Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Nat Aging ; 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38834883

RESUMEN

Oxidative phosphorylation, essential for energy metabolism and linked to the regulation of longevity, involves mitochondrial and nuclear genes. The functions of these genes and their evolutionary rate covariation (ERC) have been extensively studied, but little is known about whether other nuclear genes not targeted to mitochondria evolutionarily and functionally interact with mitochondrial genes. Here we systematically examined the ERC of mitochondrial and nuclear benchmarking universal single-copy ortholog (BUSCO) genes from 472 insects, identifying 75 non-mitochondria-targeted nuclear genes. We found that the uncharacterized gene CG11837-a putative ortholog of human DIMT1-regulates insect lifespan, as its knockdown reduces median lifespan in five diverse insect species and Caenorhabditis elegans, whereas its overexpression extends median lifespans in fruit flies and C. elegans and enhances oxidative phosphorylation gene activity. Additionally, DIMT1 overexpression protects human cells from cellular senescence. Together, these data provide insights into the ERC of mito-nuclear genes and suggest that CG11837 may regulate longevity across animals.

2.
Front Cardiovasc Med ; 11: 1330685, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38283829

RESUMEN

Objective: Early risk assessment of pulmonary arterial hypertension (PAH) in patients with congenital heart disease (CHD) is crucial to ensure timely treatment. We hypothesize that applying artificial intelligence (AI) to chest x-rays (CXRs) could identify the future risk of PAH in patients with ventricular septal defect (VSD). Methods: A total of 831 VSD patients (161 PAH-VSD, 670 nonPAH-VSD) was retrospectively included. A residual neural networks (ResNet) was trained for classify VSD patients with different outcomes based on chest radiographs. The endpoint of this study was the occurrence of PAH in VSD children before or after surgery. Results: In the validation set, the AI algorithm achieved an area under the curve (AUC) of 0.82. In an independent test set, the AI algorithm significantly outperformed human observers in terms of AUC (0.81 vs. 0.65). Class Activation Mapping (CAM) images demonstrated the model's attention focused on the pulmonary artery segment. Conclusion: The preliminary findings of this study suggest that the application of artificial intelligence to chest x-rays in VSD patients can effectively identify the risk of PAH.

3.
Cell Host Microbe ; 31(10): 1655-1667.e6, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37738984

RESUMEN

Gut microbiota and its symbiotic relationship with the host are crucial for preventing pathogen infection. However, little is known about the mechanisms that drive commensal colonization. Serratia bacteria, commonly found in Anopheles mosquitoes, potentially mediate mosquito resistance to Plasmodium. Using S. ureilytica Su_YN1 as a model, we show that a quorum sensing (QS) circuit is crucial for stable colonization. After blood ingestion, the QS synthase SueI generates the signaling molecule N-hexanoyl-L-homoserine lactone (C6-HSL). Once C6-HSL binds to the QS receptor SueR, repression of the phenylalanine-to-acetyl-coenzyme A (CoA) conversion pathway is lifted. This pathway regulates outer membrane vesicle (OMV) biogenesis and promotes Serratia biofilm-like aggregate formation, facilitating gut adaptation and colonization. Notably, exposing Serratia Su_YN1-carrying Anopheles mosquitoes to C6-HSL increases Serratia gut colonization and enhances Plasmodium transmission-blocking efficacy. These findings provide insights into OMV biogenesis and commensal gut colonization and identify a powerful strategy for enhancing commensal resistance to pathogens.

4.
Nat Commun ; 14(1): 5157, 2023 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-37620328

RESUMEN

The gut microbiota is a crucial modulator of Plasmodium infection in mosquitoes, including the production of anti-Plasmodium effector proteins. But how the commensal-derived effectors are translocated into Plasmodium parasites remains obscure. Here we show that a natural Plasmodium blocking symbiotic bacterium Serratia ureilytica Su_YN1 delivers the effector lipase AmLip to Plasmodium parasites via outer membrane vesicles (OMVs). After a blood meal, host serum strongly induces Su_YN1 to release OMVs and the antimalarial effector protein AmLip into the mosquito gut. AmLip is first secreted into the extracellular space via the T1SS and then preferentially loaded on the OMVs that selectively target the malaria parasite, leading to targeted killing of the parasites. Notably, these serum-induced OMVs incorporate certain serum-derived lipids, such as phosphatidylcholine, which is critical for OMV uptake by Plasmodium via the phosphatidylcholine scavenging pathway. These findings reveal that this gut symbiotic bacterium evolved to deliver secreted effector molecules in the form of extracellular vesicles to selectively attack parasites and render mosquitoes refractory to Plasmodium infection. The discovery of the role of gut commensal-derived OMVs as carriers in cross-kingdom communication between mosquito microbiota and Plasmodium parasites offers a potential innovative strategy for blocking malaria transmission.


Asunto(s)
Culicidae , Parásitos , Plasmodium , Animales , Fosfatidilcolinas , Transporte Biológico
5.
Microbiol Spectr ; 11(4): e0166623, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37458601

RESUMEN

Anopheles mosquitoes are the primary vectors for the transmission of malaria parasites, which poses a devastating burden on global public health and welfare. The recent invasion of Anopheles stephensi in Africa has made malaria eradication more challenging due to its outdoor biting behavior and widespread resistance to insecticides. To address this issue, we developed a new approach for mosquito larvae control using gut microbiota-mediated RNA interference (RNAi). We engineered a mosquito symbiotic gut bacterium, Serratia fonticola, by deleting its RNase III gene to produce double-stranded RNAs (dsRNAs) in the mosquito larval gut. We found that the engineered S. fonticola strains can stably colonize mosquito larval guts and produce dsRNAs dsMet or dsEcR to activate RNAi and effectively suppress the expression of methoprene-tolerant gene Met and ecdysone receptor gene EcR, which encode receptors for juvenile hormone and ecdysone pathways in mosquitoes, respectively. Importantly, the engineered S. fonticola strains markedly inhibit the development of A. stephensi larvae and leads to a high mortality, providing an effective dsRNA delivery system for silencing genes in insects and a novel RNAi-mediated pest control strategy. Collectively, our symbiont-mediated RNAi (smRNAi) approach offers an innovative and sustainable method for controlling mosquito larvae and provides a promising strategy for combating malaria. IMPORTANCE Mosquitoes are vectors for various diseases, imposing a significant threat to public health globally. The recent invasion of A. stephensi in Africa has made malaria eradication more challenging due to its outdoor biting behavior and widespread resistance to insecticides. RNA interference (RNAi) is a promising approach that uses dsRNA to silence specific genes in pests. This study presents the use of a gut symbiotic bacterium, Serratia fonticola, as an efficient delivery system of dsRNA for RNAi-mediated pest control. The knockout of RNase III, a dsRNA-specific endonuclease gene, in S. fonticola using CRISPR-Cas9 led to efficient dsRNA production. Engineered strains of S. fonticola can colonize the mosquito larval gut and effectively suppress the expression of two critical genes, Met and EcR, which inhibit mosquito development and cause high mortality in mosquito larvae. This study highlights the potential of exploring the mosquito microbiota as a source of dsRNA for RNAi-based pest control.


Asunto(s)
Anopheles , Insecticidas , Malaria , Animales , Interferencia de ARN , Anopheles/genética , Anopheles/parasitología , Larva/genética , Ribonucleasa III/metabolismo , Mosquitos Vectores/genética , ARN Bicatenario , Malaria/prevención & control
6.
Clin Chem ; 69(7): 763-770, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37207672

RESUMEN

BACKGROUND: Deafness, autosomal recessive 16 (DFNB16) is caused by compound heterozygous or homozygous variants in STRC and is the second most common form of genetic hearing loss. Due to the nearly identical sequences of STRC and the pseudogene STRCP1, analysis of this region is challenging in clinical testing. METHODS: We developed a method that accurately identifies the copy number of STRC and STRCP1 using standard short-read genome sequencing. Then, we used whole genome sequencing (WGS) data to investigate the population distribution of STRC copy number in 6813 neonates and the correlation between STRC and STRCP1 copy number. RESULTS: The comparison of WGS results with multiplex ligation-dependent probe amplification demonstrated high sensitivity (100%; 95% CI, 97.5%-100%) and specificity (98.8%; 95% CI, 97.7%-99.5%) in detecting heterozygous deletion of STRC from short-read genome sequencing data. The population analysis revealed that 5.22% of the general population has STRC copy number changes, almost half of which (2.33%; 95% CI, 1.99%-2.72%) were clinically significant, including heterozygous and homozygous STRC deletions. There was a strong inverse correlation between STRC and STRCP1 copy number. CONCLUSIONS: We developed a novel and reliable method to determine STRC copy number based on standard short-read based WGS data. Incorporating this method into analytic pipelines would improve the clinical utility of WGS in the screening and diagnosis of hearing loss. Finally, we provide population-based evidence of pseudogene-mediated gene conversions between STRC and STRCP1.


Asunto(s)
Pérdida Auditiva Sensorineural , Pérdida Auditiva , Recién Nacido , Humanos , Pérdida Auditiva Sensorineural/diagnóstico , Pérdida Auditiva Sensorineural/genética , Pérdida Auditiva/diagnóstico , Pérdida Auditiva/genética , Secuencia de Bases , Homocigoto , Variaciones en el Número de Copia de ADN , Péptidos y Proteínas de Señalización Intercelular/genética
8.
Proc Natl Acad Sci U S A ; 120(4): e2217145120, 2023 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-36649415

RESUMEN

Entomopathogenic fungi infect insects by penetrating through the cuticle into the host body. To breach the host cuticle, some fungal pathogens produce specialized infection cells called appressoria, which develop enormous turgor pressure to allow cuticle penetration. However, regulatory mechanisms underlying appressorium turgor generation are poorly understood. Here, we show that the histone lysine methyltransferase ASH1 in the insecticidal fungus Metarhizium robertsii, which is strongly induced during infection of the mosquito cuticle, regulates appressorium turgor generation and cuticle penetration by activating the peroxin gene Mrpex16 via H3K36 dimethylation. MrPEX16 is required for the biogenesis of peroxisomes that participate in lipid catabolism and further promotes the hydrolysis of triacylglycerols stored in lipid droplets to produce glycerol for turgor generation, facilitating appressorium-mediated insect infection. Together, the ASH1-PEX16 pathway plays a pivotal role in regulating peroxisome biogenesis to promote lipolysis for appressorium turgor generation, providing insights into the molecular mechanisms underlying fungal pathogenesis.


Asunto(s)
Proteínas Fúngicas , Peroxisomas , Animales , Peroxisomas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Insectos/metabolismo , Enfermedades de las Plantas/microbiología
10.
Cell Rep ; 41(4): 111527, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36288711

RESUMEN

The growing threat of insecticide resistance prompts the urgent need to develop additional tools for mosquito control. Entomopathogenic fungi provide an eco-friendly alternative to chemical insecticides. One limitation to the use of mycoinsecticides is their relatively low virulence. Here, we report an approach for suppressing mosquito immunity and increasing fungal virulence. We engineered Beauveria bassiana to express Aedes immunosuppressive microRNAs (miRNAs) to induce host RNA interference (RNAi) immune responses. We show that engineered strains can produce and deliver the miRNAs into host cells to activate cross-kingdom RNAi during infection and suppress mosquito immunity by targeting multiple host genes, thereby dramatically increasing fungal virulence against Aedes aegypti and Galleria mellonella larvae. Importantly, expressing host miRNAs also significantly increases fungal virulence against insecticide-resistant mosquitoes, creating potential for insecticide-resistance management. This pathogen-mediated RNAi (pmRNAi)-based approach provides an innovative strategy to enhance the efficacy of fungal insecticides and eliminate the likelihood of resistance development.


Asunto(s)
Aedes , Beauveria , Insecticidas , MicroARNs , Animales , Insecticidas/farmacología , Interferencia de ARN , MicroARNs/genética , Control de Mosquitos , Aedes/genética , Beauveria/genética
11.
Proc Natl Acad Sci U S A ; 119(32): e2123379119, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35914151

RESUMEN

Xylomyrocins, a unique group of nonribosomal peptide secondary metabolites, were discovered in Paramyrothecium and Colletotrichum spp. fungi by employing a combination of high-resolution tandem mass spectrometry (HRMS/MS)-based chemometrics, comparative genome mining, gene disruption, stable isotope feeding, and chemical complementation techniques. These polyol cyclodepsipeptides all feature an unprecedented d-xylonic acid moiety as part of their macrocyclic scaffold. This biosynthon is derived from d-xylose supplied by xylooligosaccharide catabolic enzymes encoded in the xylomyrocin biosynthetic gene cluster, revealing a novel link between carbohydrate catabolism and nonribosomal peptide biosynthesis. Xylomyrocins from different fungal isolates differ in the number and nature of their amino acid building blocks that are nevertheless incorporated by orthologous nonribosomal peptide synthetase (NRPS) enzymes. Another source of structural diversity is the variable choice of the nucleophile for intramolecular macrocyclic ester formation during xylomyrocin chain termination. This nucleophile is selected from the multiple available alcohol functionalities of the polyol moiety, revealing a surprising polyspecificity for the NRPS terminal condensation domain. Some xylomyrocin congeners also feature N-methylated amino acid residues in positions where the corresponding NRPS modules lack N-methyltransferase (M) domains, providing a rare example of promiscuous methylation in the context of an NRPS with an otherwise canonical, collinear biosynthetic program.


Asunto(s)
Depsipéptidos , Proteínas Fúngicas , Hongos , Aminoácidos/química , Metabolismo de los Hidratos de Carbono , Quimiometría , Depsipéptidos/química , Depsipéptidos/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Hongos/genética , Hongos/metabolismo , Familia de Multigenes , Biosíntesis de Péptidos Independientes de Ácidos Nucleicos , Péptido Sintasas/química , Azúcares
12.
J Fungi (Basel) ; 8(6)2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35736048

RESUMEN

Filamentous fungal pathogens have evolved diverse strategies to infect a variety of hosts including plants and insects. The dynamic infection process requires rapid and fine-tuning regulation of fungal gene expression programs in response to the changing host environment and defenses. Therefore, transcriptional reprogramming of fungal pathogens is critical for fungal development and pathogenicity. Histone post-translational modification, one of the main mechanisms of epigenetic regulation, has been shown to play an important role in the regulation of gene expressions, and is involved in, e.g., fungal development, infection-related morphogenesis, environmental stress responses, biosynthesis of secondary metabolites, and pathogenicity. This review highlights recent findings and insights into regulatory mechanisms of histone methylation and acetylation in fungal development and pathogenicity, as well as their roles in modulating pathogenic fungi-host interactions.

13.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33941699

RESUMEN

Chemical insecticides remain the main strategy to combat mosquito-borne diseases, but the growing threat of insecticide resistance prompts the urgent need to develop alternative, ecofriendly, and sustainable vector control tools. Entomopathogenic fungi can overcome insecticide resistance and represent promising biocontrol tools for the control of mosquitoes. However, insects have evolved robust defense mechanisms against infection. Better understanding of mosquito defenses against fungal infection is critical for improvement of fungal efficacy. Here, we show that as the pathogenic fungus Beauveria bassiana penetrates into the host hemocoel, mosquitoes increase expression of the let-7 and miR-100 microRNAs (miRNAs). Both miRNAs translocate into fungal hyphae to specifically silence the virulence-related genes sec2p and C6TF, encoding a Rab guanine nucleotide exchange factor and a Zn(II)2Cys6 transcription factor, respectively. Inversely, expression of a let-7 sponge (anti-let-7) or a miR-100 sponge (anti-miR-100) in the fungus efficiently sequesters the corresponding translocated host miRNA. Notably, B. bassiana strains expressing anti-let-7 and anti-miR-100 are markedly more virulent to mosquitoes. Our findings reveal an insect defense strategy that employs miRNAs to induce cross-kingdom silencing of pathogen virulence-related genes, conferring resistance to infection.


Asunto(s)
Anopheles/genética , Beauveria/genética , Perfilación de la Expresión Génica/métodos , Resistencia a los Insecticidas/genética , MicroARNs/genética , Animales , Anopheles/microbiología , Secuencia de Bases , Beauveria/patogenicidad , Femenino , Proteínas Fúngicas/genética , Interacciones Huésped-Patógeno/genética , Hifa/genética , Hifa/patogenicidad , Mutación , Homología de Secuencia de Ácido Nucleico , Esporas Fúngicas/genética , Esporas Fúngicas/patogenicidad , Virulencia/genética
14.
Nat Microbiol ; 6(6): 806-817, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33958765

RESUMEN

The stalling global progress in the fight against malaria prompts the urgent need to develop new intervention strategies. Whilst engineered symbiotic bacteria have been shown to confer mosquito resistance to parasite infection, a major challenge for field implementation is to address regulatory concerns. Here, we report the identification of a Plasmodium-blocking symbiotic bacterium, Serratia ureilytica Su_YN1, isolated from the midgut of wild Anopheles sinensis in China that inhibits malaria parasites via secretion of an antimalarial lipase. Analysis of Plasmodium vivax epidemic data indicates that local malaria cases in Tengchong (Yunnan province, China) are significantly lower than imported cases and importantly, that the local vector A. sinensis is more resistant to infection by P. vivax than A. sinensis from other regions. Analysis of the gut symbiotic bacteria of mosquitoes from Yunnan province led to the identification of S. ureilytica Su_YN1. This bacterium renders mosquitoes resistant to infection by the human parasite Plasmodium falciparum or the rodent parasite Plasmodium berghei via secretion of a lipase that selectively kills parasites at various stages. Importantly, Su_YN1 rapidly disseminates through mosquito populations by vertical and horizontal transmission, providing a potential tool for blocking malaria transmission in the field.


Asunto(s)
Anopheles/microbiología , Proteínas Bacterianas/inmunología , Lipasa/inmunología , Mosquitos Vectores/microbiología , Serratia/enzimología , Serratia/aislamiento & purificación , Animales , Anopheles/inmunología , Anopheles/parasitología , Anopheles/fisiología , Proteínas Bacterianas/genética , China , Femenino , Tracto Gastrointestinal/microbiología , Humanos , Lipasa/genética , Malaria Vivax/transmisión , Masculino , Mosquitos Vectores/inmunología , Mosquitos Vectores/parasitología , Mosquitos Vectores/fisiología , Plasmodium falciparum/fisiología , Plasmodium vivax/fisiología , Serratia/genética , Serratia/fisiología , Simbiosis
15.
Science ; 371(6527): 411-415, 2021 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-33479155

RESUMEN

Anopheles mating is initiated by the swarming of males at dusk followed by females flying into the swarm. Here, we show that mosquito swarming and mating are coordinately guided by clock genes, light, and temperature. Transcriptome analysis shows up-regulation of the clock genes period (per) and timeless (tim) in the head of field-caught swarming Anopheles coluzzii males. Knockdown of per and tim expression affects Anopheles gambiae s.s. and Anopheles stephensi male mating in the laboratory, and it reduces male An. coluzzii swarming and mating under semifield conditions. Light and temperature affect mosquito mating, possibly by modulating per and/or tim expression. Moreover, the desaturase gene desat1 is up-regulated and rhythmically expressed in the heads of swarming males and regulates the production of cuticular hydrocarbons, including heptacosane, which stimulates mating activity.


Asunto(s)
Anopheles/fisiología , Proteínas CLOCK/fisiología , Vuelo Animal , Interacción Gen-Ambiente , Proteínas Circadianas Period/fisiología , Feromonas/biosíntesis , Conducta Sexual Animal , Animales , Anopheles/genética , Proteínas CLOCK/genética , Ácido Graso Desaturasas/genética , Ácido Graso Desaturasas/metabolismo , Luz , Masculino , Proteínas Circadianas Period/genética , Temperatura , Transcriptoma
16.
Zhongguo Dang Dai Er Ke Za Zhi ; 22(12): 1306-1312, 2020 Dec.
Artículo en Chino | MEDLINE | ID: mdl-33328002

RESUMEN

OBJECTIVE: To study the clinical features of children with recurrent Kawasaki disease (KD). METHODS: PubMed, Web of Science, Embase, CNKI, Wanfang Med Online, and Weipu Data were searched for case-control studies on the clinical features of initial and recurrent KD. The articles were screened according to the inclusion and exclusion criteria. RevMan 5.3 software was used to perform the Meta analysis. Effect models were selected based on the results of heterogeneity test, and then pooled OR or weighted mean difference (WMD), and their 95% CI were calculated. RESULTS: A total of 9 case-control studies were included, with 12 059 children with KD in total, among whom 206 children had recurrent KD (127 boys/61.7%; 79 girls/38.3%). The results of the Meta analysis showed that compared with the initial KD onset, the children with recurrent KD had a shorter duration of fever (WMD=-1.81, 95%CI:-2.99 to -0.64) and a lower proportion of children with swelling of the hands and feet (OR=0.46, 95%CI:0.26 to 0.80). There was no significant difference in the incidence rate of coronary artery lesions between recurrent KD and initial KD (OR=1.34, 95%CI:0.84 to 2.14). CONCLUSIONS: Current evidence shows that children with recurrent KD tend to have a shorter duration of fever and a lower incidence of swelling of the hands and feet. KD recurrence is more common in boys. Current evidence does not show an increased risk of developing coronary artery lesions in children with recurrent KD.


Asunto(s)
Síndrome Mucocutáneo Linfonodular/diagnóstico , Síndrome Mucocutáneo Linfonodular/fisiopatología , Niño , Enfermedad Crónica , Vasos Coronarios/patología , Edema/etiología , Femenino , Fiebre/etiología , Humanos , Masculino , Síndrome Mucocutáneo Linfonodular/complicaciones , Recurrencia
17.
PLoS Negl Trop Dis ; 14(8): e0008542, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32810151

RESUMEN

Presently, the principal tools to combat malaria are restricted to killing the parasite in infected people and killing the mosquito vector to thwart transmission. While successful, these approaches are losing effectiveness in view of parasite resistance to drugs and mosquito resistance to insecticides. Clearly, new approaches to fight this deadly disease need to be developed. Recently, one such approach-engineering mosquito resident bacteria to secrete anti-parasite compounds-has proven in the laboratory to be highly effective. However, implementation of this strategy requires approval from regulators as it involves introduction of recombinant bacteria into the field. A frequent argument by regulators is that if something unexpectedly goes wrong after release, there must be a recall mechanism. This report addresses this concern. Previously we have shown that a Serratia bacterium isolated from a mosquito ovary is able to spread through mosquito populations and is amenable to be engineered to secrete anti-plasmodial compounds. We have introduced a plasmid into this bacterium that carries a fluorescent protein gene and show that when cultured in the laboratory, the plasmid is completely lost in about 130 bacterial generations. Importantly, when these bacteria were introduced into mosquitoes, the bacteria were transmitted from one generation to the next, but the plasmid was lost after three mosquito generations, rendering the bacteria non-recombinant (wild type). Furthermore, no evidence was obtained for horizontal transfer of the plasmid to other bacteria either in culture or in the mosquito. Prior to release, it is imperative to demonstrate that the genes that thwart parasite development in the mosquito are safe to the environment. This report describes a methodology to safely achieve this goal, utilizing transient expression from a plasmid that is gradually lost, returning the bacterium to wild type status.


Asunto(s)
Anopheles/microbiología , Agentes de Control Biológico/farmacología , Mosquitos Vectores/microbiología , Serratia/genética , Serratia/metabolismo , Animales , Bacterias/genética , Bacterias/metabolismo , Transmisión de Enfermedad Infecciosa , Femenino , Malaria , Masculino , Ovario/microbiología , Plásmidos/genética
18.
Sci Adv ; 6(13): eaaz1659, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32232158

RESUMEN

Entomopathogenic fungi can overcome insecticide resistance and represent promising tools for the control of mosquitoes. Better understanding of fungus-mosquito interactions is critical for improvement of fungal efficacy. Upon insect cuticle induction, pathogenic fungi undergo marked infection-related morphological differentiation. However, regulatory mechanisms of fungal infection-related morphogenesis are poorly understood. Here, we show that a histone lysine methyltransferase KMT2 in Metarhizium robertsii (MrKMT2) is up-regulated upon cuticle induction. MrKMT2 plays crucial roles in regulating infection-related morphogenesis and pathogenicity by up-regulating the transcription factor gene Mrcre1 via H3K4 trimethylation during mosquito cuticle infection. MrCre1 further regulates the cuticle-induced gene Mrhyd4 to modulate infection structure (appressorium) formation and virulence. Overall, the MrKMT2-MrCre1-MrHyd4 regulatory pathway regulates infection-related morphogenesis and pathogenicity in M. robertsii. These findings reveal that the epigenetic regulatory mechanism plays a pivotal role in regulating fungal pathogenesis in insects, and provide new insights into molecular interactions between pathogenic fungi and insect hosts.


Asunto(s)
Hongos/fisiología , N-Metiltransferasa de Histona-Lisina/metabolismo , Micosis/metabolismo , Micosis/microbiología , Transducción de Señal , Factores de Transcripción/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Histonas/metabolismo , Interacciones Huésped-Patógeno , Fenotipo , Virulencia/genética
19.
Front Genet ; 11: 196, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32211030

RESUMEN

Mosquito-borne diseases cause more than 700 million people infected and one million people die (Caraballo and King, 2014). With the limitations of progress toward elimination imposed by insecticide- and drug-resistance, combined with the lack of vaccines, innovative strategies to fight mosquito-borne disease are urgently needed. In recent years, the use of mosquito microbiota has shown great potential for cutting down transmission of mosquito-borne pathogens. Here we review what is known about the mosquito microbiota and how this knowledge is being used to develop new ways to control mosquito-borne disease. We also discuss the challenges for the eventual release of genetically modified (GM) symbionts in the field.

20.
Trends Parasitol ; 36(2): 98-111, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31866183

RESUMEN

Mosquito-transmitted diseases account for about 500 000 deaths every year. Blocking these pathogens in the mosquito vector before they are transmitted to humans is an effective strategy to prevent mosquito-borne diseases. Like most higher organisms, mosquitoes harbor a highly diverse and dynamic microbial flora that can be explored for prevention of pathogen transmission. Here we review the structure and function of the mosquito microbiota, including bacteria, fungi, and viruses, and discuss the potential of using components of the microbiota to thwart pathogen transmission.


Asunto(s)
Culicidae/microbiología , Culicidae/virología , Microbiota/fisiología , Mosquitos Vectores/microbiología , Mosquitos Vectores/virología , Enfermedades Transmitidas por Vectores/prevención & control , Animales , Fenómenos Fisiológicos Bacterianos , Hongos/fisiología , Interacciones Huésped-Patógeno/fisiología , Humanos , Enfermedades Transmitidas por Vectores/microbiología , Enfermedades Transmitidas por Vectores/parasitología , Enfermedades Transmitidas por Vectores/virología , Fenómenos Fisiológicos de los Virus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...