ME/CFS showed increased WASF3 protein levels and aberrant ER stress activation. In addition to revealing a potential mechanism for the bioenergetic deficiency in ME/CFS, our study may also provide insights into other disorders associated with fatigue such as rheumatic diseases and long COVID.


Asunto(s)
COVID-19 , Síndrome de Fatiga Crónica , Animales , Femenino , Humanos , Ratones , COVID-19/metabolismo , Síndrome de Fatiga Crónica/diagnóstico , Mitocondrias/metabolismo , Síndrome Post Agudo de COVID-19 , Respiración , Familia de Proteínas del Síndrome de Wiskott-Aldrich/metabolismo , Ratones Transgénicos
3.
J Biol Chem ; 299(3): 103018, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36796514

RESUMEN

The endosymbiotic theory posits that ancient eukaryotic cells engulfed O2-consuming prokaryotes, which protected them against O2 toxicity. Previous studies have shown that cells lacking cytochrome c oxidase (COX), required for respiration, have increased DNA damage and reduced proliferation, which could be improved by reducing O2 exposure. With recently developed fluorescence lifetime microscopy-based probes demonstrating that the mitochondrion has lower [O2] than the cytosol, we hypothesized that the perinuclear distribution of mitochondria in cells may create a barrier for O2 to access the nuclear core, potentially affecting cellular physiology and maintaining genomic integrity. To test this hypothesis, we utilized myoglobin-mCherry fluorescence lifetime microscopy O2 sensors without subcellular targeting ("cytosol") or with targeting to the mitochondrion or nucleus for measuring their localized O2 homeostasis. Our results showed that, similar to the mitochondria, the nuclear [O2] was reduced by ∼20 to 40% compared with the cytosol under imposed O2 levels of ∼0.5 to 18.6%. Pharmacologically inhibiting respiration increased nuclear O2 levels, and reconstituting O2 consumption by COX reversed this increase. Similarly, genetic disruption of respiration by deleting SCO2, a gene essential for COX assembly, or restoring COX activity in SCO2-/- cells by transducing with SCO2 cDNA replicated these changes in nuclear O2 levels. The results were further supported by the expression of genes known to be affected by cellular O2 availability. Our study reveals the potential for dynamic regulation of nuclear O2 levels by mitochondrial respiratory activity, which in turn could affect oxidative stress and cellular processes such as neurodegeneration and aging.


Asunto(s)
Mitocondrias , Oxígeno , Oxígeno/metabolismo , Mitocondrias/metabolismo , Respiración , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Núcleo Celular/metabolismo , Consumo de Oxígeno , Respiración de la Célula
4.
FEBS J ; 289(22): 6959-6968, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-34235856

RESUMEN

Molecular oxygen possesses a dual nature due to its highly reactive free radical property: it is capable of oxidizing metabolic substrates to generate cellular energy, but can also serve as a substrate for genotoxic reactive oxygen species generation. As a labile substance upon which aerobic life depends, the mechanisms for handling cellular oxygen have been fine-tuned and orchestrated in evolution. Protection from atmospheric oxygen toxicity as originally posited by the Endosymbiotic Theory of the Mitochondrion is likely to be one basic principle underlying oxygen homeostasis. We briefly review the literature on oxygen homeostasis both in vitro and in vivo with a focus on the role of the mitochondrion where the majority of cellular oxygen is consumed. The insights gleaned from these basic mechanisms are likely to be important for understanding disease pathogenesis and developing strategies for maintaining health.


Asunto(s)
Mitocondrias , Oxígeno , Mitocondrias/metabolismo , Radicales Libres/metabolismo , Oxígeno/metabolismo , Homeostasis , Especies Reactivas de Oxígeno/metabolismo , Estrés Oxidativo
5.
Arterioscler Thromb Vasc Biol ; 41(11): 2648-2660, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34587760

RESUMEN

Significant progress has been made in developing new treatments and refining the use of preexisting ones against cancer. Their successful use and the longer survival of cancer patients have been associated with reports of new cardiotoxicities and the better characterization of the previously known cardiac complications. Immunotherapies with monoclonal antibodies against specific cancer-promoting genes, chimeric antigen receptor T cells, and immune checkpoint inhibitors have been developed to fight cancer cells, but they can also show off-target effects on the heart. Some of these cardiotoxicities are thought to be due to nonspecific immune activation and inflammatory damage. Unlike immunotherapy-associated cardiotoxicities which are relatively new entities, there is extensive literature on anthracycline-induced cardiomyopathy. Here, we provide a brief overview of the cardiotoxicities of immunotherapies for the purpose of distinguishing them from anthracycline cardiomyopathy. This is especially relevant as the expansion of oncological treatments presents greater diagnostic challenges in determining the cause of cardiac dysfunction in cancer survivors with a history of multiple cancer treatments including anthracyclines and immunotherapies administered concurrently or serially over time. We then provide a focused review of the mechanisms proposed to underlie the development of anthracycline cardiomyopathy based on experimental data mostly in mouse models. Insights into its pathogenesis may stimulate the development of new strategies to identify patients who are susceptible to anthracycline cardiomyopathy while permitting low cardiac risk patients to receive optimal treatment for their cancer.


Asunto(s)
Antraciclinas/efectos adversos , Antibióticos Antineoplásicos/efectos adversos , Cardiopatías/inducido químicamente , Miocitos Cardíacos/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Animales , Cardiotoxicidad , Daño del ADN , Cardiopatías/patología , Cardiopatías/fisiopatología , Cardiopatías/prevención & control , Humanos , Terapia Molecular Dirigida/efectos adversos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Medición de Riesgo , Factores de Riesgo , Transducción de Señal
6.
J Immunol ; 206(12): 3021-3031, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34108259

RESUMEN

Although organ hypofunction and immunosuppression are life-threatening features of severe sepsis, the hypofunctioning organs and immune cells usually regain normal functionality if patients survive. Because tissue interstitial fluid can become acidic during the septic response, we tested the hypothesis that low extracellular pH (pHe) can induce reversible metabolic and functional changes in peritoneal macrophages from C57BL/6J mice. When compared with macrophages cultured at normal pHe, macrophages living in an acidic medium used less glucose and exogenous fatty acid to produce ATP. Lactate, glutamine, and de novo-synthesized fatty acids supported ATP production by mitochondria that gained greater mass, maximal oxygen consumption rate, and spare respiratory capacity. The cells transitioned to an M2-like state, with altered immune responses to LPS and slightly decreased phagocytic ability, yet they regained basal energy production, normal mitochondrial function, and proinflammatory responsiveness when neutral pHe was restored. Low pHe induces changes that support macrophage survival while rendering the cells less proinflammatory (more "tolerant") and less able to phagocytose bacteria. Macrophage responses to low interstitial pH may contribute to the reversible organ hypofunction and immunoparalysis noted in many patients with sepsis.


Asunto(s)
Espacio Extracelular/inmunología , Inmunidad Innata/inmunología , Macrófagos Peritoneales/inmunología , Sepsis/inmunología , Animales , Células Cultivadas , Concentración de Iones de Hidrógeno , Ratones , Ratones Endogámicos C57BL
7.
Cancer Prev Res (Phila) ; 14(1): 31-40, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32958587

RESUMEN

Germline mutations of TP53, which cause the cancer predisposition disorder Li-Fraumeni syndrome (LFS), can increase mitochondrial activity as well as fatty acid ß-oxidation (FAO) in mice. Increased fatty acid metabolism can promote cancer malignancy, but its specific contribution to tumorigenesis in LFS remains unclear. To investigate this, we crossed LFS mice carrying the p53 R172H knock-in mutation (p53172H/H , homolog of the human TP53 R175H LFS mutation) with myoglobin-knockout (MB-/- ) mice known to have decreased FAO. MB-/- p53172H/H double-mutant mice also showed mildly reduced FAO in thymus, a common site of T lymphoma development in LFS mice, in association with an approximately 40% improvement in cancer-free survival time. RNA sequencing profiling revealed that the p53 R172H mutation promotes mitochondrial metabolism and ribosome biogenesis, both of which are suppressed by the disruption of MB. The activation of ribosomal protein S6, involved in protein translation and implicated in cancer promotion, was also inhibited in the absence of MB. To further confirm the role of FAO in lymphomagenesis, mitochondrial FAO enzyme, carnitine palmitoyltransferase 2 (CPT2), was specifically disrupted in T cells of p53172H/H mice using a Cre-loxP-mediated strategy. The heterozygous knockout of CPT2 resulted in thymus FAO haploinsufficiency and an approximately 30% improvement in survival time, paralleling the antiproliferative signaling observed with MB disruption. Thus, this study demonstrates that moderating FAO in LFS can suppress tumorigenesis and improve cancer-free survival with potential implications for cancer prevention. PREVENTION RELEVANCE: Mildly inhibiting the increased fatty acid oxidation observed in a mouse model of Li-Fraumeni syndrome, a cancer predisposition disorder caused by inherited mutations of TP53, dampens aberrant pro-tumorigenic cell signaling and improves the survival time of these mice, thereby revealing a potential strategy for cancer prevention in patients.


Asunto(s)
Carcinogénesis/metabolismo , Carnitina O-Palmitoiltransferasa/metabolismo , Ácidos Grasos/metabolismo , Síndrome de Li-Fraumeni/patología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Carcinogénesis/genética , Carnitina O-Palmitoiltransferasa/genética , Estudios de Casos y Controles , Células Cultivadas , Modelos Animales de Enfermedad , Supervivencia sin Enfermedad , Metabolismo Energético , Femenino , Técnicas de Sustitución del Gen , Predisposición Genética a la Enfermedad , Mutación de Línea Germinal , Heterocigoto , Humanos , Síndrome de Li-Fraumeni/complicaciones , Síndrome de Li-Fraumeni/genética , Síndrome de Li-Fraumeni/mortalidad , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Mioblastos , Mioglobina/genética , Oxidación-Reducción , Cultivo Primario de Células , Estudios Prospectivos , Proteína p53 Supresora de Tumor/genética , Adulto Joven
8.
Mol Cell Oncol ; 7(3): 1724598, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32391420

RESUMEN

Doxorubicin is widely used against cancer but carries the risk of a progressive cardiomyopathy associated with mitochondrial loss. Using genetic models, our recent study demonstrates that mitochondrial genomic DNA regulation by tumor protein p53 (TP53, best known as p53) prevents the cardiotoxicity of low dose doxorubicin which does not activate the p53-dependent cell death pathway.

9.
EMBO J ; 39(10): e103111, 2020 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-32187724

RESUMEN

The homeostatic link between oxidative stress and autophagy plays an important role in cellular responses to a wide variety of physiological and pathological conditions. However, the regulatory pathway and outcomes remain incompletely understood. Here, we show that reactive oxygen species (ROS) function as signaling molecules that regulate autophagy through ataxia-telangiectasia mutated (ATM) and cell cycle checkpoint kinase 2 (CHK2), a DNA damage response (DDR) pathway activated during metabolic and hypoxic stress. We report that CHK2 binds to and phosphorylates Beclin 1 at Ser90/Ser93, thereby impairing Beclin 1-Bcl-2 autophagy-regulatory complex formation in a ROS-dependent fashion. We further demonstrate that CHK2-mediated autophagy has an unexpected role in reducing ROS levels via the removal of damaged mitochondria, which is required for cell survival under stress conditions. Finally, CHK2-/- mice display aggravated infarct phenotypes and reduced Beclin 1 p-Ser90/Ser93 in a cerebral stroke model, suggesting an in vivo role of CHK2-induced autophagy in cell survival. Taken together, these results indicate that the ROS-ATM-CHK2-Beclin 1-autophagy axis serves as a physiological adaptation pathway that protects cells exposed to pathological conditions from stress-induced tissue damage.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Beclina-1/metabolismo , Quinasa de Punto de Control 2/metabolismo , Accidente Cerebrovascular Isquémico/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Autofagia , Línea Celular , Modelos Animales de Enfermedad , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Ratones , Estrés Oxidativo , Fosforilación
10.
Cell Rep ; 30(3): 783-792.e5, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31968253

RESUMEN

The physiological effects of the many germline mutations of TP53, encoding the tumor suppressor protein p53, are poorly understood. Here we report generating a p53 R178C knockin mouse modeling the human TP53 R181C mutation, which is notable for its prevalence and prior molecular characterization. Consistent with its weak cancer penetrance in humans, homozygous p53178C/C mice show a modest increase in tumorigenesis but, surprisingly, are lean with decreased body fat content. They display evidence of increased lipolysis and upregulation of fatty acid metabolism in their inguinal white adipose tissue (iWAT). Gene expression and chromatin immunoprecipitation sequencing (ChIP-seq) analyses show that the mutant p53 bound and transactivated Beta-3-Adrenergic Receptor (ADRB3), a gene that is known to promote lipolysis and is associated with obesity. This study reveals that a germline mutation of p53 can affect fat metabolism, which has been implicated in cancer development.


Asunto(s)
Mutación de Línea Germinal/genética , Lipólisis/genética , Homología de Secuencia de Aminoácido , Proteína p53 Supresora de Tumor/genética , Células 3T3-L1 , Adipocitos/metabolismo , Tejido Adiposo Blanco/patología , Animales , Secuencia de Bases , Ácidos Grasos/sangre , Regulación de la Expresión Génica , Homocigoto , Humanos , Síndrome de Li-Fraumeni/genética , Metabolómica , Ratones , Ratones Endogámicos C57BL , Fenotipo , Análisis de Componente Principal , Receptores Adrenérgicos beta 3/genética , Transducción de Señal
11.
JNCI Cancer Spectr ; 4(6): pkaa063, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33490865

RESUMEN

BACKGROUND: Li-Fraumeni syndrome (LFS) is a highly penetrant autosomal dominant cancer predisposition disorder caused by germline TP53 pathogenic variants. Patients with LFS have increased oxidative phosphorylation capacity in skeletal muscle and oxidative stress in blood. Metformin inhibits oxidative phosphorylation, reducing available energy for cancer cell proliferation and decreasing production of reactive oxygen species that cause DNA damage. Thus, metformin may provide pharmacologic risk reduction for cancer in patients with LFS, but its safety in nondiabetic patients with germline TP53 pathogenic variants has not been documented. METHODS: This study assessed safety and tolerability of metformin in nondiabetic LFS patients and measured changes in metabolic profiles. Adult patients with LFS and germline TP53 variant received 14 weeks of metformin. Blood samples were obtained for measurement of serum insulin-like growth factor-1, insulin, and insulin-like growth factor binding protein 3. Hepatic mitochondrial function was assessed with fasting exhaled CO2 after ingestion of 13C-labeled methionine. Changes in serum metabolome were measured. All statistical tests were 2-sided. RESULTS: We enrolled 26 participants: 20 females and 6 males. The most common adverse events were diarrhea (50.0%) and nausea (46.2%). Lactic acidosis did not occur, and there were no changes in fasting glucose. Cumulative mean 13C exhalation was statistically significantly suppressed by metformin (P = .001). Mean levels of insulin-like growth factor binding protein 3 and insulin-like growth factor-1 were statistically significantly lowered (P = .02). Lipid metabolites and branched-chain amino acids accumulated. CONCLUSIONS: Metformin was safe and tolerable in patients with LFS. It suppressed hepatic mitochondrial function as expected in these individuals. This study adds to the rationale for development of a pharmacologic risk-reduction clinical trial of metformin in LFS.

12.
PhytoKeys ; 130: 143-150, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31534402

RESUMEN

Dendrocalamus menghanensis P.Y.Wang & D.Z.Li, a new species of woody bamboos endemic to south Yunnan, China, is described and illustrated. The new species is morphologically similar to D. semiscandens and D. birmanicus but differs in having a reflexed culm sheath blade, 10 mm high culm sheath ligule, 1 mm high leaf sheath ligule, 4 florets and 1 glume.

13.
Proc Natl Acad Sci U S A ; 116(39): 19626-19634, 2019 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-31488712

RESUMEN

Doxorubicin is a widely used chemotherapeutic agent that causes dose-dependent cardiotoxicity in a subset of treated patients, but the genetic determinants of this susceptibility are poorly understood. Here, we report that a noncanonical tumor suppressor activity of p53 prevents cardiac dysfunction in a mouse model induced by doxorubicin administered in divided low doses as in the clinics. While relatively preserved in wild-type (p53+/+ ) state, mice deficient in p53 (p53-/- ) developed left ventricular (LV) systolic dysfunction after doxorubicin treatment. This functional decline in p53-/- mice was associated with decreases in cardiac oxidative metabolism, mitochondrial mass, and mitochondrial genomic DNA (mtDNA) homeostasis. Notably, mice with homozygous knockin of the p53 R172H (p53172H/H ) mutation, which like p53-/- state lacks the prototypical tumor suppressor activities of p53 such as apoptosis but retains its mitochondrial biogenesis capacity, showed preservation of LV function and mitochondria after doxorubicin treatment. In contrast to p53-null state, wild-type and mutant p53 displayed distinct mechanisms of transactivating mitochondrial transcription factor A (TFAM) and p53-inducible ribonucleotide reductase 2 (p53R2), which are involved in mtDNA transcription and maintenance. Importantly, supplementing mice with a precursor of NAD+ prevented the mtDNA depletion and cardiac dysfunction. These findings suggest that loss of mtDNA contributes to cardiomyopathy pathogenesis induced by doxorubicin administered on a schedule simulating that in the clinics. Given a similar mtDNA protection role of p53 in doxorubicin-treated human induced pluripotent stem cell (iPSC)-derived cardiomyocytes, the mitochondrial markers associated with cardiomyopathy development observed in blood and skeletal muscle cells may have prognostic utility.


Asunto(s)
Cardiotoxicidad/metabolismo , Cardiotoxicidad/prevención & control , Doxorrubicina/toxicidad , Proteína p53 Supresora de Tumor/metabolismo , Animales , Apoptosis/fisiología , Cardiomiopatías/metabolismo , ADN Mitocondrial/genética , Proteínas de Unión al ADN , Cardiopatías/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias Cardíacas/metabolismo , Proteínas Mitocondriales , Mutación , Miocitos Cardíacos/metabolismo , Biogénesis de Organelos , Cultivo Primario de Células , Factores de Transcripción , Proteína p53 Supresora de Tumor/genética
14.
Oncotarget ; 10(6): 631-632, 2019 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-30774760
15.
Cancer Res ; 78(18): 5375-5383, 2018 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-30042151

RESUMEN

Inheritance of germline mutations in the tumor suppressor gene TP53 causes Li-Fraumeni syndrome (LFS), a cancer predisposition disorder. The arginine to histidine substitution at amino acid position 337 of p53 (R337H) is a founder mutation highly prevalent in southern and southeastern Brazil and is considered an LFS mutation. Although this mutation is of significant clinical interest, its role in tumorigenesis using animal models has not been described. Here, we generate a knockin mouse model containing the homologous R337H mutation (mouse R334H). De novo tumorigenesis was not significantly increased in either heterozygous (p53334R/H ) or homozygous (p53334H/H ) p53 R334H knockin mice compared with wild-type mice. However, susceptibility to diethylnitrosamine (DEN)-induced liver carcinogenesis was increased in a mutant allele dose-dependent manner. In parallel, p53334H/H mice exposed to DEN exhibited increased DNA damage but decreased cell-cycle regulation in the liver. Oligomerization of p53, which is required for transactivation of target genes, was reduced in R334H liver, consistent with its decreased nuclear activity compared with wild-type. By modeling a TP53 mutation in mice that has relatively weak cancer penetrance, this study provides in vivo evidence that the human R337H mutation can compromise p53 activity and promote tumorigenesis.Significance: A germline mutation in the oligomerization domain of p53 decreases its transactivation potential and renders mice susceptible to carcinogen-induced liver tumorigenesis. Cancer Res; 78(18); 5375-83. ©2018 AACR.


Asunto(s)
Carcinogénesis/genética , Neoplasias Hepáticas/patología , Proteína p53 Supresora de Tumor/genética , Alelos , Animales , Brasil , Transformación Celular Neoplásica/genética , Daño del ADN , Fibroblastos/metabolismo , Técnicas de Sustitución del Gen , Predisposición Genética a la Enfermedad , Mutación de Línea Germinal , Homocigoto , Humanos , Hígado/metabolismo , Neoplasias Hepáticas/inducido químicamente , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación , Activación Transcripcional
16.
J Clin Invest ; 127(1): 132-136, 2017 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-27869650

RESUMEN

Li-Fraumeni syndrome (LFS) is a cancer predisposition disorder caused by germline mutations in TP53 that can lead to increased mitochondrial metabolism in patients. However, the implications of altered mitochondrial function for tumorigenesis in LFS are unclear. Here, we have reported that genetic or pharmacologic disruption of mitochondrial respiration improves cancer-free survival in a mouse model of LFS that expresses mutant p53. Mechanistically, inhibition of mitochondrial function increased autophagy and decreased the aberrant proliferation signaling caused by mutant p53. In a pilot study, LFS patients treated with metformin exhibited decreases in mitochondrial activity concomitant with activation of antiproliferation signaling, thus reproducing the effects of disrupting mitochondrial function observed in LFS mice. These observations indicate that a commonly prescribed diabetic medicine can restrain mitochondrial metabolism and tumorigenesis in an LFS model, supporting its further consideration for cancer prevention in LFS patients.


Asunto(s)
Síndrome de Li-Fraumeni/prevención & control , Metformina/farmacología , Mitocondrias/metabolismo , Neoplasias Experimentales/prevención & control , Consumo de Oxígeno/efectos de los fármacos , Adulto , Animales , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Femenino , Humanos , Células Jurkat , Síndrome de Li-Fraumeni/genética , Síndrome de Li-Fraumeni/metabolismo , Masculino , Ratones , Ratones Mutantes , Persona de Mediana Edad , Mitocondrias/genética , Mitocondrias/patología , Neoplasias Experimentales/genética , Neoplasias Experimentales/metabolismo , Consumo de Oxígeno/genética , Proyectos Piloto , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
17.
J Biol Chem ; 291(48): 24819-24827, 2016 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-27687729

RESUMEN

Although exercise is linked with improved health, the specific molecular mechanisms underlying its various benefits require further clarification. Here we report that exercise increases the nuclear localization and activity of p53 by acutely down-regulating coiled-coil-helix-coiled-coil-helix domain 4 (CHCHD4), a carrier protein that mediates p53 import into the mitochondria. This response to exercise is lost in transgenic mice with constitutive expression of CHCHD4. Mechanistically, exercise-induced nuclear transcription factor FOXO3 binds to the CHCHD4 promoter and represses its expression, preventing the translocation of p53 to the mitochondria and thereby increasing p53 nuclear localization. The synergistic increase in nuclear p53 and FOXO3 by exercise can facilitate their known interaction in transactivating Sirtuin 1 (SIRT1), a NAD+-dependent histone deacetylase that mediates adaptation to various stresses. Thus, our results reveal one mechanism by which exercise could be involved in preventing cancer and potentially other diseases associated with aging.


Asunto(s)
Núcleo Celular/metabolismo , Proteína Forkhead Box O3/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Condicionamiento Físico Animal , Proteína p53 Supresora de Tumor/metabolismo , Transporte Activo de Núcleo Celular , Animales , Núcleo Celular/genética , Proteína Forkhead Box O3/genética , Humanos , Ratones , Ratones Noqueados , Proteínas de Transporte de Membrana Mitocondrial/genética , Elementos de Respuesta , Sirtuina 1/genética , Sirtuina 1/metabolismo , Proteína p53 Supresora de Tumor/genética
18.
J Med Chem ; 59(21): 9575-9598, 2016 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-27416328

RESUMEN

Poly(ADP-ribose)polymerase-1 (PARP-1) is a critical DNA repair enzyme in the base excision repair pathway. Inhibitors of this enzyme comprise a new type of anticancer drug that selectively kills cancer cells by targeting homologous recombination repair defects. Since 2010, important advances have been achieved in PARP-1 inhibitors. Specifically, the approval of olaparib in 2014 for the treatment of ovarian cancer with BRCA mutations validated PARP-1 as an anticancer target and established its clinical importance in cancer therapy. Here, we provide an update on PARP-1 inhibitors, focusing on breakthroughs in their clinical applications and investigations into relevant mechanisms of action, biomarkers, and drug resistance. We also provide an update on the design strategies and the structural types of PARP-1 inhibitors. Opportunities and challenges in PARP-1 inhibitors for cancer therapy will be discussed based on the above advances.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias/tratamiento farmacológico , Neoplasias/enzimología , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Modelos Moleculares , Estructura Molecular , Neoplasias/patología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/síntesis química , Inhibidores de Poli(ADP-Ribosa) Polimerasas/química , Relación Estructura-Actividad
19.
PhytoKeys ; (62): 41-56, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27212881

RESUMEN

Ampelocalamus actinotrichus (Merrill & Chun) S. L. Chen, T. H. Wen & G. Y. Sheng and Neomicrocalamus prainii (Gamble) P. C. Keng are reported with new distribution records in southern and southeastern Yunnan, China, respectively. Ampelocalamus actinotrichus was previously recorded to be endemic to Hainan, China, and Neomicrocalamus prainii to be distributed in southern Tibet and western Yunnan in China, northeastern India, and Burma. The identities of individuals collected in southern and southeastern Yunnan of these two species are confirmed by molecular evidence. The new distribution record of Ampelocalamus actinotrichus provides a case at the species level for confirming floristic affinities of southern Yunnan and Hainan Island in south China. The disjunct distribution of Neomicrocalamus prainii in Yunnan is concordant with the ecogeographical diagonal line from northwestern Yunnan to southeastern Yunnan and this may imply a tropical origin of this species. In addition, the inflorescence of Melocalamus yunnanensis (T. H. Wen) T. P. Yi is described.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA