Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
FEBS Lett ; 598(11): 1402-1410, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38589226

RESUMEN

Overactivation of the epidermal growth factor receptor (EGFR) is critical for the development of multiple cancers. Previous studies have shown that the cell membrane is a key regulator of EGFR kinase activity through its interaction with the EGFR juxtamembrane domain (JM). However, the lipid recognition specificity of EGFR-JM and its interaction details remain unclear. Using lipid strip and liposome pulldown assays, we showed that EGFR-JM could specifically interact with PI(4,5)P2-or phosphatidylserine-containing membranes. We further characterized the JM-membrane interaction using NMR-titration-based chemical shift perturbation and paramagnetic relaxation enhancement analyses, and found that residues I649 - L659 comprised the membrane-binding site. Furthermore, the membrane-binding region contains the predicted dimerization motif of JM, 655LRRLL659, suggesting that membrane binding may affect JM dimerization and, therefore, regulate kinase activation.


Asunto(s)
Membrana Celular , Receptores ErbB , Fosfatidilserinas , Unión Proteica , Dominios Proteicos , Receptores ErbB/metabolismo , Receptores ErbB/química , Receptores ErbB/genética , Humanos , Membrana Celular/metabolismo , Fosfatidilserinas/metabolismo , Fosfatidilserinas/química , Sitios de Unión , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatidilinositol 4,5-Difosfato/química , Liposomas/metabolismo , Liposomas/química , Multimerización de Proteína , Secuencia de Aminoácidos
2.
Protein Sci ; 32(12): e4826, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37906538

RESUMEN

The nucleocapsid (N) protein is an essential structural component necessary for genomic packaging and replication in various human coronaviruses (HCoVs), such as SARS-CoV-2 and MERS-CoV. Recent studies have revealed that the SARS-CoV-2 N protein exhibits a high capacity for liquid-liquid phase separation (LLPS), which plays multiple roles in viral infection and replication. In this study, we systematically investigate the LLPS capabilities of seven homologous N proteins from different HCoVs using a high-throughput protein phase separation assay. We found that LLPS is a shared intrinsic property among these N proteins. However, the phase separation profiles of the various N protein homologs differ, and they undergo phase separation under distinct in vitro conditions. Moreover, we demonstrate that N protein homologs can co-phase separate with FUS, a SG-containing protein, and accelerate its liquid-to-solid phase transition and amyloid aggregation, which is closely related to amyotrophic lateral sclerosis. Further study shows that N protein homologs can directly bind to the low complexity domain of FUS. Together, our work demonstrates that N proteins of different HCoVs possess phase separation capabilities, which may contribute to promoting pathological aggregation of host proteins and disrupting SG homeostasis during the infection and replication of various HCoVs.


Asunto(s)
Esclerosis Amiotrófica Lateral , Proteínas de la Nucleocápside , Humanos , Proteínas de la Nucleocápside/genética , Proteínas de la Nucleocápside/metabolismo , Amiloide/metabolismo , Proteínas Amiloidogénicas/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Proteína FUS de Unión a ARN/química
3.
Nat Commun ; 13(1): 3501, 2022 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-35715442

RESUMEN

Transposable elements (TEs) through evolutionary exaptation have become an integral part of the human genome, offering ample regulatory sequences and shaping chromatin 3D architecture. While the functional impacts of TE-derived sequences on early embryogenesis have been recognized, their roles in malignancy are only starting to emerge. Here we show that many TEs, especially the pluripotency-related human endogenous retrovirus H (HERVH), are abnormally activated in colorectal cancer (CRC) samples. Transcriptional upregulation of HERVH is associated with mutations of several tumor suppressors, particularly ARID1A. Knockout of ARID1A in CRC cells leads to increased transcription at several HERVH loci, which involves compensatory contribution by ARID1B. Suppression of HERVH in CRC cells and patient-derived organoids impairs tumor growth. Mechanistically, HERVH transcripts colocalize with nuclear BRD4 foci, modulating their dynamics and co-regulating many target genes. Altogether, we uncover a critical role for ARID1A in restraining HERVH, whose abnormal activation can promote tumorigenesis by stimulating BRD4-dependent transcription.


Asunto(s)
Retrovirus Endógenos , Factores de Transcripción , Proteínas de Ciclo Celular/genética , Cromatina/genética , Elementos Transponibles de ADN , Proteínas de Unión al ADN/genética , Retrovirus Endógenos/genética , Retrovirus Endógenos/metabolismo , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Factores de Transcripción/genética
4.
Opt Express ; 27(11): 15433-15443, 2019 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-31163740

RESUMEN

We propose a novel multimode fiber (MMF) with a 30 µm-core and fluorine-doped cladding for both high-speed short wavelength division multiplexing (SWDM) and coarse wavelength division multiplexing (CWDM) transmission. By optimizing the core size, the mode field diameter (MFD) mismatch between the proposed fiber and both the standard single-mode fiber (SMF) and MMF is minimized, which enables the quasi-single mode operation in the CWDM window and a compromised coupling loss with standard MMFs and SMFs. By adopting a fluorine-doped silica cladding, the bandwidth dependence on wavelength of the proposed fiber is minimized, which indicates that the modal bandwidth performance at the longer wavelength can be effectively improved without compromising modal bandwidth at 850 nm. The error-free 100 Gb/s (4×25.78 Gb/s) multimode transmission over 250 meter-long fiber is achieved using a commercially available VCSEL-based SWDM transceiver. The applicable distance can be extended to 300 meters when a biterror rate just below the forward error correction (FEC) threshold of 5×10 -5 is acceptable. Besides, the 100 Gb/s error-free single-mode transmission over 10 km-long fiber was also demonstrated with a commercially available directly modulatedlaser (DML)-based CWDM transceiver. The results imply that the proposed MMF may be useful for large-scale data center applications.

5.
Chemosphere ; 88(10): 1190-5, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22520968

RESUMEN

The effect of ryegrass (Lolium perenne L.) root-exudates concentration on pyrene degradation and the microbial ecological characteristics in the pyrene contaminated soil was investigated by simulating a gradually reducing concentration of root exudates with the distance away from root surface in the rhizosphere. Results showed that, after the root-exudates were added 15 d, the pyrene residue in contaminated soil responded nonlinearly in the soils with the same pyrene contaminated level as the added root-exudates concentration increased, which decreased first and increased latter with the increase of the added root-exudates concentration. The lowest pyrene concentration appeared when the root exudates concentration of 32.75 mg kg(-1) total organic carbon (TOC) was added. At the same time, changes of microbial biomass carbon (MBC, C(mic)) and microbial quotient (C(mic)/C(org)) were opposite to the trend of pyrene degradation as the added root-exudates concentration increased. Phospholipid fatty acid (PLFA) analysis revealed that bacteria was the dominating microbial community in pyrene contaminated soil, and the changing trends of pyrene degradation and bacteria number were the same. The changing trend of endoenzyme-dehydrogenase activity was in accordance with that of soil microbe, indicating which could reflect the quantitative characteristic of detoxification to pyrene by soil microbe. The changes in the soils microbial community and corresponding microbial biochemistry characteristics were the ecological mechanism influencing pyrene degradation with increasing concentration of the added root-exudates in the pyrene contaminated soil.


Asunto(s)
Lolium/metabolismo , Raíces de Plantas/metabolismo , Pirenos/metabolismo , Microbiología del Suelo , Contaminantes del Suelo/metabolismo , Suelo/química , Biodegradación Ambiental , Biomasa , Catalasa/metabolismo , Oxidorreductasas/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Pirenos/aislamiento & purificación , Rizosfera , Contaminantes del Suelo/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA