Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Cell ; 35(12): 4383-4404, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37738159

RESUMEN

The elimination of seed shattering was a key step in rice (Oryza sativa) domestication. In this paper, we show that increasing the gibberellic acid (GA) content or response in the abscission region enhanced seed shattering in rice. We demonstrate that SLENDER RICE1 (SLR1), the key repressor of GA signaling, could physically interact with the rice seed shattering-related transcription factors quantitative trait locus of seed shattering on chromosome 1 (qSH1), O. sativa HOMEOBOX 15 (OSH15), and SUPERNUMERARY BRACT (SNB). Importantly, these physical interactions interfered with the direct binding of these three regulators to the lignin biosynthesis gene 4-COUMARATE: COENZYME A LIGASE 3 (4CL3), thereby derepressing its expression. Derepression of 4CL3 led to increased lignin deposition in the abscission region, causing reduced rice seed shattering. Importantly, we also show that modulating GA content could alter the degree of seed shattering to increase harvest efficiency. Our results reveal that the "Green Revolution" phytohormone GA is important for regulating rice seed shattering, and we provide an applicable breeding strategy for high-efficiency rice harvesting.


Asunto(s)
Oryza , Oryza/genética , Oryza/metabolismo , Lignina/metabolismo , Giberelinas/metabolismo , Semillas/genética , Semillas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Brief Bioinform ; 24(1)2023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36611257

RESUMEN

Trans-splicing of a spliced leader (SL) to the 5' ends of mRNAs is used to produce mature mRNAs in several phyla of great importance to human health and the marine ecosystem. One of the consequences of the addition of SL sequences is the change or disruption of the open reading frames (ORFs) in the recipient transcripts. Given that most SL sequences have one or more of the trinucleotide NUG, including AUG in flatworms, trans-splicing of SL sequences can potentially supply a start codon to create new ORFs, which we refer to as slORFs, in the recipient mRNAs. Due to the lack of a tool to precisely detect them, slORFs were usually neglected in previous studies. In this work, we present the tool slORFfinder, which automatically links the SL sequences to the recipient mRNAs at the trans-splicing sites identified from SL-containing reads of RNA-Seq and predicts slORFs according to the distribution of ribosome-protected footprints (RPFs) on the trans-spliced transcripts. By applying this tool to the analyses of nematodes, ascidians and euglena, whose RPFs are publicly available, we find wide existence of slORFs in these taxa. Furthermore, we find that slORFs are generally translated at higher levels than the annotated ORFs in the genomes, suggesting they might have important functions. Overall, this study provides a tool, slORFfinder (https://github.com/songbo446/slORFfinder), to identify slORFs, which can enhance our understanding of ORFs in taxa with SL machinery.


Asunto(s)
ARN Lider Empalmado , Trans-Empalme , Humanos , ARN Lider Empalmado/genética , ARN Lider Empalmado/metabolismo , Sistemas de Lectura Abierta , Ecosistema , Secuencia de Bases , ARN Mensajero/genética , ARN Mensajero/metabolismo , Empalme del ARN
4.
Nat Commun ; 10(1): 642, 2019 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-30718497

RESUMEN

The original version of this Article contained an error in the spelling of the author Beixin Mo, which was incorrectly given as Beixing Mo. This has now been corrected in both the PDF and HTML versions of the Article.

5.
Plant Cell ; 31(2): 486-501, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30674692

RESUMEN

PROTEIN PHOSPHATASE4 (PP4) is a highly conserved Ser/Thr protein phosphatase found in yeast, plants, and animals. The composition and functions of PP4 in plants are poorly understood. Here, we uncovered the complexity of PP4 composition and function in Arabidopsis (Arabidopsis thaliana) and identified the composition of one form of PP4 containing the regulatory subunit PP4R3A. We show that PP4R3A, together with one of two redundant catalytic subunit genes, PROTEIN PHOSPHATASE X (PPX)1 and PPX2, promotes the biogenesis of microRNAs (miRNAs). PP4R3A is a chromatin-associated protein that interacts with RNA polymerase II and recruits it to the promoters of miRNA-encoding (MIR) genes to promote their transcription. PP4R3A likely also promotes the cotranscriptional processing of miRNA precursors, because it recruits the microprocessor component HYPONASTIC LEAVES1 to MIR genes and to nuclear dicing bodies. Finally, we show that hundreds of introns exhibit splicing defects in pp4r3a mutants. Together, this study reveals roles for Arabidopsis PP4 in transcription and nuclear RNA metabolism.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , MicroARNs/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , MicroARNs/genética , Fosfoproteínas Fosfatasas/genética
6.
Nat Commun ; 9(1): 5080, 2018 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-30498229

RESUMEN

Plants evolved an array of disease resistance genes (R genes) to fight pathogens. In the absence of pathogen infection, NBS-LRR genes, which comprise a major subfamily of R genes, are suppressed by a small RNA cascade involving microRNAs (miRNAs) that trigger the biogenesis of phased siRNAs (phasiRNAs) from R gene transcripts. However, whether or how R genes influence small RNA biogenesis is unknown. In this study, we isolate a mutant with global defects in the biogenesis of miRNAs and phasiRNAs in Arabidopsis thaliana and trace the defects to the over accumulation and nuclear localization of an R protein SNC1. We show that nuclear SNC1 represses the transcription of miRNA and phasiRNA loci, probably through the transcriptional corepressor TPR1. Intriguingly, nuclear SNC1 reduces the accumulation of phasiRNAs from three source R genes and concomitantly, the expression of a majority of the ~170R genes is up-regulated. Taken together, this study suggests an R gene-miRNA-phasiRNA regulatory module that amplifies plant immune responses.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , MicroARNs/genética , ARN Interferente Pequeño/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/genética
7.
Plant Biotechnol J ; 16(8): 1446-1451, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29331085

RESUMEN

Transcription factors (TFs) and chromatin-modifying factors (CMFs) access chromatin by recognizing specific DNA motifs in their target genes. Chromatin immunoprecipitation followed by next-generation sequencing (ChIP-seq) has been widely used to discover the potential DNA-binding motifs for both TFs and CMFs. Yet, an in vivo method for verifying DNA motifs captured by ChIP-seq is lacking in plants. Here, we describe the use of clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated 9 (Cas9) to verify DNA motifs in their native genomic context in Arabidopsis. Using a single-guide RNA (sgRNA) targeting the DNA motif bound by REF6, a DNA sequence-specific H3K27 demethylase in plants, we generated stable transgenic plants where the motif was disrupted in a REF6 target gene. We also deleted a cluster of multiple motifs from another REF6 target gene using a pair of sgRNAs, targeting upstream and downstream regions of the cluster, respectively. We demonstrated that endogenous genes with motifs disrupted and/or deleted become inaccessible to REF6. This strategy should be widely applicable for in vivo verification of DNA motifs identified by ChIP-seq in plants.


Asunto(s)
Arabidopsis/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Sistemas CRISPR-Cas , Edición Génica , Mutagénesis/genética , Mutagénesis/fisiología
8.
Nat Genet ; 48(6): 687-93, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27111034

RESUMEN

SWI/SNF-type chromatin remodelers, such as BRAHMA (BRM), and H3K27 demethylases both have active roles in regulating gene expression at the chromatin level, but how they are recruited to specific genomic sites remains largely unknown. Here we show that RELATIVE OF EARLY FLOWERING 6 (REF6), a plant-unique H3K27 demethylase, targets genomic loci containing a CTCTGYTY motif via its zinc-finger (ZnF) domains and facilitates the recruitment of BRM. Genome-wide analyses showed that REF6 colocalizes with BRM at many genomic sites with the CTCTGYTY motif. Loss of REF6 results in decreased BRM occupancy at BRM-REF6 co-targets. Furthermore, REF6 directly binds to the CTCTGYTY motif in vitro, and deletion of the motif from a target gene renders it inaccessible to REF6 in vivo. Finally, we show that, when its ZnF domains are deleted, REF6 loses its genomic targeting ability. Thus, our work identifies a new genomic targeting mechanism for an H3K27 demethylase and demonstrates its key role in recruiting the BRM chromatin remodeler.


Asunto(s)
Adenosina Trifosfatasas/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Ensamble y Desensamble de Cromatina , Genoma de Planta , Factores de Transcripción/genética , Arabidopsis/enzimología , Secuencia de Bases , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas
9.
Plant J ; 83(5): 818-30, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26140668

RESUMEN

Auxin and cadmium (Cd) stress play critical roles during root development. There are only a few reports on the mechanisms by which Cd stress influences auxin homeostasis and affects primary root (PR) and lateral root (LR) development, and almost nothing is known about how auxin and Cd interfere with root hair (RH) development. Here, we characterize rice osaux1 mutants that have a longer PR and shorter RHs in hydroponic culture, and that are more sensitive to Cd stress compared to wild-type (Dongjin). OsAUX1 expression in root hair cells is different from that of its paralogous gene, AtAUX1, which is expressed in non-hair cells. However, OsAUX1, like AtAUX1, localizes at the plasma membrane and appears to function as an auxin tranporter. Decreased auxin distribution and contents in the osaux1 mutant result in reduction of OsCyCB1;1 expression and shortened PRs, LRs and RHs under Cd stress, but may be rescued by treatment with the membrane-permeable auxin 1-naphthalene acetic acid. Treatment with the auxin transport inhibitors 1-naphthoxyacetic acid and N-1-naphthylphthalamic acid increased the Cd sensitivity of WT rice. Cd contents in the osaux1 mutant were not altered, but reactive oxygen species-mediated damage was enhanced, further increasing the sensitivity of the osaux1 mutant to Cd stress. Taken together, our results indicate that OsAUX1 plays an important role in root development and in responses to Cd stress.


Asunto(s)
Cadmio/toxicidad , Proteínas Portadoras/metabolismo , Oryza/fisiología , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Transporte Biológico , Cadmio/farmacocinética , Proteínas Portadoras/genética , Membrana Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Glicolatos/farmacología , Hidroponía/métodos , Ácidos Indolacéticos/metabolismo , Mutación , Oryza/efectos de los fármacos , Ftalimidas/farmacología , Proteínas de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Estrés Fisiológico/efectos de los fármacos
10.
Plant Cell Environ ; 38(4): 638-54, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24995795

RESUMEN

Auxin and brassinosteroid (BR) are important phytohormones for controlling lamina inclination implicated in plant architecture and grain yield. But the molecular mechanism of auxin and BR crosstalk for regulating lamina inclination remains unknown. Auxin response factors (ARFs) control various aspects of plant growth and development. We here report that OsARF19-overexpression rice lines show an enlarged lamina inclination due to increase of its adaxial cell division. OsARF19 is expressed in various organs including lamina joint and strongly induced by auxin and BR. Chromatin immunoprecipitation (ChIP) and yeast one-hybrid assays demonstrate that OsARF19 binds to the promoter of OsGH3-5 and brassinosteroid insensitive 1 (OsBRI1) directing their expression. OsGH3-5-overexpression lines show a similar phenotype as OsARF19-O1. Free auxin contents in the lamina joint of OsGH3-5-O1 or OsARF19-O1 are reduced. OsGH3-5 is localized at the endoplasmic retieulum (ER) matching reduction of the free auxin contents in OsGH3-5-O1. osarf19-TDNA and osgh3-5-Tos17 mutants without erected leaves show a function redundancy with other members of their gene family. OsARF19-overexpression lines are sensitive to exogenous BR treatment and alter the expressions of genes related to BR signalling. These findings provide novel insights into auxin and BR signalling, and might have significant implications for improving plant architecture of monocot crops.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Oryza/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Hojas de la Planta/genética , Proteínas de Plantas/metabolismo , Secuencia de Bases , Expresión Génica , Genes Reporteros , Datos de Secuencia Molecular , Mutación , Oryza/anatomía & histología , Oryza/fisiología , Fenotipo , Hojas de la Planta/anatomía & histología , Hojas de la Planta/fisiología , Proteínas de Plantas/genética , Raíces de Plantas , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Plantones
11.
Plant J ; 79(1): 106-17, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24798203

RESUMEN

Members of the ATP Binding Cassette B/Multidrug-Resistance/P-glyco-protein (ABCB/MDR/PGP) subfamily were shown to function primarily in Oryza sativa (rice) auxin transport; however, none of the rice ABCB transporters have been functionally characterized. Here, we describe that a knock-down of OsABCB14 confers decreased auxin concentrations and polar auxin transport rates, conferring insensitivity to 2,4-dichlorophenoxyacetic acid (2,4-D) and indole-3-acetic acid (IAA). OsABCB14 displays enhanced specific auxin influx activity in yeast and protoplasts prepared from rice knock-down alleles. OsABCB14 is localized at the plasma membrane, pointing to an important directionality under physiological conditions. osabcb14 mutants were surprisingly found to be insensitive to iron deficiency treatment (-Fe). Their Fe concentration is higher and upregulation of Fe deficiency-responsive genes is lower in osabcb14 mutants than in wild-type rice (Nipponbare, NIP). Taken together, our results strongly support the role of OsABCB14 as an auxin influx transporter involved in Fe homeostasis. The functional characterization of OsABCB14 provides insights in monocot auxin transport and its relationship to Fe nutrition.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Hierro/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Oryza/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Transporte Biológico , Genes Reporteros , Homeostasis , Proteínas de Transporte de Membrana/genética , Mutagénesis Insercional , Oryza/citología , Oryza/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/citología , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Brotes de la Planta/citología , Brotes de la Planta/genética , Brotes de la Planta/fisiología , Plantas Modificadas Genéticamente , Protoplastos
12.
Plant J ; 78(4): 632-645, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24597623

RESUMEN

N-glycosylation is a major modification of glycoproteins in eukaryotic cells. In Arabidopsis, great progress has been made in functional analysis of N-glycan production, however there are few studies in monocotyledons. Here, we characterized a rice (Oryza sativa L.) osmogs mutant with shortened roots and isolated a gene that coded a putative mannosyl-oligosaccharide glucosidase (OsMOGS), an ortholog of α-glucosidase I in Arabidopsis, which trims the terminal glucosyl residue of the oligosaccharide chain of nascent peptides in the endoplasmic reticulum (ER). OsMOGS is strongly expressed in rapidly cell-dividing tissues and OsMOGS protein is localized in the ER. Mutation of OsMOGS entirely blocked N-glycan maturation and inhibited high-mannose N-glycan formation. The osmogs mutant exhibited severe defects in root cell division and elongation, resulting in a short-root phenotype. In addition, osmogs plants had impaired root hair formation and elongation, and reduced root epidemic cell wall thickness due to decreased cellulose synthesis. Further analysis showed that auxin content and polar transport in osmogs roots were reduced due to incomplete N-glycosylation of the B subfamily of ATP-binding cassette transporter proteins (ABCBs). Our results demonstrate that involvement of OsMOGS in N-glycan formation is required for auxin-mediated root development in rice.


Asunto(s)
Ácidos Indolacéticos/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Polisacáridos/metabolismo , alfa-Glucosidasas/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Secuencia de Bases , Transporte Biológico , División Celular , Tamaño de la Célula , Pared Celular/genética , Pared Celular/metabolismo , Pared Celular/ultraestructura , Retículo Endoplásmico/metabolismo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Glicosilación , Microscopía Confocal , Microscopía Electrónica , Datos de Secuencia Molecular , Mutación , Oryza/genética , Oryza/crecimiento & desarrollo , Filogenia , Epidermis de la Planta/citología , Epidermis de la Planta/genética , Epidermis de la Planta/metabolismo , Proteínas de Plantas/clasificación , Proteínas de Plantas/genética , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , alfa-Glucosidasas/clasificación , alfa-Glucosidasas/genética
13.
New Phytol ; 201(1): 91-103, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24111723

RESUMEN

Phosphorus (P) is crucial nutrient element for crop growth and development. However, the network pathway regulating homeostasis of phosphate (Pi) in crops has many molecular breeding unknowns. Here, we report that an auxin response factor, OsARF12, functions in Pi homeostasis. Measurement of element content, quantitative reverse transcription polymerase chain reaction analysis and acid phosphatases (APases) activity assay showed that the osarf12 mutant and osarf12/25 double mutant with P-intoxicated phenotypes had higher P concentrations, up-regulation of the Pi transporter encoding genes and increased APase activity under Pi-sufficient/-deficient (+Pi/-Pi, 0.32/0 mM NaH2 PO4) conditions. Transcript analysis revealed that Pi-responsive genes--Phosphate starvation (OsIPS)1 and OsIPS2, SYG1/Pho81/XPR1(OsSPX1), Sulfoquinovosyldiacylglycerol 2 (OsSQD2), R2R3 MYB transcription factor (OsMYB2P-1) and Transport Inhibitor Response1 (OsTIR1)--were more abundant in the osarf12 and osarf12/25 mutants under +Pi/-Pi conditions. Knockout of OsARF12 also influenced the transcript abundances of the OsPHR2 gene and its downstream components, such as OsMiR399j, OsPHO2, OsMiR827, OsSPX-MFS1 and OsSPX-MFS2. Results from -Pi/1-naphthylphthalamic acid (NPA) treatments, and auxin reporter DR5::GUS staining suggest that root system alteration and Pi-induced auxin response were at least partially controlled by OsARF12. These findings enrich our understanding of the biological functions of OsARF12, which also acts in regulating Pi homeostasis.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Ácidos Indolacéticos/metabolismo , Oryza/genética , Fosfatos/metabolismo , Fósforo/metabolismo , Factores de Transcripción/genética , Homeostasis , MicroARNs , Mutación , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Factores de Transcripción/metabolismo , Activación Transcripcional
14.
Plant Cell Environ ; 36(3): 607-20, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22913536

RESUMEN

Plant responses to auxin and phosphate (Pi) starvation are closely linked. However, the underlying mechanisms connecting auxin to phosphate starvation (-Pi) responses are largely unclear. Here, we show that OsARF16, an auxin response factor, functions in both auxin and -Pi responses in rice (Oryza sativa L.). The knockout of OsARF16 led to primary roots (PR), lateral roots (LR) and root hair losing sensitivity to auxin and -Pi response. OsARF16 expression and OsARF16::GUS staining in PR and LR of rice Nipponbare (NIP) were induced by indole acetic acid and -Pi treatments. In -Pi conditions, the shoot biomass of osarf16 was slightly reduced, and neither root growth nor iron content was induced, indicating that the knockout of OsARF16 led to loss of response to Pi deficiency in rice. Six phosphate starvation-induced genes (PSIs) were less induced by -Pi in osarf16 and these trends were similar to a knockdown mutant of OsPHR2 or AtPHR1, which was a key regulator under -Pi. These data first reveal the biological function of OsARF16, provide novel evidence of a linkage between auxin and -Pi responses and facilitate the development of new strategies for the efficient utilization of Pi in rice.


Asunto(s)
Ácidos Indolacéticos/metabolismo , Oryza/metabolismo , Fosfatos/metabolismo , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Expresión Génica , Hierro/metabolismo , Mutación , Oryza/genética , Fósforo/metabolismo , Proteínas de Plantas/genética , Raíces de Plantas/metabolismo , Factores de Transcripción/genética
15.
New Phytol ; 193(1): 109-120, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21973088

RESUMEN

• Auxin has an important role in maintaining optimal root system architecture (RSA) that can cope with growth reductions of crops caused by water or nutrient shortages. However, the mechanism of controlling RSA remains largely unclear. Here, we found a limiting factor of RSA--OsARF12--an auxin response factor whose knockout led to decreased primary root length in rice (Oryza sativa). • OsARF12 as a transcription activator can facilitate the expression of the auxin response element DR5::GFP, and OsARF12 was inhibited by osa-miRNA167d by transient expression in tobacco and rice callus. • The root elongation zones of osarf12 and osarf12/25, which had lower auxin concentrations, were distinctly shorter than for the wild-type, possibly as a result of decreased expression of auxin synthesis genes OsYUCCAs and auxin efflux carriers OsPINs and OsPGPs. The knockout of OsARF12 also altered the abundance of mitochondrial iron-regulated (OsMIR), iron (Fe)-regulated transporter1 (OsIRT1) and short postembryonic root1 (OsSPR1) in roots of rice, and resulted in lower Fe content. • The data provide evidence for the biological function of OsARF12, which is implicated in regulating root elongation. Our investigation contributes a novel insight for uncovering regulation of RSA and the relationship between auxin response and Fe acquisition.


Asunto(s)
Ácidos Indolacéticos/farmacología , Hierro/metabolismo , Oryza/crecimiento & desarrollo , Oryza/genética , Proteínas de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Transactivadores/metabolismo , Transporte Biológico/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Técnicas de Inactivación de Genes , Genes de Plantas/genética , MicroARNs/genética , MicroARNs/metabolismo , Mutación/genética , Oryza/efectos de los fármacos , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/genética , Transporte de Proteínas/efectos de los fármacos , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/metabolismo , Nicotiana/efectos de los fármacos , Nicotiana/genética
16.
Plant Signal Behav ; 6(12): 2023-5, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22112459

RESUMEN

Auxin transport at least correlates to the three gene families: efflux carriers PIN-formed (PIN), p-glycoprotein (PGP), and influx carrier auxin resistant 1/like aux1(AUX/LAX) in Arabidopsis thaliana. In monocotyledon Sorghum bicolor, the biological function of these genes retains unclear. Our previous study reported that the member analysis, organ-specific expression and expression profiles of the auxin transporter PIN, PGP and AUX/LAX gene families in Sorghum bicolor under IAA, brassinosteroid, polar auxin transport inhibitors and abiotic stresses. Here we further supply the prediction of subcellular localization of SbPIN, SbLAX and SbPGP proteins and discuss the potential relationship between the subcellular localization and stress response. The predicted results showed that the most of SbPIN, SbLAX and SbPGP proteins are localized to the plasma membrane, except few localized to vacuolar membrane and endoplasmic reticulum. This data set provides novel information for investigation of auxin transporters in Sorghum bicolor.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Plantas/metabolismo , Sorghum/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de Transporte de Membrana/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Sorghum/genética
17.
J Exp Bot ; 61(14): 3971-81, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20693412

RESUMEN

Auxin response factors (ARFs) are key regulators of plant growth and development. Through interaction with auxin/indole acetic acid (Aux/IAA) proteins, they influence the expression of auxin response genes. An ARF gene family has been predicted in rice, but the functions of the individual structural domains of the OsARFs remain obscure. Bioinformatics was used to analyse the position of the DNA-binding domain (DBD), middle region (MR), and C-terminal dimerization domain (CTD) of OsARFs, and experimentally confirmed the presence of a classical monopartite nuclear localization signal (NLS) in the DBD. The DBD was shown to contribute to nuclear localization of OsARF proteins in addition to its known DNA-binding function. Interactions between 14 integrated OsARFs and 15 OsIAA proteins were tested using yeast two-hybrid assays. It was found that eight OsARF activators interacted with the 15 OsIAA proteins, while six OsARF repressors did not. The interactions between the MR+CTD or CTD of 10 OsARFs and 15 OsIAA proteins were also tested and the results were consistent with those of each intact OsARF, although some slight differences in interaction intensity were observed by α-galactosidase quantitative assays. The truncated CTD of OsARF11 did not interact with any OsIAA, implying that the CTD is required for ARF-IAA dimerization, and that the MR influences the interaction intensity in yeast. A subset of the interactions in yeast were also observed in tobacco plants using firefly luciferase complementation imaging assays, indicating that these interactions are specific in plants, and might have a special role in the auxin signalling response. This study provides new insight into the structure of OsARF proteins and ARF-Aux/IAA interactions.


Asunto(s)
Oryza/genética , Proteínas de Plantas/química , Proteínas Represoras/química , Transactivadores/química , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estructura Terciaria de Proteína , Proteínas Represoras/metabolismo , Transactivadores/metabolismo , Técnicas del Sistema de Dos Híbridos , alfa-Galactosidasa/análisis
18.
FEBS J ; 277(14): 2954-69, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20528920

RESUMEN

Auxin is transported by the influx carriers auxin resistant 1/like aux1 (AUX/LAX), and the efflux carriers pin-formed (PIN) and P-glycoprotein (PGP), which play a major role in polar auxin transport. Several auxin transporter genes have been characterized in dicotyledonous Arabidopsis, but most are unknown in monocotyledons, especially in sorghum. Here, we analyze the chromosome distribution, gene duplication and intron/exon of SbPIN, SbLAX and SbPGP gene families, and examine their phylogenic relationships in Arabidopsis, rice and sorghum. Real-time PCR analysis demonstrated that most of these genes were differently expressed in the organs of sorghum. SbPIN3 and SbPIN9 were highly expressed in flowers, SbLAX2 and SbPGP17 were mainly expressed in stems, and SbPGP7 was strongly expressed in roots. This suggests that individual genes might participate in specific organ development. The expression profiles of these gene families were analyzed after treatment with: (a) the phytohormones indole-3-acetic acid and brassinosteroid; (b) the polar auxin transport inhibitors 1-naphthoxyacetic acids, 1-naphthylphthalamic acid and 2,3,5-triiodobenzoic acid; and (c) abscissic acid and the abiotic stresses of high salinity and drought. Most of the auxin transporter genes were strongly induced by indole-3-acetic acid and brassinosteroid, providing new evidence for the synergism of these phytohormones. Interestingly, most genes showed similar trends in expression under polar auxin transport inhibitors and each also responded to abscissic acid, salt and drought. This study provides new insights into the auxin transporters of sorghum.


Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Perfilación de la Expresión Génica , Proteínas de Transporte de Membrana/genética , Reguladores del Crecimiento de las Plantas/farmacología , Sorghum/genética , Estrés Fisiológico/genética , Subfamilia B de Transportador de Casetes de Unión a ATP/química , Ácido Abscísico/farmacología , Arabidopsis/genética , Mapeo Cromosómico , Biología Computacional , Deshidratación/genética , Regulación hacia Abajo/genética , Exones/genética , Duplicación de Gen , Expresión Génica/efectos de los fármacos , Expresión Génica/genética , Glicolatos/farmacología , Ácidos Indolacéticos/antagonistas & inhibidores , Ácidos Indolacéticos/farmacología , Intrones/genética , Proteínas de Transporte de Membrana/química , Oryza/genética , Ftalimidas/farmacología , Filogenia , Proteínas de Plantas/antagonistas & inhibidores , Proteínas de Plantas/química , Proteínas de Plantas/genética , Estructuras de las Plantas/genética , Regiones Promotoras Genéticas/genética , Elementos de Respuesta/genética , Salinidad , Alineación de Secuencia , Cloruro de Sodio/farmacología , Sorghum/efectos de los fármacos , Ácidos Triyodobenzoicos/farmacología , Regulación hacia Arriba/genética
19.
Funct Integr Genomics ; 10(4): 533-46, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20499123

RESUMEN

Sorghum, a C4 model plant, has been studied to develop an understanding of the molecular mechanism of resistance to stress. The auxin-response genes, auxin/indole-3-acetic acid (Aux/IAA), auxin-response factor (ARF), Gretchen Hagen3 (GH3), small auxin-up RNAs, and lateral organ boundaries (LBD), are involved in growth/development and stress/defense responses in Arabidopsis and rice, but they have not been studied in sorghum. In the present paper, the chromosome distribution, gene duplication, promoters, intron/exon, and phylogenic relationships of Aux/IAA, ARF, GH3, and LBD genes in sorghum are presented. Furthermore, real-time PCR analysis demonstrated these genes are differently expressed in leaf/root of sorghum and indicated the expression profile of these gene families under IAA, brassinosteroid (BR), salt, and drought treatments. The SbGH3 and SbLBD genes, expressed in low level under natural condition, were highly induced by salt and drought stress consistent with their products being involved in both abiotic stresses. Three genes, SbIAA1, SbGH3-13, and SbLBD32, were highly induced under all the four treatments, IAA, BR, salt, and drought. The analysis provided new evidence for role of auxin in stress response, implied there are cross talk between auxin, BR and abiotic stress signaling pathways.


Asunto(s)
Ácidos Indolacéticos , Reguladores del Crecimiento de las Plantas/genética , Sorghum , Estrés Fisiológico/genética , Animales , Mapeo Cromosómico , Genes de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas , Sorghum/genética , Sorghum/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...