Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 63(15): 7053-7062, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38575504

RESUMEN

Low-dimensional organic-inorganic hybrid perovskites (OIHPs) have shown significant potential in the optoelectronic field due to their adjustable structure and properties. However, the poor air stability and flexibility of the OIHP crystals limit their further development. Herein, three OIHP crystals have been synthesized using cadmium chloride and the isomer of phenylenediamine as raw materials. Mn2+ doping turns on the red-light emission of Cd-based OIHPs at around 625 nm. Interestingly, the organic ligands with different steric hindrance can induce a transition of the OIHP structure from two dimensions (2D) to one dimension (1D), thereby regulating the quantum yield of red luminescence in the range of 38.4% to nearly 100%. It is found that the surface-exposed amino groups are easy to oxidize, resulting in the instability of these OIHP crystals. Therefore, poly(lactic acid) (PLA) is selected to passivate OIHPs through hydrogen bonding between C═O of PLA and -NH2 on the surface of OIHPs. As a result, the production of OIHP-based flexible films with highly efficient and stable red emission can be obtained after being encapsulated by PLA. They demonstrate enormous application potential in flexible X-ray imaging. This study not only realizes stable perovskite films but also provides an effective design idea for red flexible scintillators.

2.
Adv Mater ; 36(21): e2314005, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38375769

RESUMEN

Directional control of photon transport at micro/nanoscale holds great potential in developing multifunctional optoelectronic devices. Here, the switchable anisotropic/isotropic photon transport is reported in a double-dipole metal-organic framework (MOF) based on radical-controlled energy transfer. Double-dipole MOF microcrystals with transition dipole moments perpendicular to each other have been achieved by the pillared-layer coordination strategy. The energy transfer between the double dipolar chromophores can be modulated by the photogenerated radicals, which permits the in situ switchable output on both polarization (isotropy/anisotropy state) and wavelength information (blue/red-color emission). On this basis, the original MOF microcrystal with isotropic polarization state displays the isotropic photon transport and similar reabsorption losses at various directions, while the radical-affected MOF microcrystal with anisotropic polarization state shows the anisotropic photon transport with distinct reabsorption losses at different directions, finally leading to the in situ switchable anisotropic/isotropic photon transport. These results offer a novel strategy for the development of MOF-based photonic devices with tunable anisotropic performance.

3.
Polymers (Basel) ; 16(3)2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38337291

RESUMEN

Chiral nematic materials have been attracting attention in fields of advanced functional applications due to their unique iridescent colors and tunable helical structure. A precisely decreased pitch is of importance for construction and applications of chiral nematic materials; however, it remains a huge challenge. Herein, cellulose nanocrystal (CNC) is selected as a constructed matrix for chiral nematic films, and ferric chloride (FeCl3) is used as a modification agent. We investigate the effects of the ferric ion loads on the helical structure and optical characteristics of iridescent film. Subsequently, the influence of ferric ions on the assembly process of CNC liquid crystal and the regulation of the structure color of self-assembled monolayers are discussed. Therefore, the CNC/FeCl3 chiral nematic films showed a blueshifted structural color from orange to blue, which highlights a simple route to achieve the regulation of decreased pitch. Further, we have applied this CNC/FeCl3 chiral nematic film for benzene gas detection. The sensing performance shows that the CNC/FeCl3 chiral nematic film reacts to benzene gas, which can be merged into the nematic layer of the CNC and trigger the iron ions chelated on the CNC, consequently arousing the redshift of the reflected wavelength and the effective colorimetric transition. This CNC/FeCl3 chiral nematic film is anticipated to boost a new gas sensing mechanism for faster and more effective in-situ qualitative investigations.

4.
Angew Chem Int Ed Engl ; 63(13): e202400742, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38319193

RESUMEN

Tautomers coexisting in an equilibrium system have significant potential for regulating luminescent properties because of their structural differences. However, separating and stabilizing tautomers at room temperature is a considerable challenge. In this study, it is found that hydrogen-bonded organic frameworks (HOFs) composed of Br- anions can effectively separate and stabilize two proton-transfer tautomers of triarylformamidinium bromide: namely, the nitrogen cation (BA-N) and carbon cation (BA-C). The BA-N crystal consisting of a dense anionic HOF and parallelly aligned organic cations exhibits green thermally activated delayed fluorescence and red room-temperature phosphorescence (RTP). The BA-C crystal contains acetone molecules that induce an antiparallel arrangement of the organic cations to form a loose HOF, producing blue prompt fluorescence and green RTP. Interestingly, switching of the HOFs between BA-N and BA-C can be achieved through the uptake and release of acetone, thereby dynamically adjusting multiple luminescent properties. Consequently, the HOF crystals can be used for the highly sensitive and specific sensing of acetone with a detection limit of 66.74 ppm. This study not only stabilizes tautomeric luminescent materials at room temperature, but also provides a new method for constructing smart HOFs with a sensitive response to a stimulus.

5.
Nano Lett ; 24(2): 672-680, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38166484

RESUMEN

Dendritic Li deposition, an unstable solid-electrolyte interphase (SEI), and a nearly infinite relative volume change during cycling are three major obstacles to the practical application of Li metal batteries. Herein, we introduce a compressible and elastic reduced graphene oxide sponge (rGO-S) to simultaneously eliminate Li dendrite growth, stabilize the SEI, and accommodate the volume change. The volume change is contained by compressing and expanding the rGO-S anode, which effectively releases the Li plating-induced stress during cycling. The smooth and dense Li metal is deposited on rGO-S without dendrites, which preserves the SEI, reduces consumption of the electrolyte, and prevents the formation of Li debris. The half-cells employing rGO-S show a steady and high Coulombic efficiency. The Li@rGO-S symmetric cells demonstrate excellent cycling stability over 1200 cycles with a low overpotential. When paired with LiFePO4 (LFP), the Li@rGO-S||LFP full cells exhibit a high specific capacity (150.3 mAh g-1 at 1C), superior rate performance, and good capacity retention.

6.
Biomedicines ; 12(1)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38255298

RESUMEN

The human gut microbiota, comprising trillions of microorganisms residing in the gastrointestinal tract, has emerged as a pivotal player in modulating various aspects of human health and disease. Recent research has shed light on the intricate relationship between the gut microbiota and pharmaceuticals, uncovering profound implications for drug metabolism, efficacy, and safety. This review depicted the landscape of molecular mechanisms and clinical implications of dynamic human gut Microbiota-Drug Interactions (MDI), with an emphasis on the impact of MDI on drug responses and individual variations. This review also discussed the therapeutic potential of modulating the gut microbiota or harnessing its metabolic capabilities to optimize clinical treatments and advance personalized medicine, as well as the challenges and future directions in this emerging field.

7.
Nucleic Acids Res ; 52(D1): D1508-D1518, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37897343

RESUMEN

Knowledge of the collective activities of individual plants together with the derived clinical effects and targeted disease associations is useful for plant-based biomedical research. To provide the information in complement to the established databases, we introduced a major update of CMAUP database, previously featured in NAR. This update includes (i) human transcriptomic changes overlapping with 1152 targets of 5765 individual plants, covering 74 diseases from 20 027 patient samples; (ii) clinical information for 185 individual plants in 691 clinical trials; (iii) drug development information for 4694 drug-producing plants with metabolites developed into approved or clinical trial drugs; (iv) plant and human disease associations (428 737 associations by target, 220 935 reversion of transcriptomic changes, 764 and 154121 associations by clinical trials of individual plants and plant ingredients); (v) the location of individual plants in the phylogenetic tree for navigating taxonomic neighbors, (vi) DNA barcodes of 3949 plants, (vii) predicted human oral bioavailability of plant ingredients by the established SwissADME and HobPre algorithm, (viii) 21-107% increase of CMAUP data over the previous version to cover 60 222 chemical ingredients, 7865 plants, 758 targets, 1399 diseases, 238 KEGG human pathways, 3013 gene ontologies and 1203 disease ontologies. CMAUP update version is freely accessible at https://bidd.group/CMAUP/index.html.


Asunto(s)
Bases de Datos Factuales , Fitoquímicos , Plantas Medicinales , Humanos , Filogenia , Plantas Medicinales/química , Plantas Medicinales/clasificación , Fitoquímicos/química , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico
8.
Front Immunol ; 14: 1303283, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38077320

RESUMEN

Background: During clinical practice, routine blood tests are commonly performed following pancreaticoduodenectomy (PD). However, the relationship between blood cell counts, inflammation-related indices, and postoperative complications remains unclear. Method: We conducted a retrospective study, including patients who underwent PD from October 2018 to July 2023 at the First Hospital of Chongqing Medical University, and compared baseline characteristics and clinical outcomes among different groups. Neutrophil count (NC), platelet count (PLT), lymphocyte count (LC), systemic immune-inflammation index (SII), platelet-to-lymphocyte ratio (PLR), neutrophil-to-lymphocyte ratio (NLR), and the product of platelet count and neutrophil count (PPN) were derived from postoperative blood test results. We investigated the association between these indicators and outcomes using multivariable logistic regression and restricted cubic spline analysis. The predictive performance of these indicators was assessed by the area under the curve (AUC) of the receiver operating characteristic (ROC) curve and decision curve analysis (DCA). Result: A total of 232 patients were included in this study. Multivariate logistic regression and restricted cubic spline analysis showed that all indicators, except for PLT, were associated with clinical postoperative pancreatic fistula (POPF). SII, NLR, and NC were linked to surgical site infection (SSI), while SII, NLR, and PLR were correlated with CD3 complication. PLT levels were related to postoperative hemorrhage. SII (AUC: 0.729), NLR (AUC: 0.713), and NC (AUC: 0.706) effectively predicted clinical POPF. Conclusion: In patients undergoing PD, postoperative inflammation-related indices and blood cell counts are associated with various complications. NLR and PLT can serve as primary indicators post-surgery for monitoring complications.


Asunto(s)
Inflamación , Pancreaticoduodenectomía , Humanos , Pancreaticoduodenectomía/efectos adversos , Estudios Retrospectivos , Inflamación/etiología , Recuento de Linfocitos , Recuento de Plaquetas
9.
Angew Chem Int Ed Engl ; 62(34): e202308418, 2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37401627

RESUMEN

Rational design of crystalline porous materials with coupled proton-electron transfer has not yet been reported to date. Herein, we report a donor-acceptor (D-A) π-π stacking hydrogen-bonded organic framework (HOF; HOF-FJU-36) with zwitterionic 1,1'-bis(3-carboxybenzyl)-4,4'-bipyridinium (H2 L2+ ) as acceptor and 2,7-naphthalene disulfonate (NDS2- ) as donor to form a two-dimensional (2D) layer. Three water molecules were situated in the channels to connect with acidic species through hydrogen bonding interactions to give a 3D framework. The continuous π-π interactions along the a axis and the smooth H-bonding chain along the b axis provide the electron and proton transfer pathways, respectively. After 405 nm light irradiation, the photogenerated radicals could simultaneously endow HOF-FJU-36 with photoswitchable electron and proton conductivity due to coupled electron-proton transfer. By single-crystal X-ray diffraction (SCXRD) analyses, X-ray photoelectron spectroscopy (XPS), transient absorption spectra and density functional theory (DFT) calculations, the mechanism of the switchable conductivity upon irradiation has been demonstrated.

10.
J Chromatogr A ; 1704: 464089, 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37307636

RESUMEN

Traditional offline detection of volatile organic compounds (VOCs) requires complex and time-consuming pre-treatments including gas sampling in containers, pre-concentrations, and thermal desorption, which hinders its application in rapid VOCs monitoring. Developing a cost-effective instrument is of great importance for online measurement of VOCs. Recently, photoionization detectors (PID) are received great attention due to their fast response time and high sensitivity. This study a portable gas chromatography coupled to PID (pGC-PID) was developed and optimized experimental parameters for the application in online monitoring of VOCs at an industrial site. The sampling time, oven temperature and carrier gas flow rate were optimized as 80 s, 50 °C and 60 ml·min-1, respectively. The sampling method is direct injection. Poly tetra fluoroethylene (PTFE) filter membranes were selected to remove particulate matter from interfering with PID. The reproducibility and peak separation were good with relative standard deviations (RSD) ≤ 7%. Good linearities of 27 VOCs standard curves were achieved with R2 ≥ 0.99, and the detection limits were ≤10 ppb with the lowest being 2 ppb for 1,1,2-Trichloroethane. Finally, the pGC-PID is successfully applied in online VOCs monitoring at an industrial site. A total of 17 VOCs species was detected and their diurnal variations were well obtained, indicating pGC-PID is well suited for online analysis in field campaign.


Asunto(s)
Compuestos Orgánicos Volátiles , Compuestos Orgánicos Volátiles/análisis , Reproducibilidad de los Resultados , Cromatografía de Gases/métodos , Temperatura , Monitoreo del Ambiente/métodos
11.
ACS Omega ; 8(18): 16384-16394, 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37179647

RESUMEN

Asphaltene, the most complex and recalcitrant fraction of heavy oil, was investigated in this study to gain new insights into its structure and reactivity. Two types of asphaltenes, ECT-As and COB-As, were extracted from ethylene cracking tar (ECT) and Canada's oil sands bitumen (COB), respectively, and used as reactants for slurry-phase hydrogenation. Characterization of ECT-As and COB-As was carried out by a combination of techniques, including XRD, elemental analysis, simulated distillation, SEM, TEM, NMR, and FT-IR, to gain insights into their composition and structure. A dispersed MoS2 nanocatalyst was used to study the reactivity of ECT-As and COB-As under hydrogenation conditions. The results showed that under optimal catalytic conditions, the vacuum residue content of hydrogenation products could be reduced to less than 20%, and the products contained over 50% light components (gasoline and diesel oil), indicating that ECT-As and COB-As were effectively upgraded. The characterization results indicated that ECT-As contained a higher aromatic carbon content, shorter alkyl side chains, fewer heteroatoms, and less highly condensed aromatics than COB-As. The light components (gasoline and diesel oil) of ECT-As hydrogenation products mainly consisted of aromatic compounds with 1-4 rings, with the alkyl chains mainly composed of C1-C2, while light components of COB-As hydrogenation products were mainly composed of aromatic compounds with 1-2 rings and C11-C22 paraffins. The characterization of ECT-As and COB-As and their hydrogenation products revealed that ECT-As was an "archipelago type" asphaltene, composed of multiple small aromatic nuclei interconnected through short alkyl chains, while COB-As was an "island type" asphaltene, with long alkyl chains connected to aromatic nuclei. It is suggested that the structure of asphaltene has a significant impact on both its reactivity and product distribution.

12.
Heliyon ; 9(2): e13480, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36814612

RESUMEN

Background: A disposable lunch box is an important cause of "white pollution". Many people consider that the disposable polylactic acid (PLA) lunch box is more environmentally friendly than the disposable paper pulp lunch box and can substitute for the latter. Objective: We can determine whether PLA tableware is more environmentally friendly than paper tableware by analyzing the product life cycle of two tableware types. At the same time, as a continuous compound, carbon dioxide has significant commercial value. Carbon dioxide materials' applications range from beverages to cosmetics and building materials. The future application of carbon dioxide in the field of lunch boxes is discussed in this paper. Methods: In this paper, the production stages of the two types of disposable lunch boxes were compared and surveyed using the life cycle assessment (LCA) method. Conclusion: The results reveal that the main impact of the two types of lunch boxes is resource damage; the PLA lunch box is not better than the paper type; the production stage of the disposable PLA lunch box poses greater damage to the environment in all aspects than the paper type. Discussion: Against the background of carbon neutrality and based on the constantly mature carbon dioxide conversion technology, the author explored the possibility of making products from carbon dioxide and proposed to make product designs based on carbon dioxide.

13.
Adv Mater ; 35(18): e2211992, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36807946

RESUMEN

2D organic-inorganic hybrid perovskites (OIHPs) show obvious advantages in the field of optoelectronics due to their high luminescent stability and good solution processability. However, the thermal quenching and self-absorption of excitons caused by the strong interaction between the inorganic metal ions lead to a low luminescence efficiency of 2D perovskites. Herein, a 2D Cd-based OIHP phenylammonium cadmium chloride (PACC) with a weak red phosphorescence (ΦP  < 6%) at 620 nm and a blue afterglow is reported. Interestingly, the Mn-doped PACC exhibits very strong red emission with nearly 200% quantum yield and 15 ms lifetime, thus resulting in a red afterglow. The experimental data prove that the doping of Mn2+ not only induces the multiexciton generation (MEG) process of the perovskite, avoiding the energy loss of inorganic excitons, but also promotes the Dexter energy transfer from organic triplet excitons to inorganic excitons, thus realizing the superefficient red-light emission of Cd2+ . This work suggests that guest metal ions can induce host metal ions to realize MEG in 2D bulk OIHPs, which provides a new idea for the development of optoelectronic materials and devices with ultrahigh energy utilization.

14.
Nucleic Acids Res ; 51(D1): D621-D628, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36624664

RESUMEN

Quantitative activity and species source data of natural products (NPs) are important for drug discovery, medicinal plant research, and microbial investigations. Activity values of NPs against specific targets are useful for discovering targeted therapeutic agents and investigating the mechanism of medicinal plants. Composition/concentration values of NPs in individual species facilitate the assessments and investigations of the therapeutic quality of herbs and phenotypes of microbes. Here, we describe an update of the NPASS natural product activity and species source database previously featured in NAR. This update includes: (i) new data of ∼95 000 records of the composition/concentration values of ∼1 490 NPs/NP clusters in ∼390 species, (ii) extended data of activity values of ∼43 200 NPs against ∼7 700 targets (∼40% and ∼32% increase, respectively), (iii) extended data of ∼31 600 species sources of ∼94 400 NPs (∼26% and ∼32% increase, respectively), (iv) new species types of ∼440 co-cultured microbes and ∼420 engineered microbes, (v) new data of ∼66 600 NPs without experimental activity values but with estimated activity profiles from the established chemical similarity tool Chemical Checker, (vi) new data of the computed drug-likeness properties and the absorption, distribution, metabolism, excretion and toxicity (ADMET) properties for all NPs. NPASS update version is freely accessible at http://bidd.group/NPASS.


Asunto(s)
Productos Biológicos , Investigación Biomédica , Bases de Datos Factuales , Descubrimiento de Drogas , Preparaciones Farmacéuticas/aislamiento & purificación
15.
Chem Asian J ; 18(2): e202201027, 2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36451290

RESUMEN

Herein, a series of carbon dot composites (CDC) with full-color and long-lived room-temperature phosphorescence (RTP) are prepared by a simple solid-phase one-step method from a single non-conjugated and non-aromatic carbon source. The RTP emission wavelength can be adjusted from 462 to 623 nm by changing the feeding ratio and reaction temperature. The luminescent lifetime and quantum yield of a green emissive CDC (AB-CDC-3) reach 1.1 s and 39%, respectively, because of the close interaction between carbon dots and inorganic matrix. Due to the existence of multiple luminescent centers, these CDC exhibit excitation wavelength-dependent RTP and a white emission when excited at a specific wavelength. A single-component afterglow luminescent diode based on AB-CDC-4 shows a high-quality white emission with CIE of (0.30, 0.33) and color-rendering index of 88. Based on the unique photophysical properties of the composites, they exhibit huge application potential in the field of multilevel anti-counterfeiting, fingerprint identification, and optoelectronic devices.


Asunto(s)
Carbono , Luminiscencia , Temperatura
16.
Probiotics Antimicrob Proteins ; 15(5): 1371-1381, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-36083465

RESUMEN

Functional constipation is one of the most common gastrointestinal disorders. Oxidative stress can aggravate organ dysfunction. Enteric neurotransmitters have significant effects on the regulation of the enteric nervous system and intestinal muscle contraction. Oxidative stress and reduced gastrointestinal motility are considered to be one of the main causes of constipation. This study aimed to investigate whether LimosiLactobacillus pentosus CQZC02 alleviated loperamide hydrochloride (Lop)-induced constipation in mice under high-fat diet (HFD) conditions and to elucidate the underlying mechanism, focusing on enteric neurotransmitters. Four-week-old female BALB/c mice were randomly divided into five groups: normal group (Nor), constipation model group (H-Lop), L. pentosus CQZC02 low-dose group (H-Lop + ZC02L), L. pentosus CQZC02 high-dose group (H-Lop + ZC02H), and LimosiLactobacillus bulgaricus control group (H-Lop + LB). The fecal weight, water content, and total gastrointestinal transit time were measured to determine whether the mice were constipated. Small bowel and colon tissue damage was assessed by hematoxylin and eosin staining, while the degree of damage was determined by double-blind scoring. The levels of serum oxidative stress markers malondialdehyde, superoxide dismutase, glutathione peroxidase, and catalase and neurotransmitters motilin, gastrin, substance P, endothelin, somatostatin, and vasoactive intestinal peptide were measured. The gene expression levels of endothelial nitric oxide synthase, inducible nitric oxide synthase, neuronal nitric oxide synthase, nuclear factor kappa-B, and cyclooxygenase-2 in small intestine tissue were calculated. The constipation symptoms of mice in H-Lop group were manifested by a variety of physiological indicators. In addition, compared with the H-Lop group, H-Lop + ZC02H could effectively relieve the symptoms of constipation in mice. In symptom characterization, the mice in the H-Lop + ZC02H group lost weight and increased feces and water content. In functional experiments, gastrointestinal motility was enhanced; the inflammation score of intestinal tissue was decreased, and gene expression levels were modulated; serum oxidative factor levels were modulated, and oxidative stress levels were decreased.


Asunto(s)
Dieta Alta en Grasa , Planta de la Mostaza , Ratones , Femenino , Animales , Dieta Alta en Grasa/efectos adversos , Estreñimiento/inducido químicamente , Estreñimiento/tratamiento farmacológico , Intestino Delgado/metabolismo , Neurotransmisores
17.
Front Microbiol ; 13: 953905, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36225358

RESUMEN

The occurrence of intestinal diseases such as colon cancer is closely related to the intestinal flora. Lactobacillus fermentum is a gut probiotic that plays an important role in chronic intestinal inflammation and colon cancer. In the current study, we investigated the effect of Lactobacillus fermentum ZS40 on NF-κB signaling pathway of azomethane-dextran sulfate sodium (AOM-DSS) -induced colon cancer in mice. Animals were divided into control group (NC), AOM-DSS-induced model group (CRC), AOM-DSS plus high-dose Lactobacillus fermentum ZS40 (ZS40-H), AOM-DSS plus low-dose Lactobacillus fermentum ZS40 (ZS40-L), AOM-DSS plus Lactobacillus bulgaricus (BLA), and AOM-DSS plus sulfasalazine (SD)-treated group. Observation of animal physiological activity (body weight and defecation), biochemical measurements, histopathological examination of colon tissue, qPCR to evaluate the expression of inflammation-related genes, immunohistochemical analysis of CD34 and CD117, and Western blot analysis of NF-κB signaling pathway were performed. Compared with the CRC group, the ZS40-H, ZS40-L, BLA, and SD groups had decreased levels of colon cancer marker proteins CD34 and CD117, and the number of abnormal colonic lesions observed by colon histology decreased, while the ZS40-H group showed excellent results. In addition, all probiotic interventions showed weight loss effects. The expression of inflammatory stimulators TNF-α and IL-1ß in the probiotic treatment group decreased; the expression of key proteins IκBα and p65 in the NF-κB signaling pathway also decreased, resulting in a decrease in the expression of the target protein Cox-2. Therefore, administration of Lactobacillus fermentum ZS40 as a probiotic can alleviate intestinal inflammation and prevent colon cancer in mice.

18.
J Gastrointest Oncol ; 13(4): 1818-1831, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36092342

RESUMEN

Background: Preventive ileostomy (PI) is conventionally performed to prevent anastomotic leakage (AL) after laparoscopic total mesorectal excision (LTME) for low rectal cancer; however, secondary surgery is required to remove the ostomy tube. We designed a new type of ostomy, transcecum catheterization ileostomy (TCI) to prevent AL. Its principle is similar to PI, but no secondary operation is needed. We evaluated the safety and efficacy of TCI in AL prevention. Methods: We analyzed the data of patients who underwent LTME with low anastomosis in Chongqing University Cancer Hospital from October 2015 to August 2021. Patients were divided into three groups according to their choice: those who underwent TCI (TCI group), those who underwent PI (PI group), and those who undergo none (C group). Intra-operation situation, postoperative efficacy and safety indicators were compared between three groups. Results: Out of the total 534 patients included, 171 underwent TCI, 156 underwent PI, and 207 underwent none. No statistically difference was noted in baseline characteristics between three groups (all P>0.05). Operation time was longer in TCI group and PI group than in C group (P<0.001). No difference was noted in intraoperative blood loss or the number of lymph nodes dissected (P=0.685 and P=0.153). Moreover, no difference was noted in the serum levels of immune cells on postoperative day 1, 3, and 7 (all P>0.05) or in the levels of serum C-reactive protein (CRP), procalcitonin (PCT), and interleukin 6 (IL-6; all P>0.05). No difference was noted in postoperative incision, pulmonary infection rates and intestinal obstruction incidence (P=0.530, P=0.971, and P=0.938). AL incidence and AL-related reoperation rates were lower in TCI or PI group (P=0.002 and P<0.001). The rate of anastomotic stricture was lower in TCI group than in the other two groups (P<0.001). Conclusions: TCI is effective to prevent AL when performed during LTME. But TCI cannot completely avoid AL. When AL occurs, TCI can reduce the degree of abdominal infection and the secondary surgical rate related AL. TCI presents an alternative option to PI, that does not require secondary operation. Therefore, TCI is safe and worthy of application.

19.
Front Cardiovasc Med ; 9: 946766, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36035932

RESUMEN

Diabetes-induced myocardial damage leads to diabetic cardiomyopathy and is closely associated with the generation of oxidative stress and inflammation. Naringenin (NG) exhibits antioxidant and anti-inflammatory effects. However, whether NG has cardioprotective effects against diabetic cardiomyopathy by regulating oxidative stress and inflammation remains unknown. This study investigated the effect of NG on diabetic cardiomyopathy based on an analysis of streptozotocin (STZ)-induced type 1 diabetic mice. The results indicated that NG reduced cardiac fibrosis and cardiomyocyte apoptosis in this diabetic model, accompanied by reduced blood glucose. NG inhibited pro-inflammatory cytokines, the level of reactive oxygen species and the expression of nuclear factor kappa-B (NF-κB), whereas the expression of antioxidant enzymes and nuclear factor erythroid 2-related factor 2 (Nrf2) were greatly enhanced by NG. Furthermore, in high glucose-treated H9C2 myocardial cells, NG effectively reduced cell apoptosis by inhibiting the formation of reactive oxygen species and pro-inflammatory cytokines. NG's antioxidant and anti-inflammatory activities were mechanistically associated with NF-κB inhibition and Nrf2 activation in animal and cell experiments. Data analysis showed that NG could regulate Nrf2 and NF-κB pathways to protect against diabetes-induced myocardial damage by reducing oxidative stress and inhibiting inflammation.

20.
Sci Total Environ ; 845: 157113, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-35787910

RESUMEN

The vertical profiles and diurnal variations of air pollutants at different heights in the fine chemical industry park (FCIP) were systematically studied in this study. Air pollutants in a major FCIP in the Yangtze River Delta of China within 500 m above ground level (AGL) detected by a sensor package on an unmanned aerial vehicle (UAV). The air pollutants including ozone (O3), nitrogen dioxide (NO2), particulate matter (PM), total volatile organic compounds (TVOCs) and carbon monoxide (CO), respectively, had been measured through more than one hundred times of vertical flights from Aug. 2020 to Jul. 2021. The concentrations of NO2 and CO generally decreased with the height while the concentrations of O3 increased with the height within 500 m AGL. The photochemical reaction resulted in a strong inverse relationship between the vertical profiles of O3 and that of NO2. The concentrations of PM2.5 and TVOCs generally decreased with the height below 100 m AGL and were fully mixed above 100 m AGL. The vertical profiles of different particle sizes were well consistent with the R2 value of 0.97 between PM1 and PM2.5 and 0.93 between PM2.5 and PM10. The NO2 and PM2.5 concentrations sometimes increased with height maybe due to the influence of temperature inversion layer or long-distance transportation from northern China. The diurnal variations of NO2, O3, TVOCs and CO concentrations at different heights within 500 m AGL were basically consistent. The diurnal variations range of PM2.5 concentrations below 100 m AGL was large and different from other heights, which should be greatly influenced by the local emissions. The unstable atmospheric stability was accompanied by strong photochemical reactions and convective activities, resulting in low concentrations of NO2 and PM2.5, while high concentrations of O3.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Ozono , Compuestos Orgánicos Volátiles , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Industria Química , China , Monitoreo del Ambiente/métodos , Dióxido de Nitrógeno/análisis , Ozono/análisis , Material Particulado/análisis , Ríos/química , Dispositivos Aéreos No Tripulados , Compuestos Orgánicos Volátiles/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...