Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomedicines ; 12(3)2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38540292

RESUMEN

Colorectal cancer is a global malignancy with a high incidence and mortality rate. THZ2, a small inhibitor targeted CDK7, could inhibit multiple human tumor growths including small cell lung cancer, triple-negative breast cancer, ovarian cancer. However, the effect of THZ2 on inflammation, especially on colitis-associated colorectal cancer, is still unknown. In this study, we assessed the anti-inflammatory and anti-tumor effect of THZ2 in the mouse models of dextran sulfate sodium (DSS)-induced acute colitis and azoxymethane (AOM)/DSS-induced colitis-associated colorectal cancer. We found that THZ2 ameliorated inflammatory symptoms, including bleeding and diarrhea, in mouse models of DSS-induced acute colitis and AOM/DSS-induced colorectal cancer. The results of Western blot and immunohistochemistry showed that THZ2 rescued the up-regulated expression of COX2, IL-6, ß-catenin, and snail in the mouse models. Moreover, THZ2 inhibits the development of colorectal cancer in the mouse model of AOM/DSS-induced colitis-associated colorectal cancer. Generally, THZ2 not only can inhibit DSS-induced colitis, but also can hinder AOM/DSS-induced colorectal cancer.

2.
Acta Pharm Sin B ; 14(2): 698-711, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38322340

RESUMEN

Glutamate-ammonia ligase (GLUL, also known as glutamine synthetase) is a crucial enzyme that catalyzes ammonium and glutamate into glutamine in the ATP-dependent condensation. Although GLUL plays a critical role in multiple cancers, the expression and function of GLUL in gastric cancer remain unclear. In the present study, we have found that the expression level of GLUL was significantly lower in gastric cancer tissues compared with adjacent normal tissues, and correlated with N stage and TNM stage, and low GLUL expression predicted poor survival for gastric cancer patients. Knockdown of GLUL promoted the growth, migration, invasion and metastasis of gastric cancer cells in vitro and in vivo, and vice versa, which was independent of its enzyme activity. Mechanistically, GLUL competed with ß-Catenin to bind to N-Cadherin, increased the stability of N-Cadherin and decreased the stability of ß-Catenin by alerting their ubiquitination. Furthermore, there were lower N-Cadherin and higher ß-Catenin expression levels in gastric cancer tissues compared with adjacent normal tissues. GLUL protein expression was correlated with that of N-Cadherin, and could be the independent prognostic factor in gastric cancer. Our findings reveal that GLUL stabilizes N-Cadherin by antagonizing ß-Catenin to inhibit the progress of gastric cancer.

3.
Recent Pat Anticancer Drug Discov ; 17(4): 387-395, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35023460

RESUMEN

BACKGROUND: Therapeutic resistance is a frequent problem of cancer treatment and a leading cause of mortality in patients with metastatic colorectal cancer (CRC). Recent insight into the mechanisms that confer multidrug resistance has elucidated that the ATP-binding cassette (ABC) superfamily G member 2 (ABCG2) assists cancer cells in escaping therapeutic stress caused by toxic chemotherapy. Therefore, it is necessary to develop ABCG2 inhibitors. OBJECTIVES: In the present study, we investigated the inhibitory effect of KU55933 on ABCG2 in CRC. METHODS: The cytotoxicity assay and drug accumulation assay were used to examine the inhibitory effect of KU55933 on ABCG2. The protein expressions were detected by Western blot assay. The docking assay was performed to predict the binding site and intermolecular interactions between KU55933 and ABCG2. RESULTS: KU55933 was more potent than the known ABCG2 inhibitor fumitremorgin C to enhance the sensitivity of mitoxantrone and doxorubicin and the intracellular accumulation of mitoxantrone, doxorubicin and rhodamine 123 inside CRC cells with ABCG2 overexpression. Moreover, KU55933 did not affect the protein level of ABCG2. Furthermore, the docking data showed that KU55933 was tightly located in the drug-binding pocket of ABCG2. CONCLUSION: In summary, our data presented that KU55933 could effectively inhibit the drug pump activity of ABCG2 in colorectal cancer, which is further supported by the predicted model that showed the hydrophobic interactions of KU55933 within the drug-binding pocket of ABCG2. KU55933 can potently inhibit the activity of ABCG2 in CRC.


Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Antineoplásicos , Neoplasias Colorrectales , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/antagonistas & inhibidores , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Doxorrubicina/farmacología , Resistencia a Antineoplásicos , Humanos , Mitoxantrona/farmacología , Morfolinas/farmacocinética , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Pironas/farmacología
4.
Front Oncol ; 11: 680663, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34094985

RESUMEN

Colorectal cancer is a common malignancy with the third highest incidence and second highest mortality rate among all cancers in the world. Chemotherapy resistance in colorectal cancer is an essential factor leading to the high mortality rate. The ATP-binding cassette (ABC) superfamily G member 2 (ABCG2) confers multidrug resistance (MDR) to a range of chemotherapeutic agents by decreasing their intracellular content. The development of novel ABCG2 inhibitors has emerged as a tractable strategy to circumvent drug resistance. In this study, an ABCG2-knockout colorectal cancer cell line was established to assist inhibitor screening. Additionally, we found that ataxia-telangiectasia mutated (ATM) kinase inhibitor AZ32 could sensitize ABCG2-overexpressing colorectal cancer cells to ABCG2 substrate chemotherapeutic drugs mitoxantrone and doxorubicin by retaining them inside cells. Western blot assay showed that AZ32 did not alter the expression of ABCG2. Moreover, molecule docking analysis predicted that AZ32 stably located in the transmembrane domain of ABCG2. In conclusion, our result demonstrated that AZ32 could potently reverse ABCG2-mediated MDR in colorectal cancer.

5.
Front Pharmacol ; 11: 586885, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33343354

RESUMEN

Colorectal cancer is one of the most common and lethal cancers in the world. An important causative factor of colorectal cancer is ulcerative colitis. In this study, we investigated the therapeutic effects of piperlongumine (PL) on the dextran sulfate sodium (DSS)-induced acute colitis and azoxymethane (AOM)/DSS-induced colorectal cancer mouse models. Our results showed that PL could inhibit the inflammation of DSS-induced mouse colitis and reduce the number of large neoplasms (diameter >2 mm) of AOM/DSS-induced mouse colorectal cancer by downregulation of proinflammatory cytokines cyclooxygenase-2 and interleukin-6 and epithelial-mesenchymal transition-related factors, ß-catenin, and snail expressions, but fail to improve the colitis symptoms and to decrease the incidence of colonic neoplasms and the number of small neoplasms (diameter <2 mm). These data suggested that PL might be an effective agent in treating colitis and colorectal cancer.

6.
Front Oncol ; 9: 1345, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31850227

RESUMEN

Ovarian cancer is one of the most fatal female malignancies while targeting apoptosis is critical for improving ovarian cancer patients' lives. Survivin is regarded as the most robust anti-apoptosis protein, and its overexpression in ovarian cancer is related to poor survival and apoptosis resistance. Piperlongumine (PL) extracted from peppers is defined as an active alkaloid/amide and exhibits a broad spectrum of antitumor effects. Here, we demonstrate that PL induces the rapid depletion of survivin protein levels via reactive oxygen species (ROS)-mediated proteasome-dependent pathway in vitro, while exerting a remarkable inhibitory influence on the proliferation of ovarian cancer cells. Overexpression of survivin raises the survival rate of ovarian cancer cells to PL. Moreover, PL inhibits ovarian cancer cells xenograft tumor growth and downregulates survivin in vivo. Our findings reveal a previously unrecognized mechanism of PL in suppressing survivin expression as well as survivin promotes piperlongumine resistance in ovarian cancer and suggest that ROS-mediated proteasome-dependent pathway can be exploited to overcome apoptosis resistance triggered by aberrant expression of survivin.

7.
Front Oncol ; 9: 80, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30873379

RESUMEN

Urokinase plasminogen activator receptor (uPAR), a member of the lymphocyte antigen 6 protein superfamily, is overexpressed in different types of cancers and plays an important role in tumorigenesis and development. In this study, we successfully targeted uPAR by CRISPR/Cas9 system in two human cancer cell lines with two individual sgRNAs. Knockout of uPAR inhibited cell proliferation, migration and invasion. Furthermore, knockout of uPAR decreases resistance to 5-FU, cisplatin, docetaxel, and doxorubicin in these cells. Although there are several limitations in the application of CRISPR/Cas9 system for cancer patients, our study offers valuable evidences for the role of uPAR in cancer malignancy and drug resistance.

8.
Front Oncol ; 9: 1398, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31921655

RESUMEN

Overexpression of drug efflux transport ABCB1 is correlated with multidrug resistance (MDR) among cancer cells. Upregulation of ABCB1 accounts for the recurrence of resistance to docetaxel therapy in ovarian cancer with poor survival. Erastin is a novel and specific small molecule that targets SLC7A11 to induce ferroptosis. In the present research, we explored the synergistic effect of erastin and docetaxel in ovarian cancer. We confirmed that the co-delivery of erastin with docetaxel significantly decreased cell viability, promoted cell apoptosis, and induced cell cycle arrest at G2/M in ovarian cancer cells with ABCB1 overexpression. Mechanistically, erastin dominantly elevated the intracellular ABCB1 substrate levels by restricting the drug-efflux activity of ABCB1 without alteration of the expression of ABCB1. Consequently, erastin can reverse ABCB1-mediated docetaxel resistance in ovarian cancer, revealing that the combination of erastin and docetaxel may potentially offer an effective administration for chemo-resistant patients suffering from ovarian cancers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...