Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Med Chem ; 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38788241

RESUMEN

Orphan GPR52 is emerging as a promising neurotherapeutic target. Optimization of previously reported lead 4a employing an iterative drug design strategy led to the identification of a series of unique GPR52 agonists, such as 10a (PW0677), 15b (PW0729), and 24f (PW0866), with improved potency and efficacy. Intriguingly, compounds 10a and 24f showed greater bias for G protein/cAMP signaling and induced significantly less in vitro desensitization than parent compound 4a, indicating that reducing GPR52 ß-arrestin activity with biased agonism results in sustained GPR52 activation. Further exploration of compounds 15b and 24f indicated improved potency and efficacy, and excellent target selectivity, but limited brain exposure warranting further optimization. These balanced and biased GPR52 agonists provide important pharmacological tools to study GPR52 activation, signaling bias, and therapeutic potential for neuropsychiatric and neurological diseases.

2.
bioRxiv ; 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38659786

RESUMEN

The dopamine D1 receptor (D1R) has fundamental roles in voluntary movement and memory and is a validated drug target for neurodegenerative and neuropsychiatric disorders. However, previously developed D1R selective agonists possess a catechol moiety which displays poor pharmacokinetic properties. The first selective non-catechol D1R agonists were recently discovered and unexpectedly many of these ligands showed G protein biased signaling. Here, we investigate both catechol and non-catechol D1R agonists to validate potential biased signaling and examine if this impacts agonist-induced D1R endocytosis. We determined that most, but not all, non-catechol agonists display G protein biased signaling at the D1R and have reduced or absent Beta-arrestin recruitment. A notable exception was compound (Cmpd) 19, a non-catechol agonist with full efficacy at both D1R-G protein or D1R Beta-arrestin pathways. In addition, the catechol ligand A-77636 was a highly potent, super agonist for D1R Beta-arrestin activity. When examined for agonist-induced D1R endocytosis, balanced agonists SKF-81297 and Cmpd 19 induced robust D1R endocytosis while the G protein biased agonists did not. The Beta-arrestin super agonist, A-77636, showed significantly increased D1R endocytosis. Moreover, Beta-arrestin recruitment efficacy of tested agonists strongly correlated with total D1R endocytosis. Taken together, these results indicate the degree of D1R signaling functional selectivity profoundly impacts D1R endocytosis regardless of pharmacophore. The range of functional selectivity of these D1R agonists will provide valuable tools to further investigate D1R signaling, trafficking and therapeutic potential.

3.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167114, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38447883

RESUMEN

AIMS: Exchange protein directly activated by cAMP 1 (EPAC1), a major isoform of guanine nucleotide exchange factors, is highly expressed in vascular endothelia cells and regulates angiogenesis in the retina. High intratumor microvascular densities (MVD) resulting from angiogenesis is responsible for breast cancer development. Downregulation of EPAC1 in tumor cell reduces triple-negative breast cancer (TNBC)-induced angiogenesis. However, whether Epac1 expressed in vascular endothelial cells contributes to angiogenesis and tumor development of TNBC remains elusive. MAIN METHODS: We employed NY0123, a previously identified potent EPAC inhibitor, to explore the anti-angiogenic biological role of EPAC1 in vitro and in vivo through vascular endothelial cells, rat aortic ring, Matrigel plug, and chick embryo chorioallantoic membrane (CAM) and yolk sac membrane (YSM) assays, as well as the in vivo xenograft tumor models of TNBC in both chick embryo and mice. KEY FINDINGS: Inhibiting EPAC1 in vascular endothelial cells by NY0123 significantly suppresses angiogenesis and tumor growth of TNBC. In addition, NY0123 possesses a better inhibitory efficacy than ESI-09, a reported specific EPAC inhibitor tool compound. Importantly, inhibiting EPAC1 in vascular endothelia cells regulates the typical angiogenic signaling network, which is associated with not only vascular endothelial growth factor (VEGF)/vascular endothelial growth factor receptor-2 (VEGFR2) signaling, but also PI3K/AKT, MEK/ERK and Notch pathway. CONCLUSIONS: Our findings support that EPAC1 may serve as an effective anti-angiogenic therapeutic target of TNBC, and EPAC inhibitor NY0123 has the therapeutic potential to be developed for the treatment of TNBC.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido , Neovascularización Patológica , Neoplasias de la Mama Triple Negativas , Animales , Embrión de Pollo , Humanos , Ratones , Ratas , Células Endoteliales/metabolismo , Factores de Intercambio de Guanina Nucleótido/antagonistas & inhibidores , Fosfatidilinositol 3-Quinasas , Neoplasias de la Mama Triple Negativas/irrigación sanguínea , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Neovascularización Patológica/tratamiento farmacológico
4.
Drug Discov Today ; 29(4): 103922, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38387741

RESUMEN

GPR52 is a highly conserved, brain-enriched, Gs/olf-coupled orphan G protein-coupled receptor (GPCR) that controls various cyclic AMP (cAMP)-dependent physiological and pathological processes. Stimulation of GPR52 activity might be beneficial for the treatment of schizophrenia, psychiatric disorders and other human neurological diseases, whereas inhibition of its activity might provide a potential therapeutic approach for Huntington's disease. Excitingly, HTL0048149 (HTL'149), an orally available GPR52 agonist, has been advanced into phase I human clinical trials for the treatment of schizophrenia. In this concise review, we summarize the current understanding of GPR52 receptor distribution as well as its structure and functions, highlighting the recent advances in drug discovery efforts towards small-molecule GPR52 ligands. The opportunities and challenges presented by targeting GPR52 for novel therapeutics are also briefly discussed.


Asunto(s)
Enfermedad de Huntington , Receptores Acoplados a Proteínas G , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Encéfalo/metabolismo , Enfermedad de Huntington/tratamiento farmacológico , Descubrimiento de Drogas
5.
Cell Rep ; 43(1): 113626, 2024 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-38157298

RESUMEN

Exercise training can stimulate the formation of fatty-acid-oxidizing slow-twitch skeletal muscle fibers, which are inversely correlated with obesity, but the molecular mechanism underlying this transformation requires further elucidation. Here, we report that the downregulation of the mitochondrial disulfide relay carrier CHCHD4 by exercise training decreases the import of TP53-regulated inhibitor of apoptosis 1 (TRIAP1) into mitochondria, which can reduce cardiolipin levels and promote VDAC oligomerization in skeletal muscle. VDAC oligomerization, known to facilitate mtDNA release, can activate cGAS-STING/NFKB innate immune signaling and downregulate MyoD in skeletal muscle, thereby promoting the formation of oxidative slow-twitch fibers. In mice, CHCHD4 haploinsufficiency is sufficient to activate this pathway, leading to increased oxidative muscle fibers and decreased fat accumulation with aging. The identification of a specific mediator regulating muscle fiber transformation provides an opportunity to understand further the molecular underpinnings of complex metabolic conditions such as obesity and could have therapeutic implications.


Asunto(s)
Fibras Musculares Esqueléticas , Músculo Esquelético , Animales , Ratones , Apoptosis , Inmunidad Innata , Músculo Esquelético/metabolismo , Obesidad/metabolismo
6.
J Neuroinflammation ; 20(1): 306, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38115011

RESUMEN

BACKGROUND: Excess tumor necrosis factor (TNF) is implicated in the pathogenesis of hyperinflammatory experimental cerebral malaria (eCM), including gliosis, increased levels of fibrin(ogen) in the brain, behavioral changes, and mortality. However, the role of TNF in eCM within the brain parenchyma, particularly directly on neurons, remains underdefined. Here, we investigate electrophysiological consequences of eCM on neuronal excitability and cell signaling mechanisms that contribute to observed phenotypes. METHODS: The split-luciferase complementation assay (LCA) was used to investigate cell signaling mechanisms downstream of tumor necrosis factor receptor 1 (TNFR1) that could contribute to changes in neuronal excitability in eCM. Whole-cell patch-clamp electrophysiology was performed in brain slices from eCM mice to elucidate consequences of infection on CA1 pyramidal neuron excitability and cell signaling mechanisms that contribute to observed phenotypes. Involvement of identified signaling molecules in mediating behavioral changes and sickness behavior observed in eCM were investigated in vivo using genetic silencing. RESULTS: Exploring signaling mechanisms that underlie TNF-induced effects on neuronal excitability, we found that the complex assembly of fibroblast growth factor 14 (FGF14) and the voltage-gated Na+ (Nav) channel 1.6 (Nav1.6) is increased upon tumor necrosis factor receptor 1 (TNFR1) stimulation via Janus Kinase 2 (JAK2). On account of the dependency of hyperinflammatory experimental cerebral malaria (eCM) on TNF, we performed patch-clamp studies in slices from eCM mice and showed that Plasmodium chabaudi infection augments Nav1.6 channel conductance of CA1 pyramidal neurons through the TNFR1-JAK2-FGF14-Nav1.6 signaling network, which leads to hyperexcitability. Hyperexcitability of CA1 pyramidal neurons caused by infection was mitigated via an anti-TNF antibody and genetic silencing of FGF14 in CA1. Furthermore, knockdown of FGF14 in CA1 reduced sickness behavior caused by infection. CONCLUSIONS: FGF14 may represent a therapeutic target for mitigating consequences of TNF-mediated neuroinflammation.


Asunto(s)
Conducta de Enfermedad , Malaria Cerebral , Ratones , Animales , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Inhibidores del Factor de Necrosis Tumoral , Canal de Sodio Activado por Voltaje NAV1.6/metabolismo , Neuronas/metabolismo , Transducción de Señal
7.
Eur J Med Chem ; 259: 115709, 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37567056

RESUMEN

Poly(ADP-ribose) polymerase 1 (PARP1) inhibitors can selectively kill homologous recombination (HR) deficient cancer cells and elicit anticancer effect through a mechanism of synthetic lethality. In this study, we designed, synthesized and pharmacologically evaluated a series of [1,2,4]triazolo[4,3-a]pyrazine derivatives as a class of potent PARP1 inhibitors. Among them, compounds 17m, 19a, 19c, 19e, 19i and 19k not only displayed more potent inhibitory activities (IC50s < 4.1 nM) than 9 and 1 against PARP1, but also exhibited nanomolar range of antiproliferative effects against MDA-MB-436 (BRCA1-/-, IC50s < 1.9 nM) and Capan-1 (BRCA2-/-, IC50s < 21.6 nM) cells. Notably, 19k significantly inhibited proliferation of resistant Capan-1 cells (IC50s < 0.3 nM). Collectively, the newly discovered PARP1 inhibitors act as a useful pharmacological tool for investigating the mechanism of acquired resistance to PARP1 inhibitors, and may also represent promising therapeutic agents for the treatment of HR deficient cancers with the potential to overcome the acquired resistance.


Asunto(s)
Neoplasias , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Humanos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Poli(ADP-Ribosa) Polimerasa-1 , Neoplasias/tratamiento farmacológico , Recombinación Homóloga , Línea Celular Tumoral
8.
Proc Natl Acad Sci U S A ; 120(34): e2302738120, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37579159

RESUMEN

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is characterized by various disabling symptoms including exercise intolerance and is diagnosed in the absence of a specific cause, making its clinical management challenging. A better understanding of the molecular mechanism underlying this apparent bioenergetic deficiency state may reveal insights for developing targeted treatment strategies. We report that overexpression of Wiskott-Aldrich Syndrome Protein Family Member 3 (WASF3), here identified in a 38-y-old woman suffering from long-standing fatigue and exercise intolerance, can disrupt mitochondrial respiratory supercomplex formation and is associated with endoplasmic reticulum (ER) stress. Increased expression of WASF3 in transgenic mice markedly decreased their treadmill running capacity with concomitantly impaired respiratory supercomplex assembly and reduced complex IV levels in skeletal muscle mitochondria. WASF3 induction by ER stress using endotoxin, well known to be associated with fatigue in humans, also decreased skeletal muscle complex IV levels in mice, while decreasing WASF3 levels by pharmacologic inhibition of ER stress improved mitochondrial function in the cells of the patient with chronic fatigue. Expanding on our findings, skeletal muscle biopsy samples obtained from a cohort of patients with ME/CFS showed increased WASF3 protein levels and aberrant ER stress activation. In addition to revealing a potential mechanism for the bioenergetic deficiency in ME/CFS, our study may also provide insights into other disorders associated with fatigue such as rheumatic diseases and long COVID.


Asunto(s)
COVID-19 , Síndrome de Fatiga Crónica , Animales , Femenino , Humanos , Ratones , COVID-19/metabolismo , Síndrome de Fatiga Crónica/diagnóstico , Mitocondrias/metabolismo , Síndrome Post Agudo de COVID-19 , Respiración , Familia de Proteínas del Síndrome de Wiskott-Aldrich/metabolismo , Ratones Transgénicos
9.
Drug Discov Today ; 28(9): 103698, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37422169

RESUMEN

G-protein-coupled receptor 12 (GPR12) is a brain-specific expression orphan G-protein-coupled receptor (oGPCR) that regulates various physiological processes. It is an emerging therapeutic target for central nervous system (CNS) disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), attention deficit hyperactivity disorder (ADHD), and schizophrenia, as well as other human diseases, such as cancer, obesity, and metabolic disorders. GPR12 remains a less extensively investigated oGPCR, particularly in terms of its biological functions, signaling pathways, and ligand discovery. The discovery of drug-like small-molecule modulators to probe the brain functions of GPR12 or to act as a potential drug candidates, as well as the identification of reliable biomarkers, are vital to elucidate the roles of this receptor in various human diseases and develop novel target-based therapeutics.


Asunto(s)
Enfermedades del Sistema Nervioso Central , Receptores Acoplados a Proteínas G , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/fisiología , Enfermedades del Sistema Nervioso Central/tratamiento farmacológico , Ligandos , Descubrimiento de Drogas
10.
Eur J Med Chem ; 254: 115346, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37043994

RESUMEN

A series of quinazolin-4(3H)-one derivatives was designed through scaffold-hopping strategy and synthesized as novel multifunctional anti-AD agents demonstrating both cholinesterase inhibition and anti-inflammatory activities. Their inhibitory activities against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) were evaluated, and the enzyme kinetics study as well as detailed binding mode via molecular docking were performed for selected compounds. MR2938 (B12) displayed promising AChE inhibitory activity with an IC50 value of 5.04 µM and suppressed NO production obviously (IC50 = 3.29 µM). Besides, it was able to decrease the mRNA levels of pro-inflammatory cytokines IL-1ß, TNF-α, IL-6 and CCL2 at 1.25 µM. Further mechanism study suggested that MR2938 suppressed the neuroinflammation through blocking MAPK/JNK and NF-κB signaling pathways. All these results indicate that MR2938 is a good starting point to develop multifunctional anti-AD lead compounds.


Asunto(s)
Enfermedad de Alzheimer , Inhibidores de la Colinesterasa , Humanos , Inhibidores de la Colinesterasa/química , Butirilcolinesterasa/metabolismo , Acetilcolinesterasa/metabolismo , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad
11.
Mar Drugs ; 21(3)2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36976240

RESUMEN

Previously, we identified a series of steroids (1-6) that showed potent anti-virus activities against respiratory syncytial virus (RSV), with IC50 values ranging from 3.23 to 0.19 µM. In this work, we first semi-synthesized and characterized the single isomer of 5, 25(R)-26-acetoxy-3ß,5α-dihydroxycholest-6-one, named as (25R)-5, in seven steps from a commercially available compound diosgenin (7), with a total yield of 2.8%. Unfortunately, compound (25R)-5 and the intermediates only showed slight inhibitions against RSV replication at the concentration of 10 µM, but they possessed potent cytotoxicity activities against human bladder cancer 5637 (HTB-9) and hepatic cancer HepG2, with IC50 values ranging from 3.0 to 15.5 µM without any impression of normal liver cell proliferation at 20 µM. Among them, the target compound (25R)-5 possessed cytotoxicity activities against 5637 (HTB-9) and HepG2 with IC50 values of 4.8 µM and 15.5 µM, respectively. Further studies indicated that compound (25R)-5 inhibited cancer cell proliferation through inducing early and late-stage apoptosis. Collectively, we have semi-synthesized, characterized and biologically evaluated the 25R-isomer of compound 5; the biological results suggested that compound (25R)-5 could be a good lead for further anti-cancer studies, especially for anti-human liver cancer.


Asunto(s)
Antineoplásicos , Diosgenina , Esteroides/farmacología , Diosgenina/farmacología , Antineoplásicos/farmacología , Proliferación Celular , Estructura Molecular
12.
J Biol Chem ; 299(3): 103018, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36796514

RESUMEN

The endosymbiotic theory posits that ancient eukaryotic cells engulfed O2-consuming prokaryotes, which protected them against O2 toxicity. Previous studies have shown that cells lacking cytochrome c oxidase (COX), required for respiration, have increased DNA damage and reduced proliferation, which could be improved by reducing O2 exposure. With recently developed fluorescence lifetime microscopy-based probes demonstrating that the mitochondrion has lower [O2] than the cytosol, we hypothesized that the perinuclear distribution of mitochondria in cells may create a barrier for O2 to access the nuclear core, potentially affecting cellular physiology and maintaining genomic integrity. To test this hypothesis, we utilized myoglobin-mCherry fluorescence lifetime microscopy O2 sensors without subcellular targeting ("cytosol") or with targeting to the mitochondrion or nucleus for measuring their localized O2 homeostasis. Our results showed that, similar to the mitochondria, the nuclear [O2] was reduced by ∼20 to 40% compared with the cytosol under imposed O2 levels of ∼0.5 to 18.6%. Pharmacologically inhibiting respiration increased nuclear O2 levels, and reconstituting O2 consumption by COX reversed this increase. Similarly, genetic disruption of respiration by deleting SCO2, a gene essential for COX assembly, or restoring COX activity in SCO2-/- cells by transducing with SCO2 cDNA replicated these changes in nuclear O2 levels. The results were further supported by the expression of genes known to be affected by cellular O2 availability. Our study reveals the potential for dynamic regulation of nuclear O2 levels by mitochondrial respiratory activity, which in turn could affect oxidative stress and cellular processes such as neurodegeneration and aging.


Asunto(s)
Mitocondrias , Oxígeno , Oxígeno/metabolismo , Mitocondrias/metabolismo , Respiración , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Núcleo Celular/metabolismo , Consumo de Oxígeno , Respiración de la Célula
13.
EMBO Mol Med ; 15(3): e16235, 2023 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-36652375

RESUMEN

Poly-ADP-ribose polymerase (PARP) inhibitors (PARPi) have shown great promise for treating BRCA-deficient tumors. However, over 40% of BRCA-deficient patients fail to respond to PARPi. Here, we report that thioparib, a next-generation PARPi with high affinity against multiple PARPs, including PARP1, PARP2, and PARP7, displays high antitumor activities against PARPi-sensitive and -resistant cells with homologous recombination (HR) deficiency both in vitro and in vivo. Thioparib treatment elicited PARP1-dependent DNA damage and replication stress, causing S-phase arrest and apoptosis. Conversely, thioparib strongly inhibited HR-mediated DNA repair while increasing RAD51 foci formation. Notably, the on-target inhibition of PARP7 by thioparib-activated STING/TBK1-dependent phosphorylation of STAT1, triggered a strong induction of type I interferons (IFNs), and resulted in tumor growth retardation in an immunocompetent mouse model. However, the inhibitory effect of thioparib on tumor growth was more pronounced in PARP1 knockout mice, suggesting that a specific PARP7 inhibitor, rather than a pan inhibitor such as thioparib, would be more relevant for clinical applications. Finally, genome-scale CRISPR screening identified PARP1 and MCRS1 as genes capable of modulating thioparib sensitivity. Taken together, thioparib, a next-generation PARPi acting on both DNA damage response and antitumor immunity, serves as a therapeutic potential for treating hyperactive HR tumors, including those resistant to earlier-generation PARPi.


Asunto(s)
Interferón Tipo I , Neoplasias , Animales , Ratones , Línea Celular Tumoral , Reparación del ADN , Recombinación Homóloga , Interferón Tipo I/genética , Interferón Tipo I/uso terapéutico , Neoplasias/genética , Ftalazinas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Reparación del ADN por Recombinación , Proteínas de Unión al ARN/genética , Resistencia a Antineoplásicos
14.
Sci Rep ; 12(1): 16505, 2022 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-36198739

RESUMEN

The N-acylsulfonamide derivative, I942, represents the first non-cyclic nucleotide partial agonist of EPAC1. This was soon followed by the identification of the I942 analogues, PW0381, PW0521 and PWO577 and a series of benzofuran oxoacetic acid EPAC1 activators, SY006, SY007 and SY009. Protein interaction, cytotoxicity and EPAC1 activation assays applied here identify PWO577 and SY007 as being effective EPAC1 binders that are well tolerated in HUVECs at concentrations greater than 100 µM and up to 48 h incubation and are effective activators of transfected EPAC1 in U2OS cells. Using RNAseq in HUVECs we show that PWO577 and SY007 regulate approximately 11,000 shared genes, with only few differential gene changes being "off-target". The genes significantly regulated by both PWO577 and SY007 included a subset of genes normally associated with endothelial activation, including ICAM1, MMP1 and CCL2. Of these, only the expression of MMP1 was markedly increased at the protein level, as determined by LC-MS-based proteomics. Both PWO577 and SY007 suppressed IL-6-induced STAT3 activation and associated downstream gene expression, including inhibition of SOCS3, STAT3, IL6ST and JAK3 genes. Together these results demonstrate the utility of structurally distinct, specific and non-toxic EPAC1 activators. Future modifications will be aimed at eliminating the few noted off-target effects.


Asunto(s)
Benzofuranos , AMP Cíclico , AMP Cíclico/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Interleucina-6/metabolismo , Metaloproteinasa 1 de la Matriz/metabolismo , Proteómica , Transcriptoma
15.
ACS Med Chem Lett ; 13(6): 989, 2022 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-35707156

RESUMEN

[This retracts the article DOI: 10.1021/acsmedchemlett.9b00050.].

16.
Mar Drugs ; 20(3)2022 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-35323491

RESUMEN

Pseudomonas aeruginosa, one of the most intractable Gram-negative bacteria, has become a public health threat due to its outer polysaccharide layer, efflux transporter system, and high level of biofilm formation, all of which contribute to multi-drug resistance. Even though it is a pathogen of the highest concern, the status of the antibiotic development pipeline is unsatisfactory. In this review, we summarize marine natural products (MNPs) isolated from marine plants, animals, and microorganisms which possess unique structures and promising antibiotic activities against P. aeruginosa. In the last decade, nearly 80 such MNPs, ranging from polyketides to alkaloids, peptides, and terpenoids, have been discovered. Representative compounds exhibited impressive in vitro anti-P. aeruginosa activities with MIC values in the single-digit nanomolar range and in vivo efficacy in infectious mouse models. For some of the compounds, the preliminary structure-activity-relationship (SAR) and anti-bacterial mechanisms of selected compounds were introduced. Compounds that can disrupt biofilm formation or membrane integrity displayed potent inhibition of multi-resistant clinical P. aeruginosa isolates and could be considered as lead compounds for future development. Challenges on how to translate hits into useful candidates for clinical development are also proposed and discussed.


Asunto(s)
Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Infecciones por Pseudomonas/tratamiento farmacológico , Pseudomonas aeruginosa/efectos de los fármacos , Animales , Humanos
17.
J Med Chem ; 65(3): 2388-2408, 2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-34982556

RESUMEN

Bromodomain-containing protein 4 (BRD4) is an emerging epigenetic drug target for intractable inflammatory disorders. The lack of highly selective inhibitors among BRD4 family members has stalled the collective understanding of this critical system and the progress toward clinical development of effective therapeutics. Here we report the discovery of a potent BRD4 bromodomain 1 (BD1)-selective inhibitor ZL0590 (52) targeting a unique, previously unreported binding site, while exhibiting significant anti-inflammatory activities in vitro and in vivo. The X-ray crystal structural analysis of ZL0590 in complex with human BRD4 BD1 and the associated mutagenesis study illustrate a first-in-class nonacetylated lysine (KAc) binding site located at the helix αB and αC interface that contains important BRD4 residues (e.g., Glu151) not commonly shared among other family members and is spatially distinct from the classic KAc recognition pocket. This new finding facilitates further elucidation of the complex biology underpinning bromodomain specificity among BRD4 and its protein-protein interaction partners.


Asunto(s)
Antiinflamatorios/farmacología , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas Nucleares/antagonistas & inhibidores , Compuestos de Fenilurea/farmacología , Factores de Transcripción/antagonistas & inhibidores , Animales , Antiinflamatorios/síntesis química , Antiinflamatorios/metabolismo , Antiinflamatorios/farmacocinética , Sitios de Unión , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Cristalografía por Rayos X , Expresión Génica/efectos de los fármacos , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Masculino , Ratones Endogámicos C57BL , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Compuestos de Fenilurea/síntesis química , Compuestos de Fenilurea/metabolismo , Compuestos de Fenilurea/farmacocinética , Unión Proteica , Dominios Proteicos , Ratas , Factores de Transcripción/metabolismo
18.
FEBS J ; 289(22): 6959-6968, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-34235856

RESUMEN

Molecular oxygen possesses a dual nature due to its highly reactive free radical property: it is capable of oxidizing metabolic substrates to generate cellular energy, but can also serve as a substrate for genotoxic reactive oxygen species generation. As a labile substance upon which aerobic life depends, the mechanisms for handling cellular oxygen have been fine-tuned and orchestrated in evolution. Protection from atmospheric oxygen toxicity as originally posited by the Endosymbiotic Theory of the Mitochondrion is likely to be one basic principle underlying oxygen homeostasis. We briefly review the literature on oxygen homeostasis both in vitro and in vivo with a focus on the role of the mitochondrion where the majority of cellular oxygen is consumed. The insights gleaned from these basic mechanisms are likely to be important for understanding disease pathogenesis and developing strategies for maintaining health.


Asunto(s)
Mitocondrias , Oxígeno , Mitocondrias/metabolismo , Radicales Libres/metabolismo , Oxígeno/metabolismo , Homeostasis , Especies Reactivas de Oxígeno/metabolismo , Estrés Oxidativo
19.
Int J Mol Sci ; 22(24)2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34948337

RESUMEN

Voltage-gated Na+ (Nav) channels are the primary molecular determinant of the action potential. Among the nine isoforms of the Nav channel α subunit that have been described (Nav1.1-Nav1.9), Nav1.1, Nav1.2, and Nav1.6 are the primary isoforms expressed in the central nervous system (CNS). Crucially, these three CNS Nav channel isoforms display differential expression across neuronal cell types and diverge with respect to their subcellular distributions. Considering these differences in terms of their localization, the CNS Nav channel isoforms could represent promising targets for the development of targeted neuromodulators. However, current therapeutics that target Nav channels lack selectivity, which results in deleterious side effects due to modulation of off-target Nav channel isoforms. Among the structural components of the Nav channel α subunit that could be pharmacologically targeted to achieve isoform selectivity, the C-terminal domains (CTD) of Nav channels represent promising candidates on account of displaying appreciable amino acid sequence divergence that enables functionally unique protein-protein interactions (PPIs) with Nav channel auxiliary proteins. In medium spiny neurons (MSNs) of the nucleus accumbens (NAc), a critical brain region of the mesocorticolimbic circuit, the PPI between the CTD of the Nav1.6 channel and its auxiliary protein fibroblast growth factor 14 (FGF14) is central to the generation of electrical outputs, underscoring its potential value as a site for targeted neuromodulation. Focusing on this PPI, we previously developed a peptidomimetic derived from residues of FGF14 that have an interaction site on the CTD of the Nav1.6 channel. In this work, we show that whereas the compound displays dose-dependent effects on the activity of Nav1.6 channels in heterologous cells, the compound does not affect Nav1.1 or Nav1.2 channels at comparable concentrations. In addition, we show that the compound correspondingly modulates the action potential discharge and the transient Na+ of MSNs of the NAc. Overall, these results demonstrate that pharmacologically targeting the FGF14 interaction site on the CTD of the Nav1.6 channel is a strategy to achieve isoform-selective modulation, and, more broadly, that sites on the CTDs of Nav channels interacted with by auxiliary proteins could represent candidates for the development of targeted therapeutics.


Asunto(s)
Canal de Sodio Activado por Voltaje NAV1.6/efectos de los fármacos , Neuronas/metabolismo , Peptidomiméticos/farmacología , Dominios Proteicos , Animales , Factores de Crecimiento de Fibroblastos/metabolismo , Células HEK293 , Humanos , Ratones , Simulación del Acoplamiento Molecular , Canal de Sodio Activado por Voltaje NAV1.6/metabolismo , Canal de Sodio Activado por Voltaje NAV1.6/fisiología , Neuronas/efectos de los fármacos , Neuronas/fisiología , Núcleo Accumbens/metabolismo , Núcleo Accumbens/fisiología , Unión Proteica
20.
Front Immunol ; 12: 757758, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34733289

RESUMEN

Respiratory syncytial virus (RSV) is the most common cause of lower respiratory tract infection in young children. It is also a significant contributor to upper respiratory tract infections, therefore, a major cause for visits to the pediatrician. High morbidity and mortality are associated with high-risk populations including premature infants, the elderly, and the immunocompromised. However, no effective and specific treatment is available. Recently, we discovered that an exchange protein directly activated by cyclic AMP 2 (EPAC2) can serve as a potential therapeutic target for RSV. In both lower and upper epithelial cells, EPAC2 promotes RSV replication and pro-inflammatory cytokine/chemokine induction. However, the overall role of EPAC2 in the pulmonary responses to RSV has not been investigated. Herein, we found that EPAC2-deficient mice (KO) or mice treated with an EPAC2-specific inhibitor showed a significant decrease in body weight loss, airway hyperresponsiveness, and pulmonary inflammation, compared with wild-type (WT) or vehicle-treated mice. Overall, this study demonstrates the critical contribution of the EPAC2-mediated pathway to airway diseases in experimental RSV infection, suggesting the possibility to target EPAC2 as a promising treatment modality for RSV.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/fisiología , Infecciones por Virus Sincitial Respiratorio/fisiopatología , Obstrucción de las Vías Aéreas/etiología , Animales , AMP Cíclico/fisiología , Citocinas/biosíntesis , Citocinas/genética , Factor Estimulante de Colonias de Granulocitos/biosíntesis , Factor Estimulante de Colonias de Granulocitos/genética , Factores de Intercambio de Guanina Nucleótido/antagonistas & inhibidores , Factores de Intercambio de Guanina Nucleótido/deficiencia , Inflamación , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Hipersensibilidad Respiratoria/etiología , Infecciones por Virus Sincitial Respiratorio/complicaciones , Infecciones por Virus Sincitial Respiratorio/tratamiento farmacológico , Virus Sincitiales Respiratorios/fisiología , Organismos Libres de Patógenos Específicos , Replicación Viral , Pérdida de Peso
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...