Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Biol Sci ; 20(4): 1332-1355, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38385077

RESUMEN

Polyphenolic compounds have shown promising neuroprotective properties, making them a valuable resource for identifying prospective drug candidates to treat several neurological disorders (NDs). Numerous studies have reported that polyphenols can disrupt the nuclear factor kappa B(NF-κB) pathway by inhibiting the phosphorylation or ubiquitination of signaling molecules, which further prevents the degradation of IκB. Additionally, they prevent NF-κB translocation to the nucleus and pro-inflammatory cytokine production. Polyphenols such as curcumin, resveratrol, and pterostilbene had significant inhibitory effects on NF-κB, making them promising candidates for treating NDs. Recent experimental findings suggest that polyphenols possess a wide range of pharmacological properties. Notably, much attention has been directed towards their potential therapeutic effects in NDs such as Alzheimer's disease (AD), Parkinson's disease (PD), cerebral ischemia, anxiety, depression, autism, and spinal cord injury (SCI). Much preclinical data supporting the neurotherapeutic benefits of polyphenols has been developed. Nevertheless, this study has described the significance of polyphenols as potential neurotherapeutic agents, specifically emphasizing their impact on the NF-κB pathway. This article offers a comprehensive analysis of the involvement of polyphenols in NDs, including both preclinical and clinical perspectives.


Asunto(s)
Enfermedad de Alzheimer , FN-kappa B , Humanos , FN-kappa B/metabolismo , Polifenoles/farmacología , Polifenoles/uso terapéutico , Transducción de Señal , Proteínas I-kappa B/metabolismo
2.
Plant Physiol ; 194(2): 758-773, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-37847103

RESUMEN

Touch induces marked morphological changes in plants, including reduced rosette diameters and delayed flowering, a process called thigmomorphogenesis. Previous studies have revealed that thigmomorphogenesis in Arabidopsis (Arabidopsis thaliana) results from touch-induced accumulation of jasmonic acid (JA) and GIBBERELLIN 2-OXIDASE7 (GA2ox7) transcripts, which encode a gibberellin (GA) catabolism enzyme, leading to reduced levels of active GAs. However, the mechanisms underlying thigmomorphogenesis remain uncharacterized. Here, we showed that touch induces ethylene (ET) production in Arabidopsis. After touch treatment, ET biosynthesis and signaling mutants exhibited even greater thigmomorphogenic changes and more decreased GA4 contents than did wild-type (WT) plants. Biochemical analysis indicated that the transcription factor ETHYLENE INSENSITIVE3 (EIN3) of the ET pathway binds to the promoter of GA2ox8 (encoding another GA 2-oxidase performing the same GA modification as GA2ox7) and represses GA2ox8 transcription. Moreover, MYC2, the master regulator of JA signaling, directly promoted GA2ox7 expression by binding the G-box motif on GA2ox7 promoter. Further genetic analysis suggested that the ET and JA pathways independently control the expression of GA2ox8 and GA2ox7, respectively. This study reveals that the ET pathway is a novel repressor of touch-induced thigmomorphogenesis and highlights that the ET and JA pathways converge on GA catabolism but play opposite roles to fine-tune GA4 content during thigmomorphogenesis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Giberelinas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas
3.
Curr Biol ; 33(13): 2806-2813.e6, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37321212

RESUMEN

Stomata are distributed in nearly all major groups of land plants, with the only exception being liverworts. Instead of having stomata on sporophytes, many complex thalloid liverworts possess air pores in their gametophytes. At present, whether stomata in land plants are derived from a common origin remains under debate.1,2,3 In Arabidopsis thaliana, a core regulatory module for stomatal development comprises members of the bHLH transcription factor (TF) family, including AtSPCH, AtMUTE, and AtFAMA of subfamily Ia and AtSCRM1/2 of subfamily IIIb. Specifically, AtSPCH, AtMUTE, and AtFAMA each successively form heterodimers with AtSCRM1/2, which in turn regulate the entry, division, and differentiation of stomatal lineages.4,5,6,7 In the moss Physcomitrium patens, two SMF (SPCH, MUTE and FAMA) orthologs have been characterized, one of which is functionally conserved in regulating stomatal development.8,9 We here provide experimental evidence that orthologous bHLH TFs in the liverwort Marchantia polymorpha affect air pore spacing as well as the development of the epidermis and gametangiophores. We found that the bHLH Ia and IIIb heterodimeric module is highly conserved in plants. Genetic complementation experiments showed that liverwort SCRM and SMF genes weakly restored a stomata phenotype in atscrm1, atmute, and atfama mutant backgrounds in A. thaliana. In addition, homologs of stomatal development regulators FLP and MYB88 also exist in liverworts and weakly rescued the stomatal phenotype of atflp/myb88 double mutant. These results provide evidence not only for a common origin of all stomata in extant plants but also for relatively simple stomata in the ancestral plant.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Hepatophyta , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Hepatophyta/genética , Hepatophyta/metabolismo , Estomas de Plantas/fisiología , Plantas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas
4.
Plant J ; 113(4): 665-676, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36507655

RESUMEN

The moss Physcomitrium patens is crucial for studying plant development and evolution. Although the P. patens genome includes genes acquired from bacteria, fungi and viruses, the functions and evolutionary significance of these acquired genes remain largely unclear. Killer protein 4 (KP4) is a toxin secreted by the phytopathogenic fungus Ustilago maydis that inhibits the growth of sensitive target strains by blocking their calcium uptake. Here, we show that KP4 genes in mosses were acquired from fungi through at least three independent events of horizontal gene transfer. Two paralogous copies of KP4 (PpKP4-1 and PpKP4-2) exist in P. patens. Knockout mutants ppkp4-1 and ppkp4-2 showed cell death at the protonemal stage, and ppkp4-2 also exhibited defects in tip growth. We provide experimental evidence indicating that PpKP4-1/2 affects P. patens protonemal cell development by mediating cytoplasmic calcium and that KP4 genes are functionally conserved between P. patens and fungi. The present study provides additional insights into the role of horizontal gene transfer in land plant development and evolution.


Asunto(s)
Briófitas , Bryopsida , Briófitas/metabolismo , Calcio/metabolismo , Proteínas Fúngicas/genética , Hongos/metabolismo , Bryopsida/genética
5.
Plant Commun ; 4(3): 100513, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-36578211

RESUMEN

Despite decades of efforts in genome sequencing and functional characterization, some important protein families remain poorly understood. In this study, we report the classification, evolution, and functions of the largely uncharacterized AIM24 protein family in plants, including the identification of a novel subfamily. We show that two AIM24 subfamilies (AIM24-A and AIM24-B) are commonly distributed in major plant groups. These two subfamilies not only have modest sequence similarities and different gene structures but also are of independent bacterial ancestry. We performed comparative functional investigations on the two AIM24 subfamilies using three model plants: the moss Physcomitrium patens, the liverwort Marchantia polymorpha, and the flowering plant Arabidopsis thaliana. Intriguingly, despite their significant differences in sequence and gene structure, both AIM24 subfamilies are involved in ER stress tolerance and the unfolded protein response (UPR). In addition, transformation of the AIM24-A gene from P. patens into the AIM24-B null mutant of A. thaliana could at least partially rescue ER stress tolerance and the UPR. We also discuss the role of AIM24 genes in plant development and other cellular activities. This study provides a unique example of parallel evolution in molecular functions and can serve as a foundation for further investigation of the AIM24 family in plants.


Asunto(s)
Arabidopsis , Plantas , Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Secuencia de Bases , Arabidopsis/genética , Arabidopsis/metabolismo
6.
Mol Plant ; 15(5): 857-871, 2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35235827

RESUMEN

How horizontal gene transfer (HGT) has contributed to the evolution of animals and plants remains a major puzzle. Despite recent progress, defining the overall scale and pattern of HGT events in land plants has been largely elusive. In this study, we performed systematic analyses for acquired genes in different plant groups and throughout land plant evolution. We found that relatively recent HGT events occurred in charophytes and all major land plant groups, but their frequency declined rapidly in seed plants. Two major episodes of HGT events occurred in land plant evolution, corresponding to the early evolution of streptophytes and the origin of land plants, respectively. Importantly, a vast majority of the genes acquired in the two episodes have been retained in descendant groups, affecting numerous activities and processes of land plants. We analyzed some of the acquired genes involved in stress responses, ion and metabolite transport, growth and development, and specialized metabolism, and further assessed the cumulative effects of HGT in land plants.


Asunto(s)
Embryophyta , Transferencia de Gen Horizontal , Animales , Embryophyta/genética , Transferencia de Gen Horizontal/genética , Semillas
7.
Plant Signal Behav ; 16(4): 1879534, 2021 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-33522394

RESUMEN

Although fungal association has been instrumental to the evolution of land plants, how genes of fungal origin might have contributed to major plant innovations remains unclear. In a recent study, we showed that a macro2 domain-containing gene likely acquired from mycorrhiza-like fungi is important in gametophore development of mosses, suggesting a role of fungi-derived genes in the three-dimensional growth of land plants.


Asunto(s)
Evolución Biológica , Embryophyta/microbiología , Genes Fúngicos , Embryophyta/crecimiento & desarrollo , Micorrizas/genética , Células Madre/metabolismo
8.
Nat Commun ; 11(1): 2896, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32499564

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

10.
Nat Commun ; 11(1): 2030, 2020 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-32332755

RESUMEN

Plant colonization of land has been intimately associated with mycorrhizae or mycorrhizae-like fungi. Despite the pivotal role of fungi in plant adaptation, it remains unclear whether and how gene acquisition following fungal interaction might have affected the development of land plants. Here we report a macro2 domain gene in bryophytes that is likely derived from Mucoromycota, a group that includes some mycorrhizae-like fungi found in the earliest land plants. Experimental and transcriptomic evidence suggests that this macro2 domain gene in the moss Physcomitrella patens, PpMACRO2, is important in epigenetic modification, stem cell function, cell reprogramming and other processes. Gene knockout and over-expression of PpMACRO2 significantly change the number and size of gametophores. These findings provide insights into the role of fungal association and the ancestral gene repertoire in the early evolution of land plants.


Asunto(s)
Bryopsida/fisiología , Regulación de la Expresión Génica de las Plantas , Células Germinativas de las Plantas/crecimiento & desarrollo , Micorrizas/genética , Proteínas de Plantas/genética , Células Madre/fisiología , Evolución Biológica , Epigénesis Genética , Proteínas Fúngicas/genética , Técnicas de Inactivación de Genes , Genes de Plantas , Filogenia , Alineación de Secuencia
11.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 27(6): 1901-1906, 2019 Dec.
Artículo en Chino | MEDLINE | ID: mdl-31839057

RESUMEN

OBJECTIVE: To analyze the efficacy of continuous prevention injury combined with interference of pain on enhomcement of physical safety inside and outside hospital and pain control in patients with multiple myeloma (MM). METHODS: Two hundred and thirty-three MM patients admitted in our hospital from January 2016 to December 2017 were divided into 2 group according to odd-even number of hospitalization: routine nursing group (odd number) and combined nursing group (ever number). 119 patients in routine nursing group were given routine nursing, 114 patients in combined nursing group were given combined nursing consisting of continuous prevention of injury combined with interference of pain. The safety event incidence, pain relief, life quality and mental status of patients in 2 groups were compared. RESULTS: The incidence of accidental injuries and disease damages in combined nursing group was significantly lower than that in routine nursing group (3.51% and 4.29% vs 11.76% and 12.61%) (P<0.05). The numeric rating scale (NRS) pain score on the day of hospitalization was not significantly different between 2 groups (P>0.05), after interference, the NRS score and the six-point behavior score in combined nursing group were superior to those in routine nursing group (P<0.05). Before interference, the life quality scores were not significantly different between 2 groups (P>0.05), after interference, the some indicators of life quality in 2 groups were impromoved, the scores of physical function, role function, coguitive function, emotional function, and social function of patients in combined nursing group were superior to those in routine nursing group, the scores related with fatigue, nausea and vomiting, pain, loss of appetite, insomnia and overall health status of patients in combined nursing group were superior to those in routine nursing group (P<0.05). Before interference, there were no significant difference in scores of HAMA scale and HAMD scale between 2 groups (P>0.05), after interference, the scores of HAMA scale and HAMD scale in 2 groups both decreased, but the scores of above-mentioned scales in combined nursing group was lower than those in routine nursing group (P<0.05). CONCLUSION: The Continuous prevention of injury combined with interference of pain shows the better safety of inside and outside hospital and good efficacy of pain control for MM patients.


Asunto(s)
Dolor en Cáncer , Mieloma Múltiple , Humanos , Náusea , Calidad de Vida , Vómitos
12.
J Agric Food Chem ; 64(14): 2822-31, 2016 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-26985773

RESUMEN

The phytohormone jasmonoyl-L-isoleucine (JA-Ile) is well-known as the key signaling molecule that elicits plant defense responses after insect herbivory. Oxidation, which is catalyzed by the cytochrome P450s of the CYP94 family, is thought to be one of the main catabolic pathways of JA-Ile. In this study, we identified four CYP94B3 homologues in the wild tobacco plant Nicotiana attenuata. Individually silencing the four homologues revealed that NaCYP94B3 like-1 and NaCYP94B3 like-2, but not NaCYP94B3 like-3 and NaCYP94B3 like-4, are involved in the C-12-hydroxylation of JA-Ile. Simultaneously silencing three of the NaCYP94B3 like genes, NaCYP94B3 like-1, -2, and -4, in the VIGS-NaCYP94B3s plants doubled herbivory-induced JA-Ile levels and greatly enhanced plant resistance to the generalist insect herbivore, Spodoptera litura. The poor larval performance was strongly correlated with the high concentrations of several JA-Ile-dependent direct defense metabolites in VIGS-NaCYP94B3s plants. Furthermore, we show that the abundance of 12-hydroxy-JA-Ile was dependent on JA-Ile levels as well as COI1, the receptor of JA-Ile. COI1 appeared to transcriptionally control NaCYP94B3 like-1 and -2 and thus regulates the catabolism of its own ligand molecule, JA-Ile. These results highlight the important role of JA-Ile degradation in jasmonate homeostasis and provide new insight into the feedback regulation of JA-Ile catabolism. Given that silencing these CYP94 genes did not detectably alter plant growth and highly increased plant defense levels, we propose that CYP94B3 genes can be potential targets for genetic improvement of herbivore-resistant crops.


Asunto(s)
Ciclopentanos/metabolismo , Isoleucina/análogos & derivados , Nicotiana/metabolismo , Nicotiana/parasitología , Proteínas de Plantas/inmunología , Spodoptera/fisiología , Animales , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Regulación de la Expresión Génica de las Plantas , Herbivoria , Hidroxilación , Isoleucina/metabolismo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/parasitología , Nicotiana/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...