Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Int J Antimicrob Agents ; : 107175, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38642812

RESUMEN

OBJECTIVES: Colistin-induced nephrotoxicity prolongs hospitalization and increases mortality. The study aimed to construct machine learning models to predict colistin-induced nephrotoxicity in patients with multidrug-resistant gram-negative infection. METHODS: Patients receiving colistin from three hospitals in the Clinical Research Database were included. Data were divided into a derivation cohort (2011∼2017) and a temporal validation cohort (2018∼2020). Fifteen machine learning models were established by categorical boosting, light gradient boosting machine, and random forest. Classifier performances were compared by the sensitivity, F1 score, Matthews correlation coefficient (MCC), area under the receiver operating characteristic (AUROC) curve, and area under the precision-recall curve (AUPRC). SHapley Additive exPlanations plots were drawn to understand feature importance and interactions. RESULTS: The study included 1392 patients, with 360 (36.4%) and 165 (40.9%) experiencing nephrotoxicity in the derivation and temporal validation cohorts, respectively. The categorical boosting with oversampling achieved the highest performance with a sensitivity of 0.860, an F1 score of 0.740, an MCC of 0.533, an AUROC curve of 0.823, and an AUPRC of 0.737. The feature importance demonstrated that the days of colistin use, cumulative dose, daily dose, latest C-reactive protein, and baseline hemoglobin were the most important risk factors, especially for vulnerable patients. A cutoff colistin dose of 4.0 mg/kg body weight/day was identified for patients at higher risk of nephrotoxicity. CONCLUSIONS: Machine learning techniques can be an early identification tool to predict colistin-induced nephrotoxicity. The observed interactions suggest a modification in dose adjustment guidelines. Future geographic and prospective validation studies are warranted to strengthen the real-world applicability.

2.
Mol Cell Proteomics ; 23(2): 100710, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38154690

RESUMEN

Antibody glycosylation plays a crucial role in the humoral immune response by regulating effector functions and influencing the binding affinity to immune cell receptors. Previous studies have focused mainly on the immunoglobulin G (IgG) isotype owing to the analytical challenges associated with other isotypes. Thus, the development of a sensitive and accurate analytical platform is necessary to characterize antibody glycosylation across multiple isotypes. In this study, we have developed an analytical workflow using antibody-light-chain affinity beads to purify IgG, IgA, and IgM from 16 µL of human plasma. Dual enzymes, trypsin and Glu-C, were used during on-bead digestion to obtain enzymatic glycopeptides and protein-specific surrogate peptides. Ultra-high-performance liquid chromatography coupled with triple quadrupole mass spectrometry was used in order to determine the sensitivity and specificity. Our platform targets 95 glycopeptides across the IgG, IgA, and IgM isotypes, as well as eight surrogate peptides representing total IgG, four IgG classes, two IgA classes, and IgM. Four stable isotope-labeled internal standards were added after antibody purification to calibrate the preparation and instrumental bias during analysis. Calibration curves constructed using serially diluted plasma samples showed good curve fitting (R2 > 0.959). The intrabatch and interbatch precision for all the targets had relative standard deviation of less than 29.6%. This method was applied to 19 human plasma samples, and the glycosylation percentages were calculated, which were comparable to those reported in the literature. The developed method is sensitive and accurate for Ig glycosylation profiling. It can be used in clinical investigations, particularly for detailed humoral immune profiling.


Asunto(s)
Glicopéptidos , Inmunoglobulina G , Humanos , Glicosilación , Inmunoglobulina G/metabolismo , Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masas , Glicopéptidos/metabolismo , Digestión , Inmunoglobulina A , Inmunoglobulina M
3.
Bioinform Adv ; 3(1): vbad061, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37234699

RESUMEN

Motivation: Liquid chromatography coupled with mass spectrometry (LC-MS) is widely used in metabolomics studies, while HILIC LC-MS is particularly suited for polar metabolites. Determining an optimized mobile phase and developing a proper liquid chromatography method tend to be laborious, time-consuming and empirical. Results: We developed a containerized web tool providing a workflow to quickly determine the optimized mobile phase by batch-evaluating chromatography peaks for metabolomics LC-MS studies. A mass chromatographic quality value, an asymmetric factor, and the local maximum intensity of the extracted ion chromatogram were calculated to determine the number of peaks and peak retention time. The optimal mobile phase can be quickly determined by selecting the mobile phase that produces the largest number of resolved peaks. Moreover, the workflow enables one to automatically process the repeats by evaluating chromatography peaks and determining the retention time of large standards. This workflow was validated with 20 chemical standards and successfully constructed a reference library of 571 metabolites for the HILIC LC-MS platform. Availability and implementation: MetaMOPE is freely available at https://metamope.cmdm.tw. Source code and installation instructions are available on GitHub: https://github.com/CMDM-Lab/MetaMOPE. Supplementary information: Supplementary data are available at Bioinformatics Advances online.

4.
Clin Chim Acta ; 540: 117230, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36682441

RESUMEN

Determination of urine organic acids (UOAs) is essential to understand the disease progress of inborn errors of metabolism (IEM) and often relies on GC-MS analysis. However, the efficiency of analytical reports is sometimes restricted by data processing due to labor-intensive work if no proper tool is employed. Herein, we present a simple and rapid workflow with an R-based script for automated data processing (AutoDP) of GC-MS raw files to quantitatively analyze essential UOAs. AutoDP features automatic quality checks, compound identification and confirmation with specific fragment ions, retention time correction from analytical batches, and visualization of abnormal UOAs with age-matched references on chromatograms. Compared with manual processing, AutoDP greatly reduces analytical time and increases the number of identifications. Speeding up data processing is expected to shorten the waiting time for clinical diagnosis, which could greatly benefit clinicians and patients with IEM. In addition, with quantitative results obtained from AutoDP, it would be more feasible to perform retrospective analysis of specific UOAs in IEM and could provide new perspectives for studying IEM.


Asunto(s)
Errores Innatos del Metabolismo , Humanos , Cromatografía de Gases y Espectrometría de Masas/métodos , Estudios Retrospectivos , Flujo de Trabajo , Errores Innatos del Metabolismo/diagnóstico , Errores Innatos del Metabolismo/metabolismo
5.
J Chromatogr A ; 1685: 463589, 2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36351322

RESUMEN

Immunoglobulin A nephropathy (IgAN) is a highly prevalent autoimmune renal disease. Human IgA1 with galactose deficiency in the hinge region (HR) has been identified as an autoantigen for this disease. Therefore, analyzing IgA1 HR glycoforms in biofluids is important for biomarker discovery. Herein, an analytical method that includes one-pot sample preparation with unbiased plasma IgA purification, dual internal standard addition, and sensitive ultra-high-performance liquid chromatography-triple quadrupole tandem mass spectroscopy (UHPLC-QqQ-MS/MS) was developed. Targeted O-glycopeptides detection was performed in pooled plasma with the validation of theoretical retention times, enzymatic treatment outcomes, product ion scans, and signal repeatability. A total of 42 IgA1 O-glycopeptides with N-acetylgalactosamines, galactoses, and sialic acids were determined from 8 µL of plasma. The newly developed method was applied to plasma samples from 16 non-IgAN controls and 19 IgAN patients. Comparing the 42 targets, 16 IgA1 HR O-glycopeptides were statistically different between the two groups (p<0.05). Decreased sialylation was identified in the IgA1 hinge region of IgAN patients, which was also correlated with the estimated glomerular filtration rate (eGFR). The developed method is sensitive and precise and can be used to identify plasma biomarkers for IgA nephropathy.


Asunto(s)
Glomerulonefritis por IGA , Humanos , Glomerulonefritis por IGA/diagnóstico , Cromatografía Líquida de Alta Presión , Espectrometría de Masas en Tándem , Inmunoglobulina A , Glicopéptidos/química , Galactosa
6.
Comput Methods Programs Biomed ; 221: 106839, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35550456

RESUMEN

BACKGROUND AND OBJECTIVE: Platinum-induced nephrotoxicity is a severe and unexpected adverse drug reaction that could lead to treatment failure in non-small cell lung cancer patients. Better prediction and management of this nephrotoxicity can increase patient survival. Our study aimed to build up and compare the best machine learning models with clinical and genomic features to predict platinum-induced nephrotoxicity in non-small cell lung cancer patients. METHODS: Clinical and genomic data of patients undergoing platinum chemotherapy at Wan Fang Hospital were collected after they were recruited. Twelve models were established by artificial neural network, logistic regression, random forest, and support vector machine with integrated, clinical, and genomic modes. Grid search and genetic algorithm were applied to construct the fine-tuned model with the best combination of predictive hyperparameters and features. Accuracy, precision, recall, F1 score, and area under the receiver operating characteristic curve were calculated to compare the performance of the 12 models. RESULTS: In total, 118 patients were recruited for this study, among which 28 (23.73%) were experiencing nephrotoxicity. Machine learning models with clinical and genomic features achieved better prediction performances than clinical or genomic features alone. Artificial neural network with clinical and genomic features demonstrated the best predictive outcomes among all 12 models. The average accuracy, precision, recall, F1 score and area under the receiver operating characteristic curve of the artificial neural network with integrated mode were 0.923, 0.950, 0.713, 0.808 and 0.900, respectively. CONCLUSIONS: Machine learning models with clinical and genomic features can be a preliminary tool for oncologists to predict platinum-induced nephrotoxicity and provide preventive strategies in advance.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Platino (Metal) , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Aprendizaje Automático , Platino (Metal)/toxicidad
7.
Talanta ; 238(Pt 1): 122979, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34857319

RESUMEN

Emerging new psychoactive substances (NPS) poses a great risk to public health. Analyzing these large numbers of NPS and other associated substances often relies on liquid chromatography coupled to triple quadrupole mass spectrometry (LC-QqQ-MS) with multiple-reaction monitoring (MRM) mode. However, the differentiation of critical pairs, coeluted isobaric and/or isomeric species, is one of the challenges for this analytical platform. MRM transitions with poor selectivity can jeopardize accurate quantification and lead to biased interpretation. Herein, we refined a novel workflow for developing an MRM-based method with in-house CriticalPairFinder and TransitionFinder tools for the effective identification of unique and selective MRM transitions. Transitions selected by TransitionFinder showed much better accuracies than those selected only by fragment abundance in some mixtures of critical pairs. Using the proposed analytical strategy, a method that can simultaneously determine 219 NPS and 65 other substances across a variety of NPS classes in urine samples was developed, validated and applied to analyze clinical urine samples. This automated workflow is anticipated to facilitate method development for analyzing complex analytes while considering selectivity.


Asunto(s)
Espectrometría de Masas en Tándem , Cromatografía Liquida , Límite de Detección
8.
J Cachexia Sarcopenia Muscle ; 13(1): 276-286, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34939349

RESUMEN

BACKGROUND: The pathogenesis of sarcopenia is complex and has not been well explored. Identifying biomarkers is a promising strategy for exploring the mechanism of sarcopenia. This study aimed to identify potential biomarkers of sarcopenia through a metabolomic analysis of plasma metabolites in elderly subjects (≥65 years of age) vs. younger adults (<65 years of age). METHODS: Of the 168 candidates in the Comprehensive Geriatric Assessment and Frailty Study of Elderly Outpatients, 24 elderly subjects (≥65 years of age) with sarcopenia were age and sex matched with 24 elderly subjects without sarcopenia. In addition, 24 younger adults were recruited for comparison. Muscle strength, gait speed, and metabolic and inflammatory parameters, including plasma tumour necrosis factor-α, C-reactive protein, irisin, and growth differentiation factor 15 (GDF-15) levels were assessed. Metabolomic analysis was carried out using the plasma metabolites. RESULTS: Seventy-two participants were enrolled, including 10 (41.6%) men and 14 (58.3%) women in both groups of elderly subjects. The median ages of elderly subjects with and without sarcopenia were 82 (range: 67-88) and 81.5 (range: 67-87) years, respectively. Among the 242 plasma metabolic peaks analysed among these three groups, traumatic acid was considered as a sarcopenia-related metabolite. The plasma traumatic acid signal intensity level was significantly higher in elderly subjects with sarcopenia than in elderly subjects without sarcopenia [591.5 (inter-quartile range, IQR: 491.5-664.5) vs. 430.0 (IQR: 261.0-599.5), P = 0.0063]. The plasma concentrations of traumatic acid were 15.8 (IQR: 11.5-21.7), 21.1 (IQR: 16.0-25.8), and 24.3 (IQR: 18.0-29.5) ppb in younger adults [age range: 23-37 years, 12 (50%) men], elderly subjects without sarcopenia, and elderly subjects with sarcopenia, respectively, thereby depicting an increasing tendency (P for trend = 0.034). This pattern was similar to that of GDF-15, a recognized sarcopenia-related factor. Plasma traumatic acid concentrations were also positively correlated with the presence of hypertension (r = 0.25, P = 0.034), glucose AC (r = 0.34, P = 0.0035), creatinine (r = 0.40, P = 0.0006), and GDF-15 levels (r = 0.25, P = 0.0376), but negatively correlated with the Modification of Diet in Renal Disease-simplify-glomerular filtration rate (r = -0.50, P < 0.0001). Similarly, plasma GDF-15 concentrations were associated with these factors. CONCLUSIONS: Traumatic acid might represent a potential plasma biomarker of sarcopenia. However, further studies are needed to validate the results and investigate the underlying mechanisms.


Asunto(s)
Sarcopenia , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores , Ácidos Dicarboxílicos , Femenino , Humanos , Masculino , Metabolómica , Sarcopenia/patología , Adulto Joven
9.
Int J Mol Sci ; 22(21)2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34768956

RESUMEN

Type 1 autoimmune pancreatitis (AIP) is categorized as an IgG4-related disease (IgG4-RD), where a high concentration of plasma IgG4 is one of the common biomarkers among patients. IgG Fc-glycosylation has been reported to be potential biosignatures for diseases. However, human IgG3 and IgG4 Fc-glycopeptides from populations in Asia were found to be isobaric ions when using LC-MS/MS as an analytical tool. In this study, an analytical workflow that coupled affinity purification and stable isotope dilution LC-MS/MS was developed to dissect IgG4 glycosylation profiles for autoimmune pancreatitis. Comparing the IgG4 and glycosylation profiles among healthy controls, patients with pancreatic ductal adenocarcinoma (PDAC), and AIP, the IgG4 glycosylations from the AIP group were found to have more digalactosylation (compared to PDAC) and less monogalactosylation (compared to HC). In addition, higher fucosylation and sialylation profiles were also discovered for the AIP group. The workflow is efficient and selective for IgG4 glycopeptides, and can be used for clinical biosignature discovery.


Asunto(s)
Pancreatitis Autoinmune/sangre , Pancreatitis Autoinmune/inmunología , Análisis Químico de la Sangre/métodos , Inmunoglobulina G/sangre , Carcinoma Ductal Pancreático/sangre , Carcinoma Ductal Pancreático/inmunología , Estudios de Casos y Controles , Cromatografía de Afinidad , Cromatografía de Fase Inversa , Glicosilación , Humanos , Inmunoglobulina G/química , Técnicas de Dilución del Indicador , Metaboloma , Neoplasias Pancreáticas/sangre , Neoplasias Pancreáticas/inmunología , Taiwán , Espectrometría de Masas en Tándem
10.
J Pers Med ; 11(8)2021 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-34442405

RESUMEN

Immunoglobulin G (IgG) N-glycosylation was discovered to have an association with inflammation status, which has the potential to be a novel biomarker for kidney diseases. In this study, we applied an ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method to plasma and urine samples from 57 individuals with different levels of kidney function. Natural abundances of total IgG, IgG1, IgG2, and IgG3 subclasses in plasma showed positive correlations to the estimated glomerular filtration rates (eGFRs). Eighteen IgG glycopeptides also showed positive correlations. In contrast, higher IgG amounts were found in urine samples from participants with lower eGFR values. After normalizing IgG glycopeptides from plasma to their respective protein amounts, H4N4F1S1-IgG1 (r = 0.37, p = 0.0047, significant) and H5N4F1S1-IgG1 (r = 0.25, p = 0.063, marginally significant) were the two glycopeptides that still had positive correlations with eGFRs. The results showed that the UHPLC-MS/MS method is capable of investigating IgG profiles, and monitoring IgG and glycosylation patterns is worthy of further clinical application for kidney disease.

11.
Part Fibre Toxicol ; 18(1): 24, 2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-34172050

RESUMEN

BACKGROUND: Exposure to air pollution exerts direct effects on respiratory organs; however, molecular alterations underlying air pollution-induced pulmonary injury remain unclear. In this study, we investigated the effect of air pollution on the lung tissues of Sprague-Dawley rats with whole-body exposure to traffic-related PM1 (particulate matter < 1 µm in aerodynamic diameter) pollutants and compared it with that in rats exposed to high-efficiency particulate air-filtered gaseous pollutants and clean air controls for 3 and 6 months. Lung function and histological examinations were performed along with quantitative proteomics analysis and functional validation. RESULTS: Rats in the 6-month PM1-exposed group exhibited a significant decline in lung function, as determined by decreased FEF25-75% and FEV20/FVC; however, histological analysis revealed earlier lung damage, as evidenced by increased congestion and macrophage infiltration in 3-month PM1-exposed rat lungs. The lung tissue proteomics analysis identified 2673 proteins that highlighted the differential dysregulation of proteins involved in oxidative stress, cellular metabolism, calcium signalling, inflammatory responses, and actin dynamics under exposures to PM1 and gaseous pollutants. The presence of PM1 specifically enhanced oxidative stress and inflammatory reactions under subchronic exposure to traffic-related PM1 and suppressed glucose metabolism and actin cytoskeleton signalling. These factors might lead to repair failure and thus to lung function decline after chronic exposure to traffic-related PM1. A detailed pathogenic mechanism was proposed to depict temporal and dynamic molecular regulations associated with PM1- and gaseous pollutants-induced lung injury. CONCLUSION: This study explored several potential molecular features associated with early lung damage in response to traffic-related air pollution, which might be used to screen individuals more susceptible to air pollution.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Lesión Pulmonar , Material Particulado/toxicidad , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/toxicidad , Contaminación del Aire/análisis , Animales , Exposición a Riesgos Ambientales/análisis , Contaminantes Ambientales , Gases/toxicidad , Lesión Pulmonar/inducido químicamente , Material Particulado/análisis , Ratas , Ratas Sprague-Dawley
13.
Bioinformatics ; 37(8): 1184-1186, 2021 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-32915954

RESUMEN

SUMMARY: Drug discovery targeting G protein-coupled receptors (GPCRs), the largest known class of therapeutic targets, is challenging. To facilitate the rapid discovery and development of GPCR drugs, we built a system, PanGPCR, to predict multiple potential GPCR targets and their expression locations in the tissues, side effects and possible repurposing of GPCR drugs. With PanGPCR, the compound of interest is docked to a library of 36 experimentally determined crystal structures comprising of 46 docking sites for human GPCRs, and a ranked list is generated from the docking studies to assess all GPCRs and their binding affinities. Users can determine a given compound's GPCR targets and its repurposing potential accordingly. Moreover, potential side effects collected from the SIDER (Side-Effect Resource) database and mapped to 45 tissues and organs are provided by linking predicted off-targets and their expressed sequence tag profiles. With PanGPCR, multiple targets, repurposing potential and side effects can be determined by simply uploading a small ligand. AVAILABILITY AND IMPLEMENTATION: PanGPCR is freely accessible at https://gpcrpanel.cmdm.tw/index.html. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Reposicionamiento de Medicamentos , Receptores Acoplados a Proteínas G , Descubrimiento de Drogas , Humanos , Ligandos , Receptores Acoplados a Proteínas G/genética
14.
J Pharm Biomed Anal ; 195: 113821, 2021 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-33317915

RESUMEN

Therapeutic drug monitoring is important for achieving desirable outcomes in tuberculosis treatment. In this study, microwave-assisted extraction was used to extract levofloxacin, ciprofloxacin, and moxifloxacin from dried plasma spots for subsequent detection and quantification with ultra-high performance liquid chromatography-tandem mass spectrometry. Dried plasma spotting was performed by dropping 15 µL of plasma on a protein saver card. Analyte extraction was performed with microwave-assisted extraction at 400 W for 40 s in 90 % methanol. Samples were analyzed with a core-shell C18 column (100 mm × 2.1 mm, 2.6 µm, 100 Å). Multiple reaction monitoring was used and the ion source was operated in positive electrospray ionization mode. The correlation coefficients of the calibration curves were > 0.999 for all three drugs over a range of 0.2-20 µg/mL. The intraday precision (n = 5) of the peak area ratios of the analyte to the internal standard was between 1.3 and 4.0 % relative standard deviation (RSD). The intraday accuracy ranged from 93.6-106.9%. The interday (n = 3) precision of the peak area ratios ranged from 1.9 to 8.8 % RSD, and the accuracy ranged from 94.9-107.1%. Regarding clinical application, the quantification results for moxifloxacin from dried plasma spots (DPSs) were strongly similar to the results from the plasma samples, which showed that Pearson's rho > 0.949. The validation and application results showed that the developed method can be used as an efficient analytical technique for therapeutic drug monitoring of fluoroquinolones for patients with tuberculosis.


Asunto(s)
Fluoroquinolonas , Preparaciones Farmacéuticas , Cromatografía Líquida de Alta Presión , Monitoreo de Drogas , Humanos , Microondas , Reproducibilidad de los Resultados , Espectrometría de Masas en Tándem
15.
Sci Rep ; 10(1): 12347, 2020 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-32704114

RESUMEN

Fibromyalgia syndrome (FM) is a multifactorial disorder whose pathogenesis and diagnosis are poorly understood. This study investigated differential serum proteome profiles in patients with FM and healthy pain-free controls and explored the association between serum proteome and clinical profiles in patients with FM. Twenty patients with FM (according to the American College of Rheumatology criteria, 2010) and 20 healthy pain-free controls were recruited for optimized quantitative serum proteomics analysis. The levels of pain, pressure pain threshold, sleep, anxiety, depression, and functional status were evaluated for patients with FM. We identified 22 proteins differentially expressed in FM when compared with healthy pain-free controls and propose a panel of methyltransferase-like 18 (METTL18), immunoglobulin lambda variable 3-25 (IGLV3-25), interleukin-1 receptor accessory protein (IL1RAP), and IGHV1OR21-1 for differentiating FM from controls by using a decision tree model (accuracy: 0.97). In addition, we noted several proteins involved in coagulation and inflammation pathways with distinct expression patterns in patients with FM. Novel proteins were also observed to be correlated with the levels of pain, depression, and dysautonomia in patients with FM. We suggest that upregulated inflammation can play a major role in the pathomechanism of FM. The differentially expressed proteins identified may serve as useful biomarkers for diagnosis and evaluation of FM in the future.


Asunto(s)
Proteínas Sanguíneas/metabolismo , Fibromialgia/sangre , Proteoma/metabolismo , Adulto , Biomarcadores/sangre , Femenino , Humanos , Persona de Mediana Edad , Síndrome
16.
Database (Oxford) ; 20202020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31976536

RESUMEN

Breathomics is a special branch of metabolomics that quantifies volatile organic compounds (VOCs) from collected exhaled breath samples. Understanding how breath molecules are related to diseases, mechanisms and pathways identified from experimental analytical measurements is challenging due to the lack of an organized resource describing breath molecules, related references and biomedical information embedded in the literature. To provide breath VOCs, related references and biomedical information, we aim to organize a database composed of manually curated information and automatically extracted biomedical information. First, VOCs-related disease information was manually organized from 207 literature linked to 99 VOCs and known Medical Subject Headings (MeSH) terms. Then an automated text mining algorithm was used to extract biomedical information from this literature. In the end, the manually curated information and auto-extracted biomedical information was combined to form a breath molecule database-the Human Breathomics Database (HBDB). We first manually curated and organized disease information including MeSH term from 207 literatures associated with 99 VOCs. Then, an automatic pipeline of text mining approach was used to collect 2766 literatures and extract biomedical information from breath researches. We combined curated information with automatically extracted biomedical information to assemble a breath molecule database, the HBDB. The HBDB is a database that includes references, VOCs and diseases associated with human breathomics. Most of these VOCs were detected in human breath samples or exhaled breath condensate samples. So far, the database contains a total of 913 VOCs in relation to human exhaled breath researches reported in 2766 publications. The HBDB is the most comprehensive HBDB of VOCs in human exhaled breath to date. It is a useful and organized resource for researchers and clinicians to identify and further investigate potential biomarkers from the breath of patients. Database URL: https://hbdb.cmdm.tw.


Asunto(s)
Sistemas de Administración de Bases de Datos , Espiración/fisiología , Metaboloma/fisiología , Metabolómica/métodos , Compuestos Orgánicos Volátiles , Pruebas Respiratorias , Minería de Datos , Humanos , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/química
17.
Anal Chem ; 91(16): 10702-10712, 2019 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-31361473

RESUMEN

Dried blood spots (DBSs) have gained increasing attention recently with their growing importance in precision medicine. DBS-based metabolomics analysis provides a powerful tool for investigating new biomarkers. Until now, very few studies have discussed measures for improving analytical accuracy with the consideration of the special characteristics of DBSs. The present study proposed a postcolumn infused-internal standard (PCI-IS) assisted strategy to improve data quality for DBS-based metabolomics studies. An efficient sample preparation protocol with 80% acetonitrile as the extraction solvent was first established to improve the metabolite recovery. The PCI-IS assisted liquid chromatography-electrospray ionization mass spectrometry (LC-ESI-MS) method was used to simultaneously estimate the blood volume and correct the signal change caused by ion source contamination and the matrix effect to evaluate the spot volume effect and hematocrit (Hct) variation effect on target metabolites. Phenylalanine-d8 was selected as the single PCI-IS to correct the matrix effect. For calibration of errors caused by the blood volume difference, 75% of the test metabolites showed good correlation (R2 ≥ 0.9) between the spot volume and the signal intensity after PCI-IS correction compared to less than 50% metabolites with good correlation before calibration. The spot volume was further calibrated by the same PCI-IS. Investigation of the Hct variation effect on target metabolites revealed that it affected the concentrations of metabolites in the DBS samples depending on their abundance in the red blood cell (RBC) or plasma; it is essential to preinvestigate the distribution of metabolites in blood to minimize the comparison bias in metabolomics studies. Finally, the PCI-IS assisted method was applied to study acetaminophen-induced liver toxicity. The results indicated that the proposed PCI-IS strategy could effectively remove analytical errors and improve the data quality, which would make the DBS-based metabolomics more feasible in real-world applications.


Asunto(s)
Pruebas con Sangre Seca , Metabolómica , Biomarcadores/sangre , Biomarcadores/metabolismo , Cromatografía Liquida/normas , Pruebas con Sangre Seca/normas , Humanos , Espectrometría de Masa por Ionización de Electrospray/normas
18.
Clin Proteomics ; 16: 1, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30622446

RESUMEN

BACKGROUND: Misdiagnosis of autoimmune pancreatitis (AIP) as pancreatic cancer (PDAC) or vice versa can cause dismal patents' outcomes. Changes in IgG glycosylation are associated with cancers and autoimmune diseases. This study investigated the IgG glycosylation profiles as diagnostic and prognostic biomarkers in PDAC and AIP. METHODS: Serum IgG-glycosylation profiles from 86 AIP patients, 115 PDAC patients, and 57 controls were analyzed using liquid chromatography-electrospray ionization mass spectrometry. Classification and regression tree (CART) analysis was applied to build a decision tree for discriminating PDAC from AIP. The result was validated in an independent cohort. RESULTS: Compared with AIP patients and controls, PDAC patients had significantly higher agalactosylation, lower fucosylation, and sialylation of IgG1, a higher agalactosylation ratio of IgG1 and a higher agalactosylation ratio of IgG2. AIP patients had significantly higher fucosylation of IgG1 and a higher sialylation ratio of IgG subclasses 1, 2 and 4. Using the CART analysis of agalactosylation and sialylation ratios in the IgG to discriminate AIP from PDAC, the diagnostic accuracy of the glycan markers was 93.8% with 94.6% sensitivity and 92.9% specificity. There were no statistically significant difference of IgG-glycosylation profiles between diffuse type and focal type AIP. CONCLUSIONS: AIP and PDAC patients have distinct IgG-glycosylation profilings. IgG-glycosylation could different PDAC from AIP with high accuracy.

19.
J Formos Med Assoc ; 118 Suppl 1: S10-S22, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30269936

RESUMEN

Dysbiosis of the gut microbiome is associated with host health conditions. Many diseases have shown to have correlations with imbalanced microbiota, including obesity, inflammatory bowel disease, cancer, and even neurodegeneration disorders. Metabolomics studies targeting small molecule metabolites that impact the host metabolome and their biochemical functions have shown promise for studying host-gut microbiota interactions. Metabolome analysis determines the metabolites being discussed for their biological implications in host-gut microbiota interactions. To facilitate understanding the critical aspects of metabolome analysis, this article reviewed (1) the sample types used in host-gut microbiome studies; (2) mass spectrometry (MS)-based analytical methods and (3) useful tools for MS-based data processing/analysis. In addition to the most frequently used sample type, feces, we also discussed others biosamples, such as urine, plasma/serum, saliva, cerebrospinal fluid, exhaled breaths, and tissues, to better understand gut metabolite systemic effects on the whole organism. Gas chromatography-mass spectrometry (GC-MS), liquid chromatography-mass spectrometry (LC-MS), and capillary electrophoresis-mass spectrometry (CE-MS), three powerful tools that can be utilized to study host-gut microbiota interactions, are included with examples of their applications. After obtaining big data from MS-based instruments, noise removal, peak detection, missing value imputation, and data analysis are all important steps for acquiring valid results in host-gut microbiome research. The information provided in this review will help new researchers aiming to join this field by providing a global view of the analytical aspects involved in gut microbiota-related metabolomics studies.


Asunto(s)
Microbioma Gastrointestinal , Interacciones Microbiota-Huesped , Metabolómica/métodos , Procesamiento Automatizado de Datos , Humanos , Espectrometría de Masas , Manejo de Especímenes
20.
J Cheminform ; 9(1): 57, 2017 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-29143270

RESUMEN

The identification of chemical structures in natural product mixtures is an important task in drug discovery but is still a challenging problem, as structural elucidation is a time-consuming process and is limited by the available mass spectra of known natural products. Computer-aided structure elucidation (CASE) strategies seek to automatically propose a list of possible chemical structures in mixtures by utilizing chromatographic and spectroscopic methods. However, current CASE tools still cannot automatically solve structures for experienced natural product chemists. Here, we formulated the structural elucidation of natural products in a mixture as a computational problem by extending a list of scaffolds using a weighted side chain list after analyzing a collection of 243,130 natural products and designed an efficient algorithm to precisely identify the chemical structures. The complexity of such a problem is NP-complete. A dynamic programming (DP) algorithm can solve this NP-complete problem in pseudo-polynomial time after converting floating point molecular weights into integers. However, the running time of the DP algorithm degrades exponentially as the precision of the mass spectrometry experiment grows. To ideally solve in polynomial time, we proposed a novel iterative DP algorithm that can quickly recognize the chemical structures of natural products. By utilizing this algorithm to elucidate the structures of four natural products that were experimentally and structurally determined, the algorithm can search the exact solutions, and the time performance was shown to be in polynomial time for average cases. The proposed method improved the speed of the structural elucidation of natural products and helped broaden the spectrum of available compounds that could be applied as new drug candidates. A web service built for structural elucidation studies is freely accessible via the following link ( http://csccp.cmdm.tw/ ).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...