Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Nano Lett ; 24(15): 4602-4609, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38567988

RESUMEN

Oxygen vacancy (OV) engineering has been widely applied in different types of metal oxide-based photocatalytic reactions. Our study has shown that the redistributed OVs resulting from voids in CeO2 rods lead to significant differences in the band structure in space. The flat energy band within the highly crystallized bulk region hinders the recombination of photogenerated carrier pairs during the transfer process. The downward curved energy band in the surface region enhances the activation of the absorbents. Therefore, the localization of the band structure through crystal structure regionalization renders V-CeO2 capable of achieving efficient utilization of photogenerated carriers. Practically, the V-CeO2 rod shows a remarkable turnover number of 190.58 µmol g-1 h-1 in CO2 photoreduction, which is ∼9.4 times higher than that of D-CeO2 (20.46 µmol g-1 h-1). The designed modularization structure in our work is expected to provide important inspiration and guidance in coordinating the kinetic behavior of carriers in OV defect-rich photocatalysts.

2.
Cancer Imaging ; 24(1): 54, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654284

RESUMEN

BACKGROUND: Our previous study suggests that tumor CD8+ T cells and macrophages (defined as CD68+ cells) infiltration underwent dynamic and heterogeneous changes during concurrent chemoradiotherapy (CCRT) in cervical cancer patients, which correlated with their short-term tumor response. This study aims to develop a CT image-based radiomics signature for such dynamic changes. METHODS: Thirty cervical squamous cell carcinoma patients, who were treated with CCRT followed by brachytherapy, were included in this study. Pre-therapeutic CT images were acquired. And tumor biopsies with immunohistochemistry at primary sites were performed at baseline (0 fraction (F)) and immediately after 10F. Radiomics features were extracted from the region of interest (ROI) of CT images using Matlab. The LASSO regression model with ten-fold cross-validation was utilized to select features and construct an immunomarker classifier and a radiomics signature. Their performance was evaluated by the area under the curve (AUC). RESULTS: The changes of tumor-infiltrating CD8+T cells and macrophages after 10F radiotherapy as compared to those at baseline were used to generate the immunomarker classifier (AUC= 0.842, 95% CI:0.680-1.000). Additionally, a radiomics signature was developed using 4 key radiomics features to predict the immunomarker classifier (AUC=0.875, 95% CI:0.753-0.997). The patients stratified based on this signature exhibited significant differences in treatment response (p = 0.004). CONCLUSION: The radiomics signature could be used as a potential predictor for the CCRT-induced dynamic alterations of CD8+ T cells and macrophages, which may provide a less invasive approach to appraise tumor immune status during CCRT in cervical cancer compared to tissue biopsy.


Asunto(s)
Linfocitos T CD8-positivos , Quimioradioterapia , Linfocitos Infiltrantes de Tumor , Macrófagos , Neoplasias del Cuello Uterino , Humanos , Femenino , Neoplasias del Cuello Uterino/terapia , Neoplasias del Cuello Uterino/diagnóstico por imagen , Neoplasias del Cuello Uterino/patología , Neoplasias del Cuello Uterino/inmunología , Quimioradioterapia/métodos , Persona de Mediana Edad , Macrófagos/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Tomografía Computarizada por Rayos X/métodos , Adulto , Anciano , Carcinoma de Células Escamosas/terapia , Carcinoma de Células Escamosas/diagnóstico por imagen , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/inmunología , Braquiterapia/métodos , Radiómica
3.
Apoptosis ; 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38553613

RESUMEN

Dysregulation of deubiquitination contributes to various diseases, including cancer, and aberrant expression of deubiquitinating enzymes is involved in carcinoma progression. As a member of the ovarian tumor (OTU) deubiquitinases, OTUD4 is considered a tumor suppressor in many kinds of malignancies. The biological characteristics and mechanisms of OTUD4 in clear cell renal cell carcinoma (ccRCC) remain unclear. The downregulation of OTUD4 in ccRCC was confirmed based on the TCGA database and a validation cohort of 30-paired ccRCC and para-carcinoma samples. Moreover, OTUD4 expression was detected by immunohistochemistry in 50 cases of ccRCC tissues, and patients with lower levels of OTUD4 showed larger tumor size (p = 0.015). TCGA data revealed that patients with high expression of OTUD4 had a longer overall survival rate. In vitro and in vivo studies revealed that downregulation of OTUD4 was essential for tumor cell growth and metastasis in ccRCC, and OTUD4 overexpression inhibited these malignant phenotypes. We further found that OTUD4 sensitized ccRCC cells to Erastin-induced ferroptosis, and ferrostain-1 inhibited OTUD4-induced ferroptotic cell death. Mechanistic studies indicated that OTUD4 functioned as an anti-proliferative and anti-metastasic factor through the regulation of RNA-binding protein 47 (RBM47)-mediated activating transcription factor 3 (ATF3). OTUD4 directly interacted with RBM47 and promoted its stability via deubiquitination events. RBM47 was critical in ccRCC progression by regulating ATF3 mRNA stability, thereby promoting ATF3-mediated ferroptosis. RBM47 interference abolished the suppressive role of OTUD4 overexpression in ccRCC. Our findings provide mechanistic insight into OTUD4 of ccRCC progression and indicate a novel critical pathway OTUD4/RBM47/ATF3 may serve as a potential therapeutic pathway for ccRCC.

4.
Curr Res Neurobiol ; 5: 100117, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38020804

RESUMEN

The K+ channel blocker 4-aminopyridine (4AP) has been extensively used to investigate the mechanisms underlying neuronal network synchronization in both in vitro and in vivo animal models of focal epilepsy. 4AP-induced effects are paralleled by an increase in both excitatory and inhibitory neurotransmitter release, but the mechanisms of action of 4AP on neuronal networks remain unclear. By employing simultaneous whole-cell patch clamp and field potential recordings from hippocampal CA3/4 pyramidal layer of acute brain slices obtained from mice (n = 30), we found that the appearance of epileptiform discharges induced by 4AP (100 µM) is consistently preceded by the transient recurrence of presumptive GABAB outward currents, which are not mirrored by any field activity. These GABAB outward currents still occurred during application of ionotropic glutamatergic antagonists (n = 12 cells) but were blocked by the GABAB receptor antagonist CGP55845 (n = 7). Our findings show that the transient occurrence of distinct GABAB outward currents precedes the appearance of 4AP-induced neuronal network synchronization leading to epileptiform activity in the rodent hippocampus in vitro.

5.
Support Care Cancer ; 31(12): 640, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37851143

RESUMEN

PURPOSE: There are no well-recognized guidelines for antiemesis during concurrent chemoradiotherapy (CCRT) for cervical cancer (CC) and nasopharyngeal cancer (NPC) until now. The study was designed to assess the efficacy and safety of fosaprepitant combined with tropisetron and dexamethasone in preventing nausea and vomiting during 5 weeks of fractionated radiotherapy and concomitant weekly low-dose cisplatin chemotherapy in patients with CC or NPC. METHODS: Patients with CC or NPC were scheduled to receive fractionated radiotherapy and weekly cisplatin (25-40 mg/m2) chemotherapy for at least 5 weeks. Patients stratified by tumor type and induction chemotherapy were 1:1 randomly assigned to receive fosaprepitant, tropisetron, and dexamethasone or tropisetron plus dexamethasone as an antiemetic regimen. Efficacy was assessed primarily by the cumulative incidence of emesis after 5 weeks of treatment, and safety by adverse events (AEs). RESULTS: Between July 2020 and July 2022, 116 patients consented to the study of whom 103 were included in this interim analysis (fosaprepitant group [N = 52] vs control group [N = 51]). The cumulative incidence of emesis at 5 weeks (competing risk analysis) was 25% (95% CI 14.2-37.4) for the fosaprepitant group compared with 59% (95% CI 43.9-71.0) for the control group. There was a significantly lower cumulative risk of emesis in the fosaprepitant group (HR 0.35 [95% CI 0.19-0.64]; p < 0.001). Fosaprepitant was well tolerated as the incidences of adverse events in the two groups were comparable. CONCLUSION: The addition of fosaprepitant to tropisetron plus dexamethasone significantly reduced the risk of nausea and vomiting during 5 weeks of CCRT in patients with CC or NPC, and fosaprepitant was well tolerated. TRIAL REGISTRATION: The trial was registered with ClinicalTrials.gov on October 3, 2022, number NCT05564286.


Asunto(s)
Antieméticos , Antineoplásicos , Neoplasias Nasofaríngeas , Neoplasias del Cuello Uterino , Femenino , Humanos , Cisplatino , Tropisetrón/uso terapéutico , Dexametasona , Antineoplásicos/efectos adversos , Vómitos/inducido químicamente , Vómitos/prevención & control , Estudios Prospectivos , Náusea/etiología , Náusea/prevención & control , Náusea/tratamiento farmacológico , Antieméticos/uso terapéutico , Neoplasias del Cuello Uterino/tratamiento farmacológico , Fraccionamiento de la Dosis de Radiación , Quimioterapia Combinada
6.
Heliyon ; 9(9): e20285, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37809663

RESUMEN

Background: This study was performed to explore the role of Re in liver IRI progression. Hypoxia and reperfusion (H/R) treated human embryo liver cell line (L-02) was used to establish a liver IRI model. Materials and methods: Cell behaviors were detected using CCK-8, flow cytometry and TUNEL staining assays. The m6A content was detected using m6A dot blot assay. RT-qPCR and western blot assays were used to assessed the relative mRNA and protein levels. MeRIP assay was conducted to determine the m6A levels of P53. The relationship between METTL3 and P53 was demonstrated using RIP and dual-luciferase reporter assays. Results: The results showed that Re treatment significantly decreased the cell apoptosis and promoted the cell viability in the H/R treated L-02 cells. Besides, H/R treatment increased the METTL3 and m6A levels in the L-02 cells, and Re treatment decreased them. Additionally, METTL3 overexpression reversed the role of Re in the H/R treated L-02 cells. Mechanistically, METTL3 overexpression enhanced the m6A levels and mRNA stability and expressions of P53. The combination of METTL3 and P53 was further confirmed. Conclusion: In conclusion, this study demonstrated that Re treatment relieved the H/R induced injury in the L-02 cells through decreasing the METTL3 levels. METTL3 enhanced the mRNA stability and expressions of P53 through m6A modification. Re-METTL3-P53 axis might a new direction for the treatment of liver IRI in the future.

7.
J Neurophysiol ; 130(4): 1041-1052, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37703488

RESUMEN

Mesial temporal lobe epilepsy (MTLE) is the most common form of focal epilepsy and it is characterized by seizures that are often refractory to medications. Seizures in MTLE have two main patterns of onset that have been termed hypersynchronous (HYP) and low-voltage fast (LVF) and are believed to mainly depend on the activity of excitatory principal cells and inhibitory interneurons, respectively. In this study, we investigated whether unilateral open-loop optogenetic activation of CaMKII-positive principal cells in the hippocampus CA3 region favors the generation of spontaneous HYP seizures in kainic acid-treated (KA) CaMKII-ChR2 mice. Optogenetic activation of CA3 principal cells (1 Hz, 180 s ON, 220 s OFF) was implemented for 15 days after KA-induced status epilepticus. We found that both LVF and HYP seizures occurred in nonstimulated CaMKII-ChR2 (n = 6) and stimulated CaMKII-Cre (n = 5) mice. In contrast, optogenetic activation of principal cells in CaMKII-ChR2 mice (n = 5) triggered only HYP seizures that were characterized by high fast ripple (250-500 Hz) rates during the pre-ictal and ictal periods. These results provide firm evidence that in MTLE spontaneous seizures with different onset patterns depend on distinct neuronal network mechanisms of generation. They also demonstrate that HYP seizures occurring in vivo along with their associated fast ripples depend on the activity of principal cells in the CA3 region.NEW & NOTEWORTHY Previous evidence suggested that different seizure onset patterns rely on the activity of distinct neuronal populations. In this study, we show for the first time that in vivo optogenetic stimulation of CaMKII principal cells in kainic acid-treated mice triggers hypersynchronous-onset seizures that are associated with fast ripples. Our findings indicate that in patients with predominant HYP-onset seizures, anticonvulsant treatments should be aimed at limiting the firing of principal neurons in the seizure onset zone.


Asunto(s)
Epilepsia del Lóbulo Temporal , Estado Epiléptico , Humanos , Ratones , Animales , Epilepsia del Lóbulo Temporal/inducido químicamente , Ácido Kaínico/toxicidad , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Convulsiones/inducido químicamente , Modelos Animales de Enfermedad , Hipocampo , Electroencefalografía
8.
J Neurophysiol ; 129(5): 1218-1223, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37073973

RESUMEN

Emerging evidence suggests that the medial septum can control seizures occurring in focal epileptic disorders, thus representing a therapeutic target. Therefore, we investigated whether continuous optogenetic activation of inhibitory parvalbumin (PV)-positive interneurons in the medial septum can reduce the occurrence of spontaneous seizures in the pilocarpine model of mesial temporal lobe epilepsy (MTLE). Light pulses (450 nm, 25 mW, 20-ms pulse duration) were delivered at 0.5 Hz (5 min ON, 10 min OFF) with a laser diode fiber light source between day 8 and day 12 after status epilepticus (SE) in PV-ChR2 mice (n = 8). Seizure rates were significantly lower during time periods of optogenetic stimulation (days 8-12) compared with before implementation of optogenetics (days 4-7) (P < 0.05). Moreover, between day 13 and day 21 after SE seizure rates were still significantly lower compared with before optogenetic stimulation (i.e., between day 4 and day 7) (P < 0.05). No seizures were recorded between day 10 and day 12 in all animals, and no seizures occurred up to 3 days after the end of optogenetic stimulation (days 13-15). Our findings indicate that activation of PV interneurons in the medial septum abates seizures in the pilocarpine model of MTLE. Moreover, the persisting anti-ictogenic effects suggest that stimulation of the medial septum could alter the progression of MTLE.NEW & NOTEWORTHY The medial septum could represent a therapeutic target to treat patients with focal epilepsy. In this study, we show that optogenetic activation of inhibitory parvalbumin-positive interneurons in the medial septum can block spontaneous seizures and prevents their reoccurrence for ∼5 days after the end of stimulation. Our findings suggest that the anti-ictogenic effects induced by stimulation of the medial septum could also alter the progression of mesial temporal lobe epilepsy.


Asunto(s)
Epilepsia del Lóbulo Temporal , Estado Epiléptico , Ratones , Animales , Epilepsia del Lóbulo Temporal/inducido químicamente , Epilepsia del Lóbulo Temporal/terapia , Optogenética , Pilocarpina/toxicidad , Parvalbúminas/metabolismo , Estado Epiléptico/inducido químicamente , Hipocampo/metabolismo , Modelos Animales de Enfermedad
9.
Toxicol Res (Camb) ; 12(1): 76-85, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36866216

RESUMEN

Both of nanoplastics (NPs) and Tetrabromobisphenol A (TBBPA) are organic pollutants widely detected in the environment and organisms. The large specific surface area of NPs makes them ideal vectors for carrying various toxicants, such as organic pollutants, metals, or other nanomaterials, posing potential threats to human health. This study used Caenorhabditis elegans (C. elegans) to investigate the neurodevelopmental toxicity induced by combined exposure of TBBPA and polystyrene NPs. Our results showed that combined exposure caused synergistic inhibitory effects on the survival rate, body length/width, and locomotor ability. Furthermore, the overproduction of reactive oxygen species (ROS), lipofuscin accumulation, and dopaminergic neuronal loss suggested that oxidative stress was involved in induction of neurodevelopmental toxicity in C. elegans. The expressions of Parkinson's disease related gene (pink-1) and Alzheimer's disease related gene (hop-1) were significantly increased after combined exposure of TBBPA and polystyrene NPs. Knock out of pink-1 and hop-1 genes alleviated the adverse effects such as growth retardation, locomotion deficits, dopaminergic loss, and oxidative stress induction, indicating that pink-1 and hop-1 genes play an important role in neurodevelopmental toxicity induced by TBBPA and polystyrene NPs. In conclusion, TBBPA and polystyrene NPs had synergistic effect on oxidative stress induction and neurodevelopmental toxicity in C. elegans, which was mediated through increased expressions of pink-1 and hop-1.

10.
Neurobiol Dis ; 180: 106065, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36907521

RESUMEN

Interictal activity and seizures are the hallmarks of focal epileptic disorders (which include mesial temporal lobe epilepsy, MTLE) in humans and in animal models. Interictal activity, which is recorded with cortical and intracerebral EEG recordings, comprises spikes, sharp waves and high-frequency oscillations, and has been used in clinical practice to identify the epileptic zone. However, its relation with seizures remains debated. Moreover, it is unclear whether specific EEG changes in interictal activity occur during the time preceding the appearance of spontaneous seizures. This period, which is termed "latent", has been studied in rodent models of MTLE in which spontaneous seizures start to occur following an initial insult (most often a status epilepticus induced by convulsive drugs such as kainic acid or pilocarpine) and may mirror epileptogenesis, i.e., the process leading the brain to develop an enduring predisposition to seizure generation. Here, we will address this topic by reviewing experimental studies performed in MTLE models. Specifically, we will review data highlighting the dynamic changes in interictal spiking activity and high-frequency oscillations occurring during the latent period, and how optogenetic stimulation of specific cell populations can modulate them in the pilocarpine model. These findings indicate that interictal activity: (i) is heterogeneous in its EEG patterns and thus, presumably, in its underlying neuronal mechanisms; and (ii) can pinpoint to the epileptogenic processes occurring in focal epileptic disorders in animal models and, perhaps, in epileptic patients.


Asunto(s)
Epilepsias Parciales , Epilepsia del Lóbulo Temporal , Epilepsia , Animales , Humanos , Epilepsia del Lóbulo Temporal/inducido químicamente , Pilocarpina/toxicidad , Convulsiones/inducido químicamente , Electroencefalografía
11.
Sci Total Environ ; 861: 160609, 2023 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-36470384

RESUMEN

While mounting evidence suggests that wildland fire smoke (WFS) inhalation may increase the burden of cardiopulmonary disease, the occupational risk of repeated exposure during wildland firefighting remains unknown. To address this concern, we evaluated the cardiopulmonary function in mice following a cumulative exposure to lab-scale WFS equivalent to a mid-length wildland firefighter (WLFF) career. Dosimetry analysis indicated that 80 exposure hours at a particulate concentration of 22 mg/m3 yield in mice the same cumulative deposited mass per unit of lung surface area as 3600 h of wildland firefighting. To satisfy this condition, male Apoe-/- mice were whole-body exposed to either air or smoldering Douglas fir smoke (DFS) for 2 h/day, 5 days/week, over 8 consecutive weeks. Particulate size in DFS fell within the respirable range for both mice and humans, with a count median diameter of 110 ± 20 nm. Expiratory breath hold in mice exposed to DFS significantly reduced their minute volume (DFS: 27 ± 4; Air: 122 ± 8 mL/min). By the end of the exposure time frame, mice in the DFS group exhibited a thicker (DFS: 109 ± 3; Air: 98 ± 3 µm) and less distensible (DFS: 23 ± 1; Air: 28 ± 1 MPa-1) aorta with reduced diastolic blood augmentation capacity (DFS: 53 ± 2; Air: 63 ± 2 kPa). Cardiac magnetic resonance imaging further revealed larger end-systolic volume (DFS: 14.6 ± 1.1; Air: 9.9 ± 0.9 µL) and reduced ejection-fraction (DFS: 64.7 ± 1.0; Air: 75.3 ± 0.9 %) in mice exposed to DFS. Consistent with increased airway epithelium thickness (DFS: 10.4 ± 0.8; Air: 7.6 ± 0.3 µm), airway Newtonian resistance was larger following DFS exposure (DFS: 0.23 ± 0.03; Air: 0.20 ± 0.03 cmH2O-s/mL). Furthermore, parenchyma mean linear intercept (DFS: 36.3 ± 0.8; Air: 33.3 ± 0.8 µm) and tissue thickness (DFS: 10.1 ± 0.5; Air: 7.4 ± 0.7 µm) were larger in DFS mice. Collectively, mice exposed to DFS manifested early signs of cardiopulmonary dysfunction aligned with self-reported events in mid-career WLFFs.


Asunto(s)
Pseudotsuga , Animales , Masculino , Ratones , Aorta , Polvo , Exposición por Inhalación/análisis , Pulmón , Humo/efectos adversos , Volumen Sistólico
12.
Front Oncol ; 12: 988859, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36387160

RESUMEN

Purpose: To investigate the value of radiomics models based on CT at different phases (non-contrast-enhanced and contrast-enhanced images) in predicting lymph node (LN) metastasis in esophageal squamous cell carcinoma (ESCC). Methods and materials: Two hundred and seventy-four eligible patients with ESCC were divided into a training set (n =193) and a validation set (n =81). The least absolute shrinkage and selection operator algorithm (LASSO) was used to select radiomics features. The predictive models were constructed with radiomics features and clinical factors through multivariate logistic regression analysis. The predictive performance and clinical application value of the models were evaluated by area under receiver operating characteristic curve (AUC) and decision curve analysis (DCA). The Delong Test was used to evaluate the differences in AUC among models. Results: Sixteen and eighteen features were respectively selected from non-contrast-enhanced CT (NECT) and contrast-enhanced CT (CECT) images. The model established using only clinical factors (Model 1) has an AUC value of 0.655 (95%CI 0.552-0.759) with a sensitivity of 0.585, a specificity of 0.725 and an accuracy of 0.654. The models contained clinical factors with radiomics features of NECT or/and CECT (Model 2,3,4) have significantly improved prediction performance. The values of AUC of Model 2,3,4 were 0.766, 0.811 and 0.809, respectively. It also achieved a great AUC of 0.800 in the model built with only radiomics features derived from NECT and CECT (Model 5). DCA suggested the potential clinical benefit of model prediction of LN metastasis of ESCC. A comparison of the receiver operating characteristic (ROC) curves using the Delong test indicated that Models 2, 3, 4, and 5 were superior to Model 1(P< 0.05), and no difference was found among Model 2, 3, 4 and Model 5(P > 0.05). Conclusion: Radiomics models based on CT at different phases could accurately predict the lymph node metastasis in patients with ESCC, and their predictive efficiency was better than the clinical model based on tumor size criteria. NECT-based radiomics model could be a reasonable option for ESCC patients due to its lower price and availability for renal failure or allergic patients.

13.
Front Neural Circuits ; 16: 984802, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36275847

RESUMEN

Under physiological conditions, neuronal network synchronization leads to different oscillatory EEG patterns that are associated with specific behavioral and cognitive functions. Excessive synchronization can, however, lead to focal or generalized epileptiform activities. It is indeed well established that in both epileptic patients and animal models, focal epileptiform EEG patterns are characterized by interictal and ictal (seizure) discharges. Over the last three decades, employing in vitro and in vivo recording techniques, several experimental studies have firmly identified a paradoxical role of GABAA signaling in generating interictal discharges, and in initiating-and perhaps sustaining-focal seizures. Here, we will review these experiments and we will extend our appraisal to evidence suggesting that GABAA signaling may also contribute to epileptogenesis, i.e., the development of plastic changes in brain excitability that leads to the chronic epileptic condition. Overall, we anticipate that this information should provide the rationale for developing new specific pharmacological treatments for patients presenting with focal epileptic disorders such as mesial temporal lobe epilepsy (MTLE).


Asunto(s)
Epilepsias Parciales , Epilepsia del Lóbulo Temporal , Epilepsia , Animales , Convulsiones , Ácido gamma-Aminobutírico , Electroencefalografía
14.
J Neurophysiol ; 128(4): 837-846, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36043700

RESUMEN

GABAA signaling is surprisingly involved in the initiation of epileptiform activity since increased interneuron firing, presumably leading to excessive GABA release, often precedes ictal discharges. Field potential theta (4-12 Hz) oscillations, which are thought to mirror the synchronization of interneuron networks, also lead to ictogenesis. However, the exact role of parvalbumin-positive (PV) interneurons in generating theta oscillations linked to epileptiform discharges remains unexplored. We analyzed here the field responses recorded in the CA3, entorhinal cortex (EC), and dentate gyrus (DG) during 8-Hz optogenetic stimulation of PV-positive interneurons in brain slices obtained from PV-ChR2 mice during 4-aminopyridine (4AP) application. This optogenetic protocol triggered similar field oscillations in both control conditions and during 4AP application. However, in the presence of 4AP, optogenetic stimuli also induced: 1) interictal discharges that were associated in all regions with 8-Hz field oscillations and 2) low-voltage fast onset ictal discharges. Interictal and ictal events occurred more frequently during optogenetic activation than during periods of no stimulation. 4AP also increased synchronicity during PV-interneuron activation in all three regions. In opsin-negative mice, optogenetic stimulation did not change the rate of both types of epileptiform activity. Our findings suggest that PV-interneuron recruitment at theta (8 Hz) frequency contributes to epileptiform synchronization in limbic structures in the in vitro 4AP model.NEW & NOTEWORTHY Previous studies have identified contradictory roles of PV-interneurons in ictogenesis and the link between theta oscillations and epileptiform activity remains unexplored. Here, we investigated in vitro the effect of PV-interneuron optogenetic stimulation under 4AP in temporal lobe regions obtained from PV-ChR2 transgenic mice. Under theta (8 Hz) optogenetic stimulation and 4AP application, interictal spikes and low-voltage fast onset ictal discharges were triggered, suggesting that the activation of PV-interneurons favors synchronization and ictogenesis.


Asunto(s)
Optogenética , Parvalbúminas , 4-Aminopiridina , Animales , Interneuronas/fisiología , Ratones , Ratones Transgénicos , Opsinas , Parvalbúminas/genética , Ácido gamma-Aminobutírico
15.
Neurobiol Dis ; 171: 105794, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35718264

RESUMEN

Mesial temporal lobe epilepsy (MTLE) is the most common type of focal refractory epilepsy and is characterized by recurring seizures that are often refractory to medication. Since parvalbumin-positive (PV) interneurons were recently shown to play significant roles in ictogenesis, we established here how bilateral optogenetic stimulation of these interneurons in the hippocampus CA3 regions modulates seizures, interictal spikes and high-frequency oscillations (HFOs; ripples: 80-200 Hz, fast ripples: 250-500 Hz) in the pilocarpine model of MTLE. Bilateral optogenetic stimulation of CA3 PV-positive interneurons at 8 Hz (lasting 30 s, every 2 min) was implemented in PV-ChR2 mice for 8 consecutive days starting on day 7 (n = 8) or on day 13 (n = 6) after pilocarpine-induced status epilepticus (SE). Seizure occurrence was higher in both day 7 and day 13 groups of PV-ChR2 mice during periods of optogenetic stimulation ("ON"), compared to when stimulation was not performed ("OFF") (day 7 group = p < 0.01, day 13 group = p < 0.01). In the PV-ChR2 day 13 group, rates of seizures (p < 0.05), of interictal spikes associated with fast ripples (p < 0.01), and of isolated fast ripples (p < 0.01) during optogenetic stimulations were significantly higher than in the PV-ChR2 day 7 group. Our findings reveal that bilateral activation of PV-interneurons in the hippocampus (leading to a presumptive increase in GABA signaling) favors ictogenesis. These effects may also mirror the neuropathological changes that occur over time after SE in this animal model.


Asunto(s)
Epilepsia del Lóbulo Temporal , Estado Epiléptico , Animales , Epilepsia del Lóbulo Temporal/patología , Ratones , Optogenética , Pilocarpina/toxicidad , Convulsiones/inducido químicamente , Convulsiones/tratamiento farmacológico
16.
Brain ; 145(2): 754-769, 2022 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-34791091

RESUMEN

Amongst the numerous genes associated with intellectual disability, SYNGAP1 stands out for its frequency and penetrance of loss-of-function variants found in patients, as well as the wide range of co-morbid disorders associated with its mutation. Most studies exploring the pathophysiological alterations caused by Syngap1 haploinsufficiency in mouse models have focused on cognitive problems and epilepsy; however, whether and to what extent sensory perception and processing are altered by Syngap1 haploinsufficiency is less clear. By performing EEG recordings in awake mice, we identified specific alterations in multiple aspects of auditory and visual processing, including increased baseline gamma oscillation power, increased theta/gamma phase amplitude coupling following stimulus presentation and abnormal neural entrainment in response to different sensory modality-specific frequencies. We also report lack of habituation to repetitive auditory stimuli and abnormal deviant sound detection. Interestingly, we found that most of these alterations are present in human patients as well, thus making them strong candidates as translational biomarkers of sensory-processing alterations associated with SYNGAP1/Syngap1 haploinsufficiency.


Asunto(s)
Haploinsuficiencia , Discapacidad Intelectual , Animales , Biomarcadores , Electroencefalografía , Haploinsuficiencia/genética , Humanos , Discapacidad Intelectual/genética , Ratones , Percepción , Proteínas Activadoras de ras GTPasa/genética
17.
Front Oncol ; 12: 1026305, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37078004

RESUMEN

Purpose: We aimed to develop a combined predicting model for benign esophageal stenosis (BES) after simultaneous integrated boost (SIB) with concurrent chemotherapy in patients with esophageal squamous cell carcinoma (ESCC). Methods: This study included 65 patients with EC who underwent SIB with chemotherapy. Esophageal stenosis was evaluated using esophagograms and the severity of eating disorders. Risk factors were investigated using univariate and multivariate analyses. Radiomics features were extracted based on contrast-enhanced CT (CE-CT) before treatment. The least absolute shrinkage and selection operator (LASSO) regression analysis was used for feature selection and radiomics signature construction. The model's performance was evaluated using Harrell's concordance index and receiver operating characteristic curves. Results: The patients were stratified into low- and high-risk groups according to BES after SIB. The area under the curves of the clinical model, Rad-score, and the combined model were 0.751, 0.820 and 0.864, respectively. In the validation cohort, the AUCs of these three models were 0.854, 0.883 and 0.917, respectively. The Hosmer-Lemeshow test showed that there was no deviation from model fitting for the training cohort (p=0.451) and validation cohort (p=0.481). The C-indexes of the nomogram were 0.864 and 0.958 for the training and validation cohort, respectively. The model combined with Rad-score and clinical factors achieved favorable prediction ability. Conclusion: Definitive chemoradiotherapy could alleviate tumor-inducing esophageal stenosis but result in benign stenosis. We constructed and tested a combined predicting model for benign esophageal stenosis after SIB. The nomogram incorporating both radiomics signature and clinical prognostic factors showed favorable predictive accuracy for BES in ESCC patients who received SIB with chemotherapy. Trial registration number and date of registration: Registered in www.Clinicaltrial.gov, ID: NCT01670409, August 12, 2012.

18.
Front Oncol ; 11: 738936, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34868933

RESUMEN

PURPOSE: We aimed to evaluate the long-term outcomes of concurrent chemoradiotherapy (CCRT) with a simultaneous integrated boost (SIB) of radiotherapy for esophageal squamous cell carcinoma (ESCC). METHODS AND MATERIALS: Eighty-seven patients with primary ESCC enrolled in this phase II trial. The majority (92.0%) had locoregionally advanced disease. They underwent definitive chemoradiotherapy. The radiotherapy doses were 66 Gy for the gross tumor and 54 Gy for the subclinical disease. Doses were simultaneously administered in 30 fractions over 6 weeks. The patients also underwent concurrent and adjuvant chemotherapy, which comprised cisplatin and fluorouracil. The study end points were acute and late toxicities, first site of failure, locoregional tumor control, and overall survival rates. RESULTS: The median follow-up time was 65.7 (range, 2.2-97.5) months for all patients and 81.5 (range, 19.4-97.5) months for those alive. There were 17 cases (19.5%) of severe late toxicities, including four cases (4.6%) of grade 5 and seven (8.0%) of grade 3 esophageal ulceration, four (4.6%) of grade 3 esophageal stricture, and two (2.3%) of grade 3 radiation-induced pneumonia. Twenty-three (26.4%) patients had locoregional disease progression. Most (86.7%) locally progressive lesions were within the dose-escalation region in the initial radiation plan, while majority of the recurrent lymph nodes were found out-of-field (83.3%) and in the supraclavicular region (75.0%). The 1-, 2-, 3-, and 5-year locoregional tumor control and overall survival rates were 79.2%, 72.4%, 72.4%, 70.8%, and 82.8%, 66.6%, 61.9%, 58.4%, respectively. Incomplete tumor response, which was assessed immediately after CCRT was an independent risk predictor of disease progression and death in ESCC patients. CONCLUSIONS: CCRT with SIB was well tolerated in ESCC patients during treatment and long-term follow-up. Moreover, patients who underwent CCRT with SIB exhibited improved local tumor control and had better survival outcomes compared to historical data of those who had standard-dose radiotherapy.

19.
Neurosci Biobehav Rev ; 130: 274-291, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34437936

RESUMEN

Fundamental work on the mechanisms leading to focal epileptic discharges in mesial temporal lobe epilepsy (MTLE) often rests on the use of rodent models in which an initial status epilepticus (SE) is induced by kainic acid or pilocarpine. In 2008 we reviewed how, following systemic injection of pilocarpine, the main subsequent events are the initial SE, the latent period, and the chronic epileptic state. Up to a decade ago, rats were most often employed and they were frequently analysed only behaviorally. However, the use of transgenic mice has revealed novel information regarding this animal model. Here, we review recent findings showing the existence of specific neuronal events during both latent and chronic states, and how optogenetic activation of specific cell populations modulate spontaneous seizures. We also address neuronal damage induced by pilocarpine treatment, the role of neuroinflammation, and the influence of circadian and estrous cycles. Updating these findings leads us to propose that the rodent pilocarpine model continues to represent a valuable tool for identifying the basic pathophysiology of MTLE.


Asunto(s)
Epilepsia del Lóbulo Temporal , Estado Epiléptico , Animales , Modelos Animales de Enfermedad , Epilepsia del Lóbulo Temporal/inducido químicamente , Hipocampo , Ratones , Pilocarpina/toxicidad , Ratas , Roedores , Estado Epiléptico/inducido químicamente
20.
Ecotoxicol Environ Saf ; 222: 112523, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34273852

RESUMEN

Micro- and nano- polystyrene particles have been widely detected in environment, posing potential threats to human health. This study was designed to evaluate the neurodevelopmental toxicity of polystyrene nanoparticles (NPs) in Caenorhabditis elegans (C. elegans), to screen crucial genes and investigate the underlying mechanism. In wild-type C. elegans, polystyrene NPs (diameter 50 nm) could concentration-dependently induce significant inhibition in body length, survival rate, head thrashes, and body bending, accompanying with increase of reactive oxygen species (ROS) production, lipofuscin accumulation, and apoptosis and decrease of dopamine (DA) contents. Moreover, pink-1 mutant was demonstrated to alleviate the locomotion disorders and oxidative damage induced by polystyrene NPs, indicating involvement of pink-1 in the polystyrene NPs-induced neurotoxicity. RNA sequencing results revealed 89 up-regulated and 56 down-regulated differently expressed genes (DEGs) response to polystyrene NPs (100 µg/L) exposure. Gene Ontology (GO) enrichment analysis revealed that predominant enriched DEGs were correlated with biological function of cuticle development and molting cycle. Furthermore, mutant strains test showed that the neurodevelopmental toxicity and oxidative stress responses induced by 50 nm polystyrene NPs were regulated by dpy-5 and rol-6. In general, polystyrene NPs induced obvious neurodevelopmental toxicity in C. elegans through oxidative damage and dopamine reduction. Crucial genes dpy-5 and rol-6 might participate in polystyrene NPs-induced neurodevelopmental toxicity through regulation on synthesis and deposition of cuticle collagen.


Asunto(s)
Proteínas de Caenorhabditis elegans , Nanopartículas , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Colágeno , Humanos , Nanopartículas/toxicidad , Estrés Oxidativo , Poliestirenos , Especies Reactivas de Oxígeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...