Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Cell Sci ; 129(16): 3067-76, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-27528207

RESUMEN

The pleated septate junction (pSJ), an ancient structure for cell-cell contact in invertebrate epithelia, has protein components that are found in three more-recent junctional structures, the neuronal synapse, the paranodal region of the myelinated axon and the vertebrate epithelial tight junction. These more-recent structures appear to have evolved through alterations of the ancestral septate junction. During its formation in the developing animal, the pSJ exhibits plasticity, although the final structure is extremely robust. Similar to the immature pSJ, the synapse and tight junctions both exhibit plasticity, and we consider evidence that this plasticity comes at least in part from the interaction of members of the immunoglobulin cell adhesion molecule superfamily with highly regulated membrane-associated guanylate kinases. This plasticity regulation probably arose in order to modulate the ancestral pSJ and is maintained in the derived structures; we suggest that it would be beneficial when studying plasticity of one of these structures to consider the literature on the others. Finally, looking beyond the junctions, we highlight parallels between epithelial and synaptic membranes, which both show a polarized distribution of many of the same proteins - evidence that determinants of apicobasal polarity in epithelia also participate in patterning of the synapse.


Asunto(s)
Evolución Biológica , Uniones Intercelulares/metabolismo , Sinapsis/metabolismo , Animales , Epitelio/metabolismo , Humanos , Membranas/metabolismo , Modelos Biológicos
2.
Front Cell Neurosci ; 10: 11, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26858605

RESUMEN

The neurological dysfunction in amyotrophic lateral sclerosis (ALS)/motor neurone disease (MND) is associated with defective nerve-muscle contacts early in the disease suggesting that perturbations of cell adhesion molecules (CAMs) linking the pre- and post-synaptic components of the neuromuscular junction (NMJ) are involved. To search for candidate proteins implicated in this degenerative process, researchers have studied the Drosophila larval NMJ and find that the cytoskeleton-associated protein, adducin, is ideally placed to regulate synaptic contacts. By controlling the levels of synaptic proteins, adducin can de-stabilize synaptic contacts. Interestingly, elevated levels of phosphorylated adducin have been reported in ALS patients and in a mouse model of the disease. Adducin is regulated by phosphorylation through protein kinase C (PKC), some isoforms of which exhibit Ca(2+)-dependence, raising the possibility that changes in intracellular Ca(2+) might alter PKC activation and secondarily influence adducin phosphorylation. Furthermore, adducin has interactions with the alpha subunit of the Na(+)/K(+)-ATPase. Thus, the phosphorylation of adducin may secondarily influence synaptic stability at the NMJ and so influence pre- and post-synaptic integrity at the NMJ in ALS.

3.
Biol Open ; 3(12): 1196-206, 2014 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-25416060

RESUMEN

Adducin is a ubiquitously expressed actin- and spectrin-binding protein involved in cytoskeleton organization, and is regulated through phosphorylation of the myristoylated alanine-rich C-terminal kinase (MARCKS)-homology domain by protein kinase C (PKC). We have previously shown that the Drosophila adducin, Hu-li tai shao (Hts), plays a role in larval neuromuscular junction (NMJ) growth. Here, we find that the predominant isoforms of Hts at the NMJ contain the MARCKS-homology domain, which is important for interactions with Discs large (Dlg) and phosphatidylinositol 4,5-bisphosphate (PIP2). Through the use of Proximity Ligation Assay (PLA), we show that the adducin-like Hts isoforms are in complexes with Dlg and PIP2 at the NMJ. We provide evidence that Hts promotes the phosphorylation and delocalization of Dlg at the NMJ through regulation of the transcript distribution of the PAR-1 and CaMKII kinases in the muscle. We also show that Hts interactions with Dlg and PIP2 are impeded through phosphorylation of the MARCKS-homology domain. These results are further evidence that Hts is a signaling-responsive regulator of synaptic plasticity in Drosophila.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA