Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Fish Shellfish Immunol ; 149: 109567, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38641215

RESUMEN

Streptococcosis, an emerging infectious disease caused by Streptococcus agalactiae, has had adverse effects on farmed tilapia. Several vaccines have been developed to prevent this disease and induce a specific immune response against S. agalactiae infection. In this study the use of MONTANIDE™ GR01, a new adjuvant for oral vaccination, was optimized for use in tilapia under laboratory and field studies. In the laboratory trial the immune response and protective efficacy of two doses of MONTANIDE™ GR01, 20 % (w/w) and 2 % (w/w), included into the feed-based adjuvanted vaccines were assessed comparatively. Following immunization, the innate immune parameters studied in serum, including lysozyme, myeloperoxidase, catalase and glutathione peroxidase activity, were all increased significantly. Furthermore, specific IgM antibodies against S. agalactiae were induced significantly in serum post-vaccination, with higher levels observed in both groups that received the feed-based adjuvanted vaccine. Under both injection and immersion challenge conditions, the relative percent survival for the feed-based adjuvanted vaccine groups ranged from 78 % to 84 %. Following use of the low dose concentration of MONTANIDE™ GR01 for oral vaccination of tilapia in cage culture systems, several innate immune parameters were effectively enhanced in the immunized fish. Similarly, the levels of specific IgM antibodies in the serum of feed-based vaccinated fish were significantly enhanced, reaching their highest levels 2-5 months post-vaccination. Cytokines associated with innate and adaptive immunity were also examined, and the expression levels of several genes showed significant up-regulation. This indicates that both cellular and humoral immune responses were induced by the feed-based adjuvanted vaccine. The economic impact of a feed-based adjuvanted vaccine was examined following vaccination, considering the growth performance and feed utilization of the fish. It was found that the Economic Performance Index and Economic Conversion Ratio were unaffected by vaccination, further demonstrating that there are no negative impacts associated with administering a feed-based vaccine to fish. In conclusion, the data from this study indicate that MONTANIDE™ GR01 is a highly valuable adjuvant for oral vaccination, as demonstrated by its ability to induce a strong immune response and effectively prevent streptococcal disease in Nile tilapia.

2.
Fish Shellfish Immunol ; 144: 109232, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37984611

RESUMEN

Dietary supplements containing a functional feed additive have been shown to be beneficial to fish and shellfish aquaculture. However, the functional properties of aquafeed formulations have rarely been reported in fish. This study aimed to investigate the effects of natural free amino acid mix (FAAM) supplementation as a functional solution on the growth performance and nutrient utilization in a carnivorous fish, Asian seabass (Lates calcarifer). Five isonitrogenous and isolipidic diets were prepared with graded supplementation levels of FAAM at 0 % (control group), 0.25 %, 0.50 %, 0.75 %, and 1.0 %, denoted as FAAM0, FAAM0.25, FAAM0.5, FAAM0.75, and FAAM1.0, respectively. The experimental fish were fed different dietary FAAM supplementations to apparent satiation twice daily for eight weeks. Significant improvements were observed in the growth performance of fish among the five groups (P < 0.05). Fish fed with FAAM0.75 displayed significantly increased activities of lysozyme, myeloperoxidase, catalase, and glutathione peroxidase (P < 0.05). The activities of digestive enzymes, including amylase, protease, and lipase, were enhanced by the supplementation of FAAM in the feed (P < 0.05), especially for the groups that contained more than 0.5 % FAAM in the feed. Furthermore, the morphological profile of the intestinal tract, including the mucosal fold height, width, thickness, and goblet cell, increased in fish fed with FAAM at 1.0 % (P < 0.05). Moreover, FAAM supplementation in diets not only modulated the expression of immune-related genes (glutathione peroxidase (GPx), complement (C)3, C4, and C-reactive protein) in the liver but also positively impacted the growth-ralated genes, including growth hormone (GH), GH receptor (GHR), insulin-like growth factor I (IGF-I), and IGF-II. In addition, the amounts of monounsaturated fatty acids (mainly oleic acid (C18:1n9c)) and polyunsaturated fatty acids-especially γ-linolenic acid (C18:3 n6) and α-linolenic acid (C18:3n3)-increased in fish fed with diets containing FAAMs (P < 0.05). Interestingly, the diets supplemented with FAAMs also had a positive effect on the economic indices in terms of revenue-to-cost ratios. These findings provide a scientific basis for the application of FAAMs as a functional solution that can be used in feed formulations for Asian seabass.


Asunto(s)
Aminoácidos , Perciformes , Animales , Peces , Dieta/veterinaria , Suplementos Dietéticos , Inmunidad , Glutatión Peroxidasa , Nutrientes , Alimentación Animal/análisis
3.
Cells ; 12(16)2023 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-37626907

RESUMEN

Serum amyloid A (SAA) proteins belong to a family of acute-phase reactants, playing an integral role in defending the organism from pathological damage. Despite a wealth of data on the regulation of SAA transcripts in teleosts, there is only limited information on these proteins' abundance in fish. The aim of this study is to characterise SAA protein levels in salmonids using a newly developed antibody specific to salmonid SAA. The salmonid SAA antibody detected SAA and accurately discriminated between stimulated and control specimens from rainbow trout macrophage cell line (RTS-11) in vitro, as well as rainbow trout challenged with Aeromonas salmonicida- or flagellin-stimulated Atlantic salmon in vivo. The presence of SAA protein was analysed in RTS-11 cell line supernatants, liver, and spleen samples using ELISA, immunoblotting, and immunohistochemistry. This study is the first to characterise SAA protein levels in salmonids in vivo and in vitro. The newly developed salmonid SAA antibody was able to discriminate between stimulated and unstimulated specimens, showing that it can be used to study the acute-phase response in salmonids with the potential to be further developed into assays to monitor and evaluate health in wild and farmed fish.


Asunto(s)
Oncorhynchus mykiss , Proteína Amiloide A Sérica , Animales , Anticuerpos , Proteínas de Fase Aguda , Ensayo de Inmunoadsorción Enzimática
4.
Fish Shellfish Immunol ; 137: 108755, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37084856

RESUMEN

Cytokines are small proteins that regulate innate and adaptive immune responses and are released by both immune and non-immune cell types. In the current study, the constitutive and induced gene expression profiles of a suite of proinflammatory and regulatory cytokines was examined comparatively in eight rainbow trout (Oncorhynchus mykiss) cell lines, in order to establish the cytokine repertoires of these different cell types, especially the understudied non-immune cells. They included three epithelial cell lines (RTgut, RTgill, and RTL), one endothelial cell line (RTH), one fibroblast cell line (RTG-2), two stromal cell lines (TSS and TPS-2) and one monocyte/macrophage-like cell line (RTS-11). Three types of primary leukocytes (derived from blood, spleen and head kidney) of trout were also included in the analysis, to allow comparison to the repertoires expressed in T cells, as a major source of cytokines in immune responses. The major findings are: 1) IL-2A, IL-2B, IL-4/13B1, IL-4/13B2, IL-10b, P40B1, P28B, IL-17A/F1b, TNF-α3, TNF-α4, IFNγ1, CCL20L2b and CCL20L3a are expressed mainly in leukocytes but IL-17 N, IL-17D, IL-20 and CCL20L1b2 are not expressed in these cells. Hence future studies in these cell lines will help establish their function in fish; 2) Some of the cytokines were differentially expressed in the cell lines, revealing the potential role of these cell types in aspects of trout mucosal and inflammatory immune responses, 3) Similar cell types grouped together in the cell cluster analysis, including the leukocyte cluster, stromal cell cluster, and epithelial and endothelial cell cluster. Taken together, this investigation of these trout cell lines forms a good database for studying the function of cytokines not expressed in isolated leukocytes or that are preferentially expressed in the cell lines. Furthermore, the cytokine expression analysis undertaken confirmed the phenotypic relationship of these cell types at the molecular level.


Asunto(s)
Citocinas , Oncorhynchus mykiss , Animales , Citocinas/genética , Citocinas/metabolismo , Interleucina-4/metabolismo , Leucocitos/metabolismo , Línea Celular
5.
Fish Shellfish Immunol ; 134: 108563, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36717067

RESUMEN

Streptococcus agalactiae is regarded as a major bacterial pathogen of farmed fish, with outbreaks in Nile tilapia causing significant losses. Vaccination is considered the most suitable method for disease control in aquaculture, with the potential to prevent such outbreaks if highly efficacious vaccines are available for use. Several vaccines have been produced to protect against S. agalactiae infection in tilapia, including inactivated vaccines, live attenuated vaccines, and subunit vaccines, with variable levels of protection seen. Two commercial adjuvants, Montanide™ ISA 763A VG and ISA 763B VG, have been developed recently and designed to improve the safety and efficacy of oil-based emulsions delivered by intraperitoneal injection. In particular, their mode of action may help identify and stimulate particular immunological pathways linked to the intended protective response, which is an important tool for future vaccine development. Therefore, this study aimed to characterize the potential of two adjuvanted-bacterial vaccines against S. agalactiae (SAIV) comparatively, to determine their usefulness for improving protection and to analyse the immune mechanisms involved. Nile tilapia were divided into four groups: 1) fish injected with PBS as a control, 2) fish injected with the SAIV alone, 3) fish injected with the SAIV + Montanide™ ISA 763A VG, and 4) fish injected with the SAIV + Montanide™ ISA 763B VG. Following immunization selected innate immune parameters were analysed, including serum lysozyme, myeloperoxidase, and bactericidal activity, with significantly increased levels seen after immunization. Cytokines associated with innate and adaptive immunity were also studied, with expression levels of several genes showing significant up-regulation, indicating good induction of cell-mediated immune responses. Additionally, the specific IgM antibody response against S. agalactiae was determined and found to be significantly induced post-vaccination, with higher levels seen in the presence of the adjuvants. In comparison to the protection seen with the unadjuvanted vaccine (61.29% RPS), both Montanide™ ISA 763A VG and Montanide™ ISA 763B VG improved the RPS, to 77.42% and 74.19% respectively. In conclusion, Montanide™ ISA 763A VG and Montanide™ ISA 763B VG have shown potential for use as adjuvants for fish vaccines against streptococcosis, as evidenced by the enhanced immunoprotection seen when given in combination with the SAIV vaccine employed in this study.


Asunto(s)
Cíclidos , Enfermedades de los Peces , Infecciones Estreptocócicas , Animales , Streptococcus agalactiae , Adyuvantes Inmunológicos/farmacología , Vacunas Bacterianas , Inmunidad
6.
Fish Shellfish Immunol ; 131: 785-795, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36323384

RESUMEN

In this study, we examined the cytokine immune response against two proteins of infectious pancreatic necrosis virus (IPNV) in rainbow trout (Oncorhynchus mykiss), the virion-associated RNA polymerase VP1 and VP2-Flagellin (VP2-Flg) fusion protein. Since VP1 is not a structural protein, we hypothesize it can induce cellular immunity, an essential mechanism of the antiviral response. At the same time, the fusion construction VP2-Flg could be highly immunogenic due to the presence of the flagellin used as an adjuvant. Fish were immunized with the corresponding antigen in Montanide™, and the gene expression of a set of marker genes of Th1, Th2, and the immune regulatory response was quantified in the head kidney of immunized and control fish. Results indicate that VP1 induced upregulation of ifn-γ, il-12p40c, il-4/13a, il-4/13b2, il-10a, and tgf-ß1 in immunized fish. Expression of il-2a did not change in treated fish at the times tested. The antigen-dependent response was analysed by in vitro restimulation of head kidney leukocytes. In this assay, the group of cytokines upregulated after VP1-restimulation was consistent with those upregulated in the head kidney in vivo. Interestingly, VP1 induced il-2a expression after in vitro restimulation. The analysis of sorted lymphocytes showed that the increase of cytokines occurred in CD4-1+ T cells suggesting that Th differentiation happens in response to VP1. This is also consistent with the expression of t-bet and gata3, the master regulators for Th1/Th2 differentiation in the kidneys of immunized animals. A different cytokine expression profile was found after VP2-Flg administration, i.e., upregulation occurs for ifn-γ, il-4/13a, il-10a, and tgf-ß1, while down-regulation was observed in il-4/13b2 and il-2a. The cytokine response was due to flagellin; only the il-2a effect was dependent upon VP2 in the fusion protein. To the best of our knowledge this study reports for the first-time characteristics of the adaptive immune response induced in response to IPNV VP1 and the fusion protein VP2-Flg in fish. VP1 induces cytokines able to trigger the humoral and cell-mediated immune response in rainbow trout. The analysis of the fish response against VP2-Flg revealed the immunogenic properties of Aeromonas salmonicida flagellin, which can be further tested for adjuvanticity. The novel immunogenic effects of VP1 in rainbow trout open new opportunities for further IPNV vaccine development using this viral protein.


Asunto(s)
Infecciones por Birnaviridae , Enfermedades de los Peces , Virus de la Necrosis Pancreática Infecciosa , Oncorhynchus mykiss , Animales , Flagelina/farmacología , Factor de Crecimiento Transformador beta1 , Citocinas/genética , Interleucina-4 , Linfocitos T Reguladores , Factores Inmunológicos , Proteínas Virales
7.
Fish Shellfish Immunol ; 128: 419-424, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35917890

RESUMEN

Disease prevention by vaccination is, on economic, environmental and ethical grounds the most appropriate method for pathogen control currently available to the aquaculture sector. However, vaccine administration in aquatic animals faces obvious technical problems not encountered in other land animals. Thus, oral vaccines are highly demanded by the aquaculture sector that requests alternatives to the labor-intensive injectable vaccines that require individual handling of fish, provoking stress-related immunosuppression and handling mortalities. Despite this, most previous attempts to obtain effective oral vaccines have failed both in fish and mammals. This could be a consequence of very restricted tolerance mechanisms in the intestine given the fact that this mucosa is at the frontline upon antigen encounter and has to balance the delicate equilibrium between tolerance and immunity in a microbe rich aquatic environment. In this context, the search for an optimal combination of antigen and adjuvant that can trigger an adequate immune response able to circumvent intestinal tolerance is needed for each pathogen. To this aim, we have explored potential of molecules such as ß-glucans, flagellin, CpG and bacterial lipopolysacharide (LPS) as oral adjuvants. For this, we have determined the effects of these adjuvants ex vivo in rainbow trout intestine tissue sections, and in vitro in leucocytes isolated from rainbow trout spleen and intestine. The effects were evaluated by analyzing the levels of transcription of different genes related to the innate and adaptive immune response, as well as evaluating the number of IgM-secreting cells. LPS seems to be the molecule with stronger immunostimulatory potential, and could safely be used as a mucosal adjuvant in rainbow trout. Moreover, the designed strategy provides a fast methodology to screen adjuvants that are suitable for oral vaccination, providing us with valuable information about how the intestinal mucosa is regulated in fish.


Asunto(s)
Enfermedades de los Peces , Oncorhynchus mykiss , beta-Glucanos , Adyuvantes Inmunológicos/farmacología , Animales , Flagelina , Inmunoglobulina M , Lipopolisacáridos , Mamíferos
8.
J Pathol Clin Res ; 8(3): 245-256, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35043584

RESUMEN

Colorectal carcinoma is one of the most common types of malignancy and a leading cause of cancer-related death. Although clinicopathological parameters provide invaluable prognostic information, the accuracy of prognosis can be improved by using molecular biomarker signatures. Using a large dataset of immunohistochemistry-based biomarkers (n = 66), this study has developed an effective methodology for identifying optimal biomarker combinations as a prognostic tool. Biomarkers were screened and assigned to related subsets before being analysed using an iterative algorithm customised for evaluating combinatorial interactions between biomarkers based on their combined statistical power. A signature consisting of six biomarkers was identified as the best combination in terms of prognostic power. The combination of biomarkers (STAT1, UCP1, p-cofilin, LIMK2, FOXP3, and ICOS) was significantly associated with overall survival when computed as a linear variable (χ2  = 53.183, p < 0.001) and as a cluster variable (χ2  = 67.625, p < 0.001). This signature was also significantly independent of age, extramural vascular invasion, tumour stage, and lymph node metastasis (Wald = 32.898, p < 0.001). Assessment of the results in an external cohort showed that the signature was significantly associated with prognosis (χ2  = 14.217, p = 0.007). This study developed and optimised an innovative discovery approach which could be adapted for the discovery of biomarkers and molecular interactions in a range of biological and clinical studies. Furthermore, this study identified a protein signature that can be utilised as an independent prognostic method and for potential therapeutic interventions.


Asunto(s)
Biomarcadores de Tumor , Neoplasias Colorrectales , Algoritmos , Biomarcadores de Tumor/metabolismo , Neoplasias Colorrectales/metabolismo , Humanos , Inmunohistoquímica , Pronóstico
9.
Front Immunol ; 12: 773888, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34917087

RESUMEN

CD38 is a multifunctional molecule that functions both as a transmembrane signaling receptor and as an ectoenzyme with important roles in cell adhesion, calcium regulation and signal transduction. Within the B cell linage, CD38 is expressed in diverse murine B cell subsets, with highest levels in innate B cell subpopulations such as marginal zone (MZ) B cells or B1 cells. In humans, however, CD38 is transiently expressed on early lymphocyte precursors, is lost on mature B cells and is consistently expressed on terminally differentiated plasma cells. In the present work, we have identified two homologues of mammalian CD38 in rainbow trout (Oncorhynchus mykiss), designating them as CD38A and CD38B. Although constitutively transcribed throughout different tissues in homeostasis, both CD38A and CD38B mRNA levels were significantly up-regulated in head kidney (HK) in response to a viral infection. In this organ, after the generation of a specific monoclonal antibody (mAb) against CD38A, the presence of CD38A+ populations among IgM+ B cells and IgM- leukocytes was investigated by flow cytometry. Interestingly, the percentage of IgM+CD38A+ B cells increased in response to an in vitro stimulation with inactivated Aeromonas salmonicida. Finally, we demonstrated that HK IgM+CD38A+ B cells had an increased IgM secreting capacity than that of cells lacking CD38A on the cell surface, also showing increased transcription levels of genes associated with B cell differentiation. This study strongly suggests a role for CD38 on the B cell differentiation process in teleosts, and provides us with novel tools to discern between B cell subsets in these species.


Asunto(s)
ADP-Ribosil Ciclasa 1/metabolismo , Subgrupos de Linfocitos B/inmunología , Subgrupos de Linfocitos B/metabolismo , Inmunoglobulina M/biosíntesis , Riñón/inmunología , Riñón/metabolismo , Oncorhynchus mykiss/fisiología , ADP-Ribosil Ciclasa 1/genética , Animales , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Citometría de Flujo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Inmunofenotipificación , Leucocitos/inmunología , Leucocitos/metabolismo , Oncorhynchus mykiss/clasificación , Filogenia , Transcriptoma
11.
Fish Shellfish Immunol ; 117: 328-338, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34343543

RESUMEN

IFN-γ is one of the key cytokines involved in Th1 immune responses. It is produced mainly by T cells and NK cells, which drive both innate and adaptive responses to promote protection against infections. IFN-γ orthologues have been discovered to be functionally conserved in fish, suggesting that type I immunity is present in early vertebrates. However, few studies have looked at IFN-γ protein expression in fish and its role in cell mediated immunity due to a lack of relevant tools. In this study, four monoclonal antibodies (mAbs) V27, N2, VAB3 and V91 raised against short salmonid IFN-γ peptides were developed and characterised to monitor IFN-γ expression. The results show that the IFN-γ mAbs specifically react to their peptide immunogens, recognise E. coli produced recombinant IFN-γ protein and rainbow trout IFN-γ produced in transfected HEK 293 cells. The mAb VAB3 was used further, to detect IFN-γ at the cellular level after in vitro and in vivo stimulation. In flow cytometry, a basal level of 3-5% IFN-γ secreting cells were detected in peripheral blood leucocytes (PBL), which increased significantly when stimulated in vitro with PAMPs (Aeromonas salmonicida bacterin), a mitogen (PHA) and recombinant cytokine (IL-2). Similarly, after injection of live bacteria (Aeromonas salmonicida) or poly I:C the number of IFN-γ+ cells increased in the lymphoid population of PBL, as well as in the myeloid population after infection, with the myeloid cells increasing substantially after both treatments. Immunohistochemistry was used to visualise the IFN-γ+ cells in spleen and head kidney following vaccination, which increased in intensity of staining and number relative to tissue from saline-injected control fish. These results show that several types of cells can produce IFN-γ in trout, and that they increase following infection or vaccination, and likely contribute to immune protection. Hence monitoring IFN-γ producing cells/protein secretion may be an important means to assess the effectiveness of Th1 responses and cell mediated immunity in fish.


Asunto(s)
Proteínas de Peces/inmunología , Interferón gamma/inmunología , Oncorhynchus mykiss/inmunología , Aeromonas salmonicida , Animales , Anticuerpos Monoclonales/inmunología , Enfermedades de los Peces/inmunología , Proteínas de Peces/genética , Infecciones por Bacterias Gramnegativas/inmunología , Infecciones por Bacterias Gramnegativas/veterinaria , Células HEK293 , Riñón Cefálico/inmunología , Humanos , Interferón gamma/genética , Leucocitos/inmunología , Oncorhynchus mykiss/genética , Oncorhynchus mykiss/microbiología , Bazo/inmunología
12.
Fish Shellfish Immunol ; 116: 19-29, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34153428

RESUMEN

Streptococcus agalactiae is one of the most important pathogens infecting tilapia worldwide and causes meningoencephalitis, septicemia and high mortalities with considerable losses. Various types of vaccines have been developed against S. agalactiae infection, such as inactivated vaccines, live attenuated vaccines and subunit vaccines. Bacterial ghosts (BGs) are nonliving, empty cell envelopes and have been reported as novel vaccine candidates. Therefore, the main aims of this study were to develop an S. agalactiae ghost vaccine (SAGV) and to evaluate the immune response and protective effect of SAGV against S. agalactiae with two novel adjuvants, Montanide™ ISA 763B VG and Montanide™ GEL02. Nile tilapia, mean weight 50 g, were divided into four groups as follows; 1) fish injected with PBS as control, 2) fish injected with the SAGV alone; 3) fish injected with the SAGV+Montanide™ ISA 763B VG; and 4) fish injected with SAGV+Montanide™ GEL02. Following vaccination, innate immunity parameters including serum lysozyme, myeloperoxidase, catalase, and bactericidal activity were all significantly enhanced. Moreover, specific serum IgM antibodies were induced and reached their highest level 2-8 weeks post vaccination. Importantly, the relative percent survival of tilapia vaccinated against the SAGV formulated with both adjuvants was 80-93%. Furthermore, the transcription of immune-related genes (IgM, TCRß, IL-1ß, IL-8 and TNFα) were up-regulated in tilapia after vaccination, indicating that both cellular and humoral immune responses were induced by these adjuvanted vaccines. In summary, Montanide™ ISA 763B VG and Montanide™ GEL02 can enhance immunoprotection induced by the SAGV vaccine against streptococcosis, demonstrating that both have value as potential adjuvants of fish vaccines.


Asunto(s)
Adyuvantes Inmunológicos/administración & dosificación , Cíclidos/inmunología , Enfermedades de los Peces/prevención & control , Manitol/análogos & derivados , Manitol/administración & dosificación , Infecciones Estreptocócicas/prevención & control , Vacunas Estreptocócicas/administración & dosificación , Streptococcus agalactiae/inmunología , Animales , Anticuerpos Antibacterianos/sangre , Catalasa/sangre , Cíclidos/sangre , Enfermedades de los Peces/sangre , Enfermedades de los Peces/inmunología , Proteínas de Peces/sangre , Hígado/inmunología , Muramidasa/sangre , Peroxidasa/sangre , Bazo/inmunología , Infecciones Estreptocócicas/sangre , Infecciones Estreptocócicas/inmunología
13.
Fish Shellfish Immunol ; 114: 171-183, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33940174

RESUMEN

Adjuvants are the helper substances that increase vaccine efficacy by enhancing the potency and longevity of specific immune responses to antigens. Most existing fish vaccines are presented in the form of oil-based emulsions delivered by intraperitoneal injection. The characterization of their mode of action is a valuable aid to future vaccine development, particularly for the potential identification and stimulation of specific immunological pathways related to the desired protective response. This study characterized the expression of selected immune-related genes in the peritoneal cavity, head kidney and spleen following the administration of two adjuvanted-bacterial vaccines thought to induce humoral (Montanide™ ISA 763A VG) or humoral and cell mediated (Montanide™ ISA 761 VG) immune responses, to determine if differences in responsiveness are readily apparent. The most informative site was the spleen, where Montanide™ ISA 763A VG + bacterin gave rise to upregulation of genes driving T-cell/lymphoid responses, namely IL-2, IL-15 and IL-21. This combined with upregulation of IFNγ1 and IFNγ2, IL-4/13B2, p35A1 and p40 (B1 and C) indicated that the induction of Th1 and possibly Th2 immunity was occurring in fish vaccinated with this adjuvant. Perhaps the most intriguing finding was the lack of a detectable Th1 response in fish given Montanide™ ISA 761 VG + bacterin, suggesting some other arm of the immune system is activated to give protection. Whatever the reason for the different responses detected, it is clear from the present study that the adjuvant used has a major impact on the responses elicited. Since these differences are readily detectable it allows, in principle, their use to help select the most appropriate adjuvants for inclusion into fish vaccines, where the type of response elicited may need to be tailored to a particular pathogen to confer protection.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , Aeromonas salmonicida , Vacunas Bacterianas/inmunología , Enfermedades de los Peces/prevención & control , Infecciones por Bacterias Gramnegativas/veterinaria , Manitol/análogos & derivados , Oncorhynchus mykiss/inmunología , Animales , Citocinas/genética , Citocinas/metabolismo , Regulación de la Expresión Génica/inmunología , Infecciones por Bacterias Gramnegativas/prevención & control , Riñón Cefálico/metabolismo , Macrófagos Peritoneales , Manitol/farmacología , Oncorhynchus mykiss/microbiología
14.
Biology (Basel) ; 10(1)2020 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-33375568

RESUMEN

The thymus in vertebrates plays a critical role in producing functionally competent T-lymphocytes. Phylogenetically, the thymus emerges early during evolution in jawed cartilaginous fish, and it is usually a bilateral organ placed subcutaneously at the dorsal commissure of the operculum. In this review, we summarize the current understanding of the thymus localization, histology studies, cell composition, and function in teleost fishes. Furthermore, we consider environmental factors that affect thymus development, such as seasonal changes, photoperiod, water temperature fluctuations and hormones. Further analysis of the thymus cell distribution and function will help us understand how key stages for developing functional T cells occur in fish, and how thymus dynamics can be modulated by external factors like photoperiod. Overall, the information presented here helps identify the knowledge gaps and future steps needed for a better understanding of the immunobiology of fish thymus.

15.
Front Immunol ; 11: 549319, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33193315

RESUMEN

Related interleukin-2, -15, and -15-like (IL-2, -15, and -15L) are ancient cytokines, with all three genes surviving in extant fish and some mammals. The present study is the first to identify IL-15L functions, namely in rainbow trout. In isolated trout splenocytes, and in vivo, purified recombinant IL-15L+IL-15Rα molecules induced expression of IL-4 and IL-13 homologs, which are markers of type 2 immunity. In contrast, trout IL-15 stimulated type 1 immunity markers, thus IL-15 and IL-15L can have opposing functions. Trout IL-15L was more dependent on "in trans" presentation by the receptor chain IL-15Rα than IL-15, and stimulated CD4-CD8-(IgM-) lymphocytes from thymus and spleen. We propose an important role for IL-15L early in the type 2 immunity cytokine cascade. Trout IL-2 and IL-15 exhibited features reminiscent of their mechanistic and functional dichotomy observed in mammals; for example, IL-15 but not IL-2 required a receptor alpha chain (only IL-15Rα in the case of fish) for its stability, and only IL-15 was efficient in stimulating lymphocytes from mucosal tissues. Data suggest that IL-15L and IL-15 may be particularly effective in stimulating innate lymphocyte type 2 cells (ILC2) and natural killer (NK) cells, respectively, but further identification of the cell types is needed. An interesting finding different from in mammals was the efficient stimulation of CD4+CD8+ thymocytes by IL-2. In short, this study presents fundamental information on the evolution of the IL-2/15/15L cytokine family.


Asunto(s)
Inmunidad , Inmunomodulación , Interleucina-15/genética , Interleucina-15/metabolismo , Secuencia de Aminoácidos , Animales , Bovinos , Expresión Génica , Glicosilación , Células HEK293 , Humanos , Inmunidad/genética , Inmunofenotipificación , Interleucina-15/química , Subunidad alfa del Receptor de Interleucina-15/genética , Subunidad alfa del Receptor de Interleucina-15/metabolismo , Interleucina-2/genética , Interleucina-2/metabolismo , Subgrupos Linfocitarios/inmunología , Subgrupos Linfocitarios/metabolismo , Modelos Moleculares , Filogenia , Conformación Proteica , Factor de Transcripción STAT5/metabolismo , Análisis de Secuencia de ADN , Bazo/citología , Bazo/inmunología , Bazo/metabolismo , Relación Estructura-Actividad , Timocitos/inmunología , Timocitos/metabolismo , Trucha
16.
Front Immunol ; 11: 1494, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32733485

RESUMEN

Interferons (IFNs) orchestrate antiviral responses in jawed vertebrates and can be classified into three types based on different aspects of their genomic organization, structure and receptors through which they signal and function. Generally, type I and type III IFNs include cytokines that directly induce an antiviral response, whereas type II IFNs are well-known for their immunomodulatory role during viral infections. In mammals, type I IFNs have been shown to also regulate many aspects of B cell development and differentiation. Yet, these functions have been only faintly investigated for teleost IFNs. Thus, in the current study, we have examined the effects of a model type I rainbow trout IFN molecule (IFNa) on blood naïve (IgM+IgD+) B cells, comparing them to those exerted by type II IFN (IFNγ). Our results demonstrate that IFNa increases the survival of naïve rainbow trout B cells, in the absence of lymphoproliferative effects, by rescuing them from spontaneous apoptosis. Additionally, IFNa increased the phagocytic capacity of blood IgM+IgD+ B cells and augmented the number of IgM-secreting cells in blood leukocyte cultures. IFNγ, on the other hand, had only minor effects up-regulating IgM secretion, whereas it increased the phagocytic capacity of IgM- cells in the cultures. Finally, given the recent identification of 9 mx genes in rainbow trout, we have also established which of these genes were transcriptionally regulated in blood naïve B cells in response to IFNa. This study points to a previously undescribed role for teleost type I IFNs in the regulation of B cell responses.


Asunto(s)
Linfocitos B/inmunología , Proteínas de Peces/metabolismo , Interferón Tipo I/metabolismo , Oncorhynchus mykiss/inmunología , Animales , Diferenciación Celular , Supervivencia Celular , Células Cultivadas , Regulación de la Expresión Génica , Humanos , Inmunoglobulina M , Activación de Linfocitos , Mamíferos , Fagocitosis
17.
Fish Shellfish Immunol ; 105: 378-392, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32615166

RESUMEN

The teleost gut is a multifunction complex structure that plays a pivotal immunological role in homeostasis and the maintenance of health, in addition to digestion of food and/or nutrient absorption. In vitro examination of the intestine leucocyte repertoire has the potential to aid our understanding of gut immune competence and allows a rapid screen of host-microorganism interactions in different immunological contexts. To explore this possibility, in the present study we investigated the response of isolated gut leucocytes to 4 bacterins of Aeromonas salmonicida, prepared from different strains, combinations and strains grown in different environments, in comparison to a Yersinia ruckeri bacterin for which a commercial/effective oral booster vaccine has been developed. To aid this study we also optimized further our method of GALT cell isolation from rainbow trout, so as to avoid mechanical clearance of the intestine contents. This drastically increased the cell yield from ~12 × 106 to ~210 × 106/fish with no change in the percent cell viability over time or presence of transcripts typical of the key leucocyte types needed for the study of immune modulation (i.e. T- and B-cells, dendritic cells and macrophages). A wide array of immune transcripts were modulated by the bacterins, demonstrating the diversity of GALT cell responses to bacterial stimulation. Indeed, the GALT leucocyte responses were sensitive enough to distinguish the different bacterial species, strains and membrane proteins, as seen by distinct kinetics of immune gene expression. However, the response of the GALT cells was often relatively slow and of a low magnitude compared to those of PBL. These results enhance our knowledge of the gut biocapacity and help validate the use of this model for screening of oral vaccine candidates.


Asunto(s)
Aeromonas salmonicida/fisiología , Vacunas Bacterianas/administración & dosificación , Inmunidad Innata/genética , Tejido Linfoide/inmunología , Oncorhynchus mykiss/inmunología , Yersinia ruckeri/fisiología , Animales , Intestinos/inmunología , Leucocitos/inmunología
18.
Dev Comp Immunol ; 111: 103752, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32447012

RESUMEN

In mammals, conventional B (B2) cells are activated within lymphoid follicles through a close relationship with T follicular helper (Tfh) cells. The interaction between CD40 expressed on B cells and its ligand (CD40L) expressed on Tfh cells is a key signal that regulates the formation of germinal centers (GCs), B cell survival, proliferation and differentiation to plasma cells (PCs) or memory cells. Additionally, certain soluble cytokines produced by T cells also strongly condition the outcome of this interaction. Despite the many differences found between fish B cells and mammalian B2 cells, and the lack of conventional GCs, rainbow trout IgM+ B cells have been shown to be stimulated by CD40L, however, whether cytokines commonly produced by T cells can further modulate this response has never been addressed to date. Thus, in this study, we determined the effects of recombinant rainbow trout adaptive cytokines interleukin 2B (IL-2B), IL-4/13A, IL-4/13B, IL-10 and IL-21 (cytokines known to activate B cells in mammals) on splenic IgM+ B cells alone or in combination with CD40L. We studied how these cytokines and CD40L cooperated to promote IgM+ B cell survival, proliferation and IgM secretion. The results obtained provide valuable information for the first time in teleost fish on how different T cell signals cooperate to activate B cells in the absence of GCs.


Asunto(s)
Linfocitos B/inmunología , Ligando de CD40/metabolismo , Proteínas de Peces/metabolismo , Inmunoglobulina M/metabolismo , Oncorhynchus mykiss/inmunología , Animales , Formación de Anticuerpos , Proliferación Celular , Supervivencia Celular , Células Cultivadas , Interleucina-10/metabolismo , Interleucina-13/metabolismo , Interleucina-2/metabolismo , Interleucina-4/metabolismo , Interleucinas/metabolismo , Activación de Linfocitos , Receptor Cross-Talk , Transducción de Señal
19.
Fish Shellfish Immunol ; 98: 564-573, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32001354

RESUMEN

A relatively large repertoire of type I interferon (IFN) genes is apparent in rainbow trout/Atlantic salmon, that includes six different IFN subgroups (IFNa-IFNf) belonging to the three known type I IFN groups (1-3) in bony fish. Whether this is true for other salmonids, and how the various type I subgroups evolved in teleost fish was studied using the extensive genomic resources available for fish. This confirmed that salmonids, at least the Salmoninae, indeed have a complex (in terms of IFN subgroups present) and large (number of genes) IFN repertoire relative to other teleost fish. This is in part a consequence of the salmonid 4 R WGD that duplicated the growth hormone (GH) locus in which type I IFNs are generally located. Divergence of the IFN genes at the two GH loci was apparent but was not seen in common carp, a species that also underwent an independent 4 R WGD. However, expansion of IFN gene number can be found at the CD79b locus of some perciform fish (both freshwater and marine), with expansion of the IFNd gene repertoire. Curiously the primordial gene order of GH-IFNc-IFNb-IFNa-IFNe is largely retained in many teleost lineages and likely reflects the tandem duplications that are taking place to increase IFN gene number. With respect to the evolution of the IFN subgroups, a complex acquisition and/or loss has occurred in different teleost lineages, with complete loss of IFN genes at the GH or CD79b locus in some species, and reduction to a single IFN subgroup in others. It becomes clear that there are many variations to be discovered regarding the mechanisms by which fish elicit protective (antiviral) immune responses.


Asunto(s)
Evolución Biológica , Genoma , Interferones/genética , Salmonidae/genética , Animales , Duplicación de Gen , Interferones/clasificación , Salmonidae/inmunología
20.
Dev Comp Immunol ; 103: 103502, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31568810

RESUMEN

Mammalian CCL20, or macrophage inflammatory protein-3α, can function as a homeostatic and inflammatory chemokine. In relation to the latter, it is responsible for the chemoattraction of lymphocytes and dendritic cells to mucosal immune sites under inflammatory and pathological conditions. CK1, CK8A and CK8B are rainbow trout (Oncorhynchus mykiss) CC chemokines that were reported previously to be phylogenetically related to mammalian CCL20. In the current study, an additional seven CCL20_L paralogues in rainbow trout are reported, that are divided into three subgroups and have been designated here as: CCL20_L1a (also referred to as CK1), CCL20_L1b1-2, CCL20_L2a (CK8A), CCL20_L2b (CK8B), CCL20_L3a, and CCL20_L3b1-4. Multiple CCL20_L genes were also identified in other salmonids that arose from both whole genome duplication and local gene duplication. Phylogenetic tree, homology and synteny analysis support that CCL20_L1-3 found in salmonids are also present in most teleosts arose from the 3 R whole genome duplication and in some species, local gene duplication. Like mammalian CCL20, rainbow trout CCL20_L molecules possess a high positive net charge with a pI of 9.34-10.16, that is reported to be important for antimicrobial activity. Rainbow trout CCL20_L paralogues are differentially expressed and in general highly expressed in mucosal tissues, such as gills, thymus and intestine. The expression levels of rainbow trout CCL20_L paralogues are increased during development and following PAMP/cytokine stimulation. For example, in RTS-11 cells CCL20_L3b1 and CCL20_L3b2 are highly up-regulated by LPS, Poly I:C, recombinant(r) IFNa and rIL-1ß. Trout CCL20_L paralogues are also increased after Yersinia ruckeri infection or Poly I:C stimulation in vivo, with CCL20_L3b1 and CCL20_L3b2 again highly up-regulated. Overall, this is the first report of the complete CCL20 chemokine subfamily in rainbow trout, and the analysis of their expression and modulation in vitro and in vivo. These results suggest that teleosts possess divergent CCL20_L molecules that may have important roles in anti-viral/anti-bacterial defence and in mucosal immunity.


Asunto(s)
Quimiocina CCL20/genética , Proteínas de Peces/genética , Oncorhynchus mykiss/genética , Animales , Quimiocina CCL20/inmunología , Proteínas de Peces/inmunología , Oncorhynchus mykiss/inmunología , Filogenia , Yersiniosis/inmunología , Yersinia ruckeri/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...