Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Sci Rep ; 13(1): 20197, 2023 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-37980387

RESUMEN

Electroencephalography (EEG) measures changes in neuronal activity and can reveal significant changes from infancy to adulthood concomitant with brain maturation, making it a potential physiological marker of brain maturation and cognition. To investigate a promising deep learning tool for EEG classification, we applied the bidirectional long short-term memory (BLSTM) algorithm to analyze EEG data from the pediatric EEG laboratory of Taipei Tzu Chi Hospital. The trained BLSTM model was 86% accurate when identifying EEGs from young children (8 months-6 years) and adolescents (12-20 years). However, there was only a modest classification accuracy (69.3%) when categorizing EEG samples into three age groups (8 months-6 years, 6-12 years, and 12-20 years). For EEG samples from patients with intellectual disability, the prediction accuracy of the trained BLSTM model was 46.4%, which was significantly lower than its accuracy for EEGs from neurotypical patients, indicating that the individual's intelligence plays a major role in the age prediction. This study confirmed that scalp EEG can reflect brain maturation and the BLSTM algorithm is a feasible deep learning tool for the identification of cognitive age. The trained model can potentially be applied to clinical services as a supportive measurement of neurodevelopmental status.


Asunto(s)
Algoritmos , Memoria a Corto Plazo , Niño , Adolescente , Humanos , Preescolar , Electroencefalografía , Memoria a Largo Plazo , Cognición
3.
Sensors (Basel) ; 23(16)2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37631568

RESUMEN

The detection of audio tampering plays a crucial role in ensuring the authenticity and integrity of multimedia files. This paper presents a novel approach to identifying tampered audio files by leveraging the unique Electric Network Frequency (ENF) signal, which is inherent to the power grid and serves as a reliable indicator of authenticity. The study begins by establishing a comprehensive Chinese ENF database containing diverse ENF signals extracted from audio files. The proposed methodology involves extracting the ENF signal, applying wavelet decomposition, and utilizing the autoregressive model to train effective classification models. Subsequently, the framework is employed to detect audio tampering and assess the influence of various environmental conditions and recording devices on the ENF signal. Experimental evaluations conducted on our Chinese ENF database demonstrate the efficacy of the proposed method, achieving impressive accuracy rates ranging from 91% to 93%. The results emphasize the significance of ENF-based approaches in enhancing audio file forensics and reaffirm the necessity of adopting reliable tamper detection techniques in multimedia authentication.

4.
Front Psychiatry ; 14: 1305397, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38312917

RESUMEN

Introduction: Attention-deficit/hyperactivity disorder (ADHD) is a prevalent neurodevelopmental disorder affecting children worldwide; however, diagnosing ADHD remains a complex task. Theta/beta ratio (TBR) derived from electroencephalography (EEG) recordings has been proposed as a potential biomarker for ADHD, but its effectiveness in children with ADHD remains controversial. Behavioral assessments, such as the Conners Continuous Performance Test-3rd edition (CPT-3), have been utilized to assess attentional capacity in individuals with ADHD. This study aims to investigate the correlation between TBR and CPT-3 scores in children and adolescents with ADHD. Methods: In a retrospective analysis, we examined patients regularly monitored for ADHD at Taipei Tzu Chi Hospital, who underwent both EEG and CPT-3 assessments. Severity of ADHD was evaluated using parent- and teacher-completed Swanson, Nolan, and Pelham (SNAP)-IV rating scales. Results: The study encompassed 55 ADHD patients (41 with abnormal CPT-3 scores, 14 with normal CPT-3 scores) and 45 control subjects. TBR demonstrated elevation in ADHD patients with abnormal CPT-3 scores, indicating its potential to represent attentional capacity akin to behavioral assessments like CPT-3. However, significant correlations between TBR values and CPT-3 variables or SNAP-IV rating scales were not observed. Moreover, TBR values exhibited considerable overlap across the groups, leading to diminished sensitivity and negative predictive value as a potential neurophysiological ADHD biomarker. Discussion: While our study underscores the utility of both TBR and CPT-3 in assessing attentional capacity, their sensitivity in diagnosing ADHD is limited. A comprehensive evaluation, integrating clinical expertise, parental input, and detailed neuropsychometric tests, remains pivotal for a thorough and precise diagnosis of ADHD.

5.
Artículo en Inglés | MEDLINE | ID: mdl-36085875

RESUMEN

Generally, those patients with dysarthria utter a distorted sound and the restrained intelligibility of a speech for both human and machine. To enhance the intelligibility of dysarthric speech, we applied a deep learning-based speech enhancement (SE) system in this task. Conventional SE approaches are used for shrinking noise components from the noise-corrupted input, and thus improve the sound quality and intelligibility simultaneously. In this study, we are focusing on reconstructing the severely distorted signal from the dysarthric speech for improving intelligibility. The proposed SE system prepares a convolutional neural network (CNN) model in the training phase, which is then used to process the dysarthric speech in the testing phase. During training, paired dysarthric-normal speech utterances are required. We adopt a dynamic time warping technique to align the dysarthric-normal utter-ances. The gained training data are used to train a CNN - based SE model. The proposed SE system is evaluated on the Google automatic speech recognition (ASR) system and a subjective listening test. The results showed that the proposed method could notably enhance the recognition performance for more than 10% in each of ASR and human recognitions from the unprocessed dysarthric speech. Clinical Relevance- This study enhances the intelligibility and ASR accuracy from a dysarthria speech to more than 10.


Asunto(s)
Disartria , Habla , Percepción Auditiva , Disartria/diagnóstico , Humanos , Redes Neurales de la Computación , Sonido
6.
Sensors (Basel) ; 22(17)2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36081092

RESUMEN

Deep learning techniques such as convolutional neural networks (CNN) have been successfully applied to identify pathological voices. However, the major disadvantage of using these advanced models is the lack of interpretability in explaining the predicted outcomes. This drawback further introduces a bottleneck for promoting the classification or detection of voice-disorder systems, especially in this pandemic period. In this paper, we proposed using a series of learnable sinc functions to replace the very first layer of a commonly used CNN to develop an explainable SincNet system for classifying or detecting pathological voices. The applied sinc filters, a front-end signal processor in SincNet, are critical for constructing the meaningful layer and are directly used to extract the acoustic features for following networks to generate high-level voice information. We conducted our tests on three different Far Eastern Memorial Hospital voice datasets. From our evaluations, the proposed approach achieves the highest 7%-accuracy and 9%-sensitivity improvements from conventional methods and thus demonstrates superior performance in predicting input pathological waveforms of the SincNet system. More importantly, we intended to give possible explanations between the system output and the first-layer extracted speech features based on our evaluated results.


Asunto(s)
Trastornos de la Voz , Voz , Acústica , Humanos , Redes Neurales de la Computación , Trastornos de la Voz/diagnóstico
7.
Front Genet ; 13: 763244, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35368678

RESUMEN

Introduction: Attention problems are frequently observed in patients with Prader-Willi syndrome (PWS); however, only few studies have investigated the severity and mechanisms of attention problems in them. In this study, we aim to evaluate dynamic changes in the quantitative electroencephalographic (EEG) spectrum during attention tasks in patients with PWS. Method: From January to June 2019, 10 patients with PWS and 10 age-matched neurotypical control participants were recruited at Taipei Tzu Chi Hospital. Each participant completed Conners' continuous performance test, third edition (CPT-3), tasks with simultaneous EEG monitoring. The dynamic changes in the quantitative EEG spectrum between the resting state and during CPT-3 tasks were compared. Results: Behaviorally, patients with PWS experienced significant attention problems, indicated by the high scores for several CPT-3 variables. The theta/beta ratio of the resting-state EEG spectrum revealed no significant differences between the control participants and patients with PWS. During CPT-3 tasks, a significant decrease in the alpha power was noted in controls compared with that in patients with PWS. The attention-to-resting alpha power ratio was positively correlated with many CPT-3 variables. After adjusting for genotype, age, intelligence, and body mass index, the attention-to-resting alpha power ratio was still significantly correlated with participants' commission errors. Conclusion: This study provides evidence that attention problems are frequently observed in patients with PWS, while attention impairment can be demonstrated by dynamic changes in the quantitative EEG spectrum.

8.
IEEE Open J Eng Med Biol ; 3: 25-33, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35399790

RESUMEN

Goal: Numerous studies had successfully differentiated normal and abnormal voice samples. Nevertheless, further classification had rarely been attempted. This study proposes a novel approach, using continuous Mandarin speech instead of a single vowel, to classify four common voice disorders (i.e. functional dysphonia, neoplasm, phonotrauma, and vocal palsy). Methods: In the proposed framework, acoustic signals are transformed into mel-frequency cepstral coefficients, and a bi-directional long-short term memory network (BiLSTM) is adopted to model the sequential features. The experiments were conducted on a large-scale database, wherein 1,045 continuous speech were collected by the speech clinic of a hospital from 2012 to 2019. Results: Experimental results demonstrated that the proposed framework yields significant accuracy and unweighted average recall improvements of 78.12-89.27% and 50.92-80.68%, respectively, compared with systems that use a single vowel. Conclusions: The results are consistent with other machine learning algorithms, including gated recurrent units, random forest, deep neural networks, and LSTM.The sensitivities for each disorder were also analyzed, and the model capabilities were visualized via principal component analysis. An alternative experiment based on a balanced dataset again confirms the advantages of using continuous speech for learning voice disorders.

9.
IEEE Trans Biomed Eng ; 64(2): 372-380, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28113191

RESUMEN

OBJECTIVE: This study focuses on the first (S1) and second (S2) heart sound recognition based only on acoustic characteristics; the assumptions of the individual durations of S1 and S2 and time intervals of S1-S2 and S2-S1 are not involved in the recognition process. The main objective is to investigate whether reliable S1 and S2 recognition performance can still be attained under situations where the duration and interval information might not be accessible. METHODS: A deep neural network (DNN) method is proposed for recognizing S1 and S2 heart sounds. In the proposed method, heart sound signals are first converted into a sequence of Mel-frequency cepstral coefficients (MFCCs). The K-means algorithm is applied to cluster MFCC features into two groups to refine their representation and discriminative capability. The refined features are then fed to a DNN classifier to perform S1 and S2 recognition. We conducted experiments using actual heart sound signals recorded using an electronic stethoscope. Precision, recall, F-measure, and accuracy are used as the evaluation metrics. RESULTS: The proposed DNN-based method can achieve high precision, recall, and F-measure scores with more than 91% accuracy rate. CONCLUSION: The DNN classifier provides higher evaluation scores compared with other well-known pattern classification methods. SIGNIFICANCE: The proposed DNN-based method can achieve reliable S1 and S2 recognition performance based on acoustic characteristics without using an ECG reference or incorporating the assumptions of the individual durations of S1 and S2 and time intervals of S1-S2 and S2-S1.


Asunto(s)
Auscultación Cardíaca/clasificación , Auscultación Cardíaca/métodos , Ruidos Cardíacos/fisiología , Redes Neurales de la Computación , Procesamiento de Señales Asistido por Computador , Femenino , Humanos , Masculino , Estetoscopios
10.
IEEE Trans Biomed Eng ; 64(7): 1568-1578, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28113304

RESUMEN

OBJECTIVE: In a cochlear implant (CI) speech processor, noise reduction (NR) is a critical component for enabling CI users to attain improved speech perception under noisy conditions. Identifying an effective NR approach has long been a key topic in CI research. METHOD: Recently, a deep denoising autoencoder (DDAE) based NR approach was proposed and shown to be effective in restoring clean speech from noisy observations. It was also shown that DDAE could provide better performance than several existing NR methods in standardized objective evaluations. Following this success with normal speech, this paper further investigated the performance of DDAE-based NR to improve the intelligibility of envelope-based vocoded speech, which simulates speech signal processing in existing CI devices. RESULTS: We compared the performance of speech intelligibility between DDAE-based NR and conventional single-microphone NR approaches using the noise vocoder simulation. The results of both objective evaluations and listening test showed that, under the conditions of nonstationary noise distortion, DDAE-based NR yielded higher intelligibility scores than conventional NR approaches. CONCLUSION AND SIGNIFICANCE: This study confirmed that DDAE-based NR could potentially be integrated into a CI processor to provide more benefits to CI users under noisy conditions.


Asunto(s)
Implantes Cocleares , Reconocimiento de Normas Patrones Automatizadas/métodos , Procesamiento de Señales Asistido por Computador , Espectrografía del Sonido/métodos , Inteligibilidad del Habla/fisiología , Medición de la Producción del Habla/métodos , Algoritmos , Humanos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Relación Señal-Ruido , Espectrografía del Sonido/instrumentación , Medición de la Producción del Habla/instrumentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...