Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomed Pharmacother ; 177: 117129, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39018874

RESUMEN

Atopic dermatitis (AD) is a chronic inflammatory skin condition with complex causes involving immune factors. The presence of essential trace elements that support immune system function can influence the development of this condition. This study investigated how serum trace elements impact the pathogenesis of atopic dermatitis. Upon analyzing serum microelements in AD patients and control subjects, it was observed that patients with AD had notably lower zinc levels. Genomic analysis of AD skin revealed distinct gene expression patterns, specifically the increased expression of CXCL10 in the epidermis. The heightened levels of CXCL10 in AD skin lesions were found to correlate with reduced serum zinc levels. Treatment with zinc gluconate showed reduced chemotactic response and CXCL10 release, suggesting its potential to regulate CXCL10 expression of keratinocytes in AD. The mechanism behind this involved the downregulation of STAT phosphorylation through activating PPARα. In the AD-like dermatitis mouse model, zinc gluconate therapy decreased serum IgE levels, alleviated skin lesion severity, reduced skin thickness, and lowered CXCL10 expression, demonstrating its efficacy in managing AD-like skin conditions. These findings indicate that zinc gluconate can reduce inflammation in keratinocytes by activating PPARα, inhibiting STAT signaling, and decreasing CXCL10 release, thus highlighting its potential as a therapeutic target for AD.

2.
Macromol Rapid Commun ; : e2400277, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38771626

RESUMEN

Addressing the demand for integrating strength and durability reinforcement in shape memory polyurethane (SMPU) for diverse applications remains a significant challenge. Here a series of SMPUs with ultra-high strength, self-healing and recyclability, and excellent shape memory properties through introducing dynamic boron-urethane bonds are synthesized. The introducing of boric acid (BA) to polyurethane leading to the formation of dynamic covalent bonds (DCB) boron-urethane, that confer a robust cross-linking structure on the SMPUs led to the formation of ordered stable hydrogen-bonding network within the SMPUs. The flexible crosslinking with DCB represents a novel strategy for balancing the trade-off between strength and durability, with their strengths reaching up to 82.2 MPa while also addressing the issue of durability in prolonged usage through the provision of self-healing and recyclability. The self-healing and recyclability of SMPU are demonstrated through rapid dynamic exchange reaction of boron-urethane bonds, systematically investigated by dynamic mechanical analysis (DMA). This study sheds light on the essential role of such PU with self-healing and recyclability, contributing to the extension of the PU's service life. The findings of this work provide a general strategy for overcoming traditional trade-offs in preparing SMPUs with both high strength and good durability.

3.
Polymers (Basel) ; 16(7)2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38611152

RESUMEN

For the tribological properties of nanoparticle-modified PTFE, a more comprehensive study has been conducted, but there is still some room for research on tribology behavior, tribofilm formation and structure evolution of polytetrafluoroethylene (PTFE) filled with α-Al2O3 and SiO2 nanoparticles during sliding against steel counterparts under different loads. At the same time, it establishes the linkage and mechanism between the maintenance of mechanical strength and the tribological application of polymers in service and provides corresponding scientific data and theoretical guidance for the long-lasting application of polymer lubrication materials. It is found that both composites exhibit good wear resistance across the pressure of 1 MPa to 10 MPa, with the α-Al2O3/PTFE composite demonstrating better performance stability compared to the SiO2/PTFE composite. The high wear resistance is attributed to the formation of tribofilms at the friction interface. For the α-Al2O3/PTFE, an island-like tribofilm is formed with a thickness ranging from 100 to 200 nm, while the tribofilm of the SiO2/PTFE composite is thinner, measuring approximately 50 to 100 nm, and manifests a striped pattern. The chemical composition, both at the surface and subsurface levels, as well as the morphology of the tribofilms, were studied using FTIR spectrometry, X-ray photoelectron spectroscopy (XPS), and FIB-TEM. It is found that the difference in thickness and microstructure of the tribofilms for the two composites is mainly due to the tribochemistry of the nanoparticles. The α-Al2O3 nanoparticle plays a "cohesion" role during the formation of the tribofilm, which facilitates the formation of a thicker, more uniform, and stronger adhered tribofilm on the metallic counterpart, making it more robust against higher shear stress.

4.
Langmuir ; 40(17): 8862-8871, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38634158

RESUMEN

High-temperature-resistant and self-lubricating polymer composites with long life and high reliability are increasingly indispensable in the aerospace field. Herein, ZIF-67 grown on the MXene lamella was successfully prepared, and ZIF-67@MXene/PI composites with a regular layered structure were obtained by a hot-pressing three-dimensional network aerogel. It was revealed that incorporating ZIF-67@MXene into PI dramatically reduced the friction and abrasion with elevated temperatures. Largely, aerogel walls always paralleled the sliding direction by compressing, providing a significant antifriction effect. More notably, the presence of a vigorous tribofilm composed of a PI matrix and a diamond-type lattice MOF-modified MXene provided rolling and sliding interface friction under high temperatures, simultaneously. In addition, the uniform tribofilm with a thickness of about 200 nm can effectively avoid the direct contact of the friction pair during the sliding process. Hence, the combination of the constructed multiscale nanocomposites and nanostructured tribofilm with outstanding tribological performance endow the material potentially useful in reducing energy consumption, thus addressing the energy wastage problem caused by friction.

5.
RSC Adv ; 14(14): 9791-9797, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38528925

RESUMEN

With the coming era of artificial intelligence (AI) dominated by high-tech electronics, developing high-performance microwave absorption materials (MAMs) is imperative to solve the problem of increasing electromagnetic inference and pollution. Herein, a metal-organic framework (MOF)-derived CoNi bimetallic alloy (CoNi/C) with an irregular rod-like structure is prepared by a thermal reduction method. Introducing the CoNi alloy facilitates the balance between conduction loss and polarization loss and forms good impedance matching, leading to excellent microwave absorption performance. Interestingly, the optimization of absorption performance can be further achieved by controllably modulating the molar ratio of Co and Ni (Co2+/Ni2+). As expected, the obtained CoNi/C delivers excellent microwave absorption performance with a minimum reflection loss (RLmin) of -50.80 dB at 10.40 GHz and an effective absorption bandwidth (EAB) of 3.28 GHz (8.91-12.19 GHz) with a filler loading of 50 wt% at 2.0 mm. In addition, the CoNi/C can reach a maximum EAB of 4.77 GHz (12.99-17.76 GHz) at a low thickness of 1.5 mm, spanning nearly the entire Ku band. The CoNi3/C also exhibits an impressive RLmin of -44.84 dB at 3.28 GHz in the S band. This work offers a novel strategy to modulate the magnetic/electric properties of MOF-derived MAMs.

6.
Polymers (Basel) ; 16(6)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38543410

RESUMEN

In this work, diamondoid metal-organic frameworks (MOFs) were efficiently prepared by sonochemical synthesis and grown on polyimide (PI), aiming to improve the anti-wear performance of the PI matrix. By introducing MOFs into the PI matrix, the free movement of PI molecular chains were restricted, and its hardness and elastic modulus were improved. It was found that the wear rate of the 3 wt.% MOFs/PI composites was reduced by 72.6% compared to pure PI at a load of 4 N after tribological testing by using a ball-on-disk tribometer. This can be attributed to the excellent load-bearing and shear resistance of the fourfold-interpenetrated diamondoid networks, in which the transition metal elements can favor the formation of transfer films. It is worth noting that the 3 wt.% MOFs/PI composites still exhibited great tribological properties under high loads or high speeds. The findings of the present study indicate that diamondoid metal-organic frameworks can be used as efficient modifiers to enhance the tribological properties of PI.

8.
Adv Mater ; 36(16): e2311992, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38183353

RESUMEN

Advances in modern industrial technology continue to place stricter demands on engineering polymeric materials, but simultaneously possessing superior strength and toughness remains a daunting challenge. Herein, a pioneering flexible cage-reinforced supramolecular elastomer (CSE) is reported that exhibits superb robustness, tear resistance, anti-fatigue, and shape memory properties, achieved by innovatively introducing organic imide cages (OICs) into supramolecular networks. Intriguingly, extremely small amounts of OICs make the elastomer stronger, significantly improving mechanical strength (85.0 MPa; ≈10-fold increase) and toughness (418.4 MJ m-3; ≈7-fold increase). Significantly, the cooperative effect of gradient hydrogen bonds and OICs is experimentally and theoretically demonstrated as flexible nodes, enabling more robust supramolecular networks. In short, the proposed strengthening strategy of adding flexible cages effectively balances the inherent conflict between material strength and toughness, and the prepared CSEs are anticipated to be served in large-scale devices such as TBMs in the future.

9.
Macromol Rapid Commun ; 45(3): e2300534, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37840366

RESUMEN

It is challenging to enhance the stress-free two-way shape memory (stress-free TWSM) effect to obtain a wide range of response temperatures. Herein, a polycaprolactone (PCL)/poly(ω-pentadecalactone) (PPDL) is photocured under UV light irradiation in the solvent of 1,1,2-trichloroethane (TCA), to obtain a series of cross-linked polyesters (CPES). Controlling solvent content (SC) which is removed after the polymerization allows the yielded CPES to perform a regulatable thermodynamic and stress-free TWSM properties. High SC is beneficial to reduce the degree of chain overlap (C/C* ) of PPDL chain segments in the PCL-based CPES network, then causes the cocrystallization of PCL and PPDL and yielding an additional melting-transitions (Tm ). An enhanced stress-free TWSM is obtained in high SC samples (CPES-15-90), reflected in the attainment of a wide range of response temperature, which means a wider service temperature. The enhancement is reflected in higher reversible strain of high SC samples compared with the samples prepared with low SC when varying high trigger temperature (Thigh ). Even at high Thigh , the high SC sample still has reversible strain. Therefore, controlling SC strategy for photocuring copolyester not only provides a new preparation approach for high-performance shape memory (SM) polymers, but also offers new condensed polymer structure to explore.


Asunto(s)
Poliésteres , Polímeros , Temperatura , Solventes , Poliésteres/química , Polímeros/química , Termodinámica
10.
Front Immunol ; 14: 1307455, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38106405

RESUMEN

Exosomes, bilaterally phospholipid-coated small vesicles, are produced and released by nearly all cells, which comprise diverse biological macromolecules, including proteins, DNA, RNA, and others, that participate in the regulation of their biological functions. An increasing number of studies have revealed that the contents of exosomes, particularly microRNA(miRNA), play a significant role in the pathogenesis of various diseases, including autoimmune skin diseases. MiRNA is a class of single-stranded non-coding RNA molecules that possess approximately 22 nucleotides in length with the capability of binding to the untranslated as well as coding regions of target mRNA to regulate gene expression precisely at the post-transcriptional level. Various exosomal miRNAs have been found to be significantly expressed in some autoimmune skin diseases and involved in the pathogenesis of conditions via regulating the secretion of crucial pathogenic cytokines and the direction of immune cell differentiation. Thus, exosomal miRNAs might be promising biomarkers for monitoring disease progression, relapse and reflection to treatment based on their functions and changes. This review summarized the current studies on exosomal miRNAs in several common autoimmune skin diseases, aiming to dissect the underlying mechanism from a new perspective, seek novel biomarkers for disease monitoring and lay the foundation for developing innovative target therapy in the future.


Asunto(s)
Enfermedades Autoinmunes , Exosomas , MicroARNs , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Exosomas/genética , Exosomas/metabolismo , Biomarcadores/metabolismo , Enfermedades Autoinmunes/genética , Enfermedades Autoinmunes/metabolismo
11.
Polymers (Basel) ; 15(22)2023 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-38006178

RESUMEN

In this study, cotton fabric-reinforced phenolic resin (CPF) composites were modified by adding four two-dimensional fillers: graphitic carbon nitride (g-C3N4), graphite (Gr), molybdenum disulfide (MoS2), and hexagonal boron nitride (h-BN). The tribological properties of these modified materials were investigated under dry friction and water lubrication conditions. The CPF/Gr composite exhibits significantly better tribological performance than the other three filler-modified CPF composites under dry friction, with a 24% reduction in friction coefficient and a 78% reduction in wear rate compared to the unmodified CPF composite. Under water lubrication conditions, all four fillers did not significantly alter the friction coefficient of the CPF composites. However, except for an excessive amount of Gr, the other three fillers can reduce the wear rate. Particularly in the case of 10% MoS2 content, the wear rate decreased by 56%. Scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) were employed for the analysis of the morphology and composition of the transfer films. Additionally, molecular dynamics (MD) simulations were conducted to investigate the adsorption effects of CPF/Gr and CPF/MoS2 composites on the counterpart surface under both dry friction and water lubrication conditions. The difference in the adsorption capacity of CPF/Gr and CPF/MoS2 composites on the counterpart, as well as the resulting formation of transfer films, accounts for the variation in tribological behavior between CPF/Gr and CPF/MoS2 composites. By combining the lubrication properties of MoS2 and Gr under dry friction and water lubrication conditions and using them as co-fillers, we can achieve a synergistic lubrication effect.

12.
Nutrients ; 15(21)2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37960350

RESUMEN

Vitiligo is a common autoimmune skin disease caused by autoreactive CD8+ T cells. The diverse effects of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] on immune cell metabolism and proliferation have made it an interesting candidate as a supporting therapeutic option in various autoimmune diseases. This study aimed to elucidate the immunomodulatory effects of 1,25(OH)2D3 in vitiligo. Cross-sectional relationships between serum 1,25(OH)2D3 levels and disease characteristics were investigated in 327 patients with vitiligo. The immunomodulatory and therapeutic effects of 1,25(OH)2D3 were then investigated in vivo and in vitro, respectively. We found that 1,25(OH)2D3 deficiency was associated with hyperactivity of CD8+ T cells in the vitiligo cohort. In addition, 1,25(OH)2D3 suppressed glycolysis by activating the AMP-activated protein kinase (AMPK) signaling pathway, thereby inhibiting the proliferation, cytotoxicity and aberrant activation of CD8+ T cells. Finally, the in vivo administration of 1,25(OH)2D3 to melanocyte-associated vitiligo (MAV) mice reduced the infiltration and function of CD8+ T cells and promoted repigmentation. In conclusion, 1,25(OH)2D3 may serve as an essential biomarker of the progression and severity of vitiligo. The modulation of autoreactive CD8+ T cell function and glycolysis by 1,25(OH)2D3 may be a novel approach for treating vitiligo.


Asunto(s)
Vitíligo , Humanos , Ratones , Animales , Vitíligo/tratamiento farmacológico , Vitíligo/complicaciones , Calcitriol/metabolismo , Linfocitos T CD8-positivos
13.
Nat Commun ; 14(1): 4712, 2023 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-37543695

RESUMEN

Self-healing and recyclable polymer materials are being developed through extensive investigations on noncovalent bond interactions. However, they typically exhibit inferior mechanical properties. Therefore, the present study is aimed at synthesizing a polyurethane-urea elastomer with excellent mechanical properties and shape-memory-assisted self-healing behavior. In particular, the introduction of coordination and hydrogen bonds into elastomer leads to the optimal elastomer exhibiting good mechanical properties (strength, 76.37 MPa; elongation at break, 839.10%; toughness, 308.63 MJ m-3) owing to the phased energy dissipation mechanism involving various supramolecular interactions. The elastomer also demonstrates shape-memory properties, whereby the shape recovery force that brings damaged surfaces closer and facilitates self-healing. Surprisingly, all specimens exhibite clustering-triggered emission, with cyan fluorescence is observed under ultraviolet light. The strategy reported herein for developing multifunctional materials with good mechanical properties can be leveraged to yield stimulus-responsive polymers and smart seals.

14.
ACS Appl Mater Interfaces ; 15(35): 41937-41949, 2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37605560

RESUMEN

Developing high-performance elastomers with distinctive features opens up new vistas and exciting possibilities for information encryption but remains a daunting challenge. To surmount this difficulty, an unprecedented synthetic approach, "modular molecular engineering", was proposed to develop tailor-made advanced elastomers. The customized hydrophobic poly(urea-urethane) (HPUU-R) elastomer perfectly integrated ultrahigh tensile strength (∼75.3 MPa), extraordinary toughness (∼292.5 MJ m-3), satisfactory room-temperature healing, high transparency, puncture-, scratch-, and water-resistance; and miraculously, its 0.20 g film could lift objects over 100 000 times its weight without rupture. Intriguingly, we unexpectedly discovered that the elastomers fluoresce brightly at the optimal excitation wavelength attributed to the "clusterization-triggered emission". Based on the gradient hydrophobicity and fluorescent properties of HPUU-R, a hierarchical information encryption/decryption mode was innovatively established. Using high-performance HPUU-R as a double encryption platform makes the information highly stable and persistent, thus providing a stronger guarantee for the encrypted information. More attractively, given the impressive recyclability and self-healing of HPUU-R, information encryption can be realized by using recycled elastomers, injecting new vitality into green and sustainable development.

15.
ACS Appl Mater Interfaces ; 15(20): 24968-24977, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37165632

RESUMEN

Shape memory polymer (SMP)-based smart molds, which could provide high-resolution mold shape and morph in response to external stimuli for readily demolding the complex structure, attract extensive attention. However, the suitable SMP for smart molds is usually confined with low stretchability that likely causes damage during demolding. Herein, we present a cyanate ester smart composite (CESC) with a reconfigurable, solvent-processable, and near-infrared (NIR)-triggerable shape memory effect (SME), which enables the 2D sheet with a variety of morphed complex shapes through deformation in a mild situation. Notably, the reconfigurable SME and the recyclability of the shape memory cyanate ester (SMCE) were addressed for the first time, attributed to the dynamic covalent bonds of transesterification and the novel cyanurate exchange. In addition, we found that the mechanism of solvent-processable SME is attributed to the varied cross-linking density and the mobility of the polymer chain. Integrating the multiple responsive SME and reconfigurable SME, the CESC demonstrated versatile applications as a smart mold. The results demonstrate a wide scope of application of the integrated SME and provide a new design strategy for thermoset cyanate materials.

16.
Macromol Rapid Commun ; 44(2): e2200553, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36029168

RESUMEN

The rapid development of 4D printing provides a potential strategy for the fabrication of deployable medical devices (DMD). The minimally invasive surgery to implant the DMD into the body is critical, 4D printing DMD allows the well-defined device to be implanted with a high-compacted shape and transformed into their designed shape to meet the requirement. Herein, a 4D printing tissue engineering material is developed with excellent biocompatibility and shape memory effect based on the photocrosslinked polycaprolactone (PCL). The fast thiol-acrylate click reaction is applied for photocrosslinking of the acrylates capped star polymer (s-PCL-MA) with poly-thiols, that enable the 3D printing for the DMD fabrication. The cell viability, erythrocyte hemolysis, and platelet adhesion results indicate the excellent biocompatibility of the 4D printing polymer, especially the biological subcutaneous implantation results confirm the promote tissue growth and good histocompatibility. A 4D printing stent with deformable shape and recovery at a temperature close to human body temperature demonstrated the potential application as DMD. In addition, the everolimus is loaded to the polymer (ps1-PCL) through host-guest coordination with ß-cyclodextrin as the core of the star polymer, which shows sustained drug release and improved body's inflammatory response.


Asunto(s)
Materiales Inteligentes , Humanos , Polímeros , Ingeniería de Tejidos/métodos , Liberación de Fármacos , Impresión Tridimensional
17.
Adv Mater ; 34(45): e2205763, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36103729

RESUMEN

To address the challenge of realizing multifunctional polymers simultaneously exhibiting high strength and high toughness through molecular engineering, ultrastrong and supertough shape-memory poly(urea-urethane) (PUU) is fabricated by regulating: i) the reversible cross-links composed of rigid units and multiple hydrogen bonds, and ii) the molecular weight of soft segments. The optimal material exhibits an unparalleled strength of 84.2 MPa at a large elongation at a break of 925.6%, a superior toughness of 322.8 MJ m-3 , and remarkable fatigue resistance without fracture. The repeated stretching of this material induces an irreversible deformation, which, however, can be rapidly recovered by heating. Moreover, all samples are capable of temporary shape fixation at -40 °C (recovering the original shape at 30 °C) and exhibit blue fluorescence when excited at the optimum wavelength, which is ascribed to clusterization-triggered emission (CTE) due to the formation of microphase-separation structures. Thus, the adopted approach provides a solution to a long-standing problem and paves the way to the realization of intrinsically luminescent shape-memory materials exhibiting both ultrahigh strength and ultrahigh toughness.

18.
PLoS One ; 17(3): e0265108, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35271667

RESUMEN

A large number of aerospace practices have confirmed that the aerospace microgravity environment can lead to cognitive function decline. Mitochondria are the most important energy metabolism organelles, and some studies demonstrate that the areospace microgravity environment can cause mitochondrial dysfunction. However, the relationships between cognitive function decline and mitochondrial dysfunction in the microgravity environment have not been elucidated. In this study, we simulated the microgravity environment in the Sprague-Dawley (SD) rats by -30° tail suspension for 28 days. We then investigated the changes of mitochondrial morphology and proteomics in the hippocampus. The electron microscopy results showed that the 28-day tail suspension increased the mitochondria number and size of rat hippocampal neuronal soma. Using TMT-based proteomics analysis, we identified 163 differentially expressed proteins (DEPs) between tail suspension and control samples, and among them, 128 proteins were upregulated and 35 proteins were downregulated. Functional and network analyses of the DEPs indicated that several of mitochondrial metabolic processes including the tricarboxylic acid (TCA) cycle were altered by simulating microgravity (SM). We verified 3 upregulated proteins, aconitate hydratase (ACO2), dihydrolipoamide S-succinyltransferase (DLST), and citrate synthase (CS), in the TCA cycle process by western blotting and confirmed their differential expressions between tail suspension and control samples. Taken together, our results demonstrate that 28-day tail suspension can cause changes in the morphology and metabolic function of hippocampus mitochondria, which might represent a mechanism of cognitive disorder caused by aerospace microgravity.


Asunto(s)
Proteómica , Ingravidez , Animales , Hipocampo/metabolismo , Mitocondrias , Proteómica/métodos , Ratas , Ratas Sprague-Dawley , Ingravidez/efectos adversos , Simulación de Ingravidez
19.
ACS Appl Mater Interfaces ; 14(8): 10936-10946, 2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35179865

RESUMEN

Developing smart lubrication materials to achieve recyclable and durable lubrication and excellent wear resistance under various running conditions has great significance in fields ranging from aerospace to advanced engineering machinery but has proven challenging. Herein, a supramolecular oleogel with reversible gel-to-liquid transition was impregnated into macroporous polyimide (MPPI-gel) to obtain a smart lubrication material, which exhibited recyclable smart lubrication with an enhanced oil content and oil retention. The self-assembly of the gelator in polyalphaolefin10 (PAO10) formed three-dimensional networks that encapsulated the PAO10 during the service process, and the MPPI-gel could exhibit a high oil retention (approximately 99%). The gel-to-liquid transition allows the lubricant to be extruded and transferred to the surface of the macroporous matrix (MPPI) under thermal-mechano-stimuli and vice versa. The extruded lubricant can be sucked back into the MPPI pores through the capillary force and recovered to the oleogel when removing the external stimuli. Due to the high oil content, high oil retention, and recyclable lubricant releasing/reabsorbing, MPPI-gel exhibited recyclable smart lubrication (at least 1852 cycles; each cycle lasted for 1 h), a stable coefficient of friction (∼0.06) under alternating conditions (the frequency varied from 1 to 20 Hz, and the load varied from 10 to 46 N), and long-term conditions (at least 10 days). Therefore, MPPI-gel holds the promise of realizing smart lubrication according to the external stimuli with both high oil storage and recyclable lubricant releasing/reabsorbing with the porous matrix.

20.
Front Oncol ; 11: 764572, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34804968

RESUMEN

A reliable prognostic factor for periampullary carcinoma is critical to improve surgical outcomes. Intraoperative acidosis reflects the incidence of intraoperative adverse events and impact the prognosis. In this study, 612 patients with periampullary carcinoma who underwent pancreaticoduodenectomy (PD) were divided into high- and low-pH groups according to the cut-off value of receiver operating characteristic curve (7.34). Through statistical analysis of the difference between the high- and low-pH group, it was found that the low-pH group had worse short-term prognosis than the high pH group, and intraoperative pH was an independent prognostic factor for patients with periampullary carcinoma undergoing PD. In addition, patients who underwent laparoscopic pancreaticoduodenectomy had a more alkaline pH after surgery. This is of great help for early judgment of short-term and even long-term prognosis of patients with pancreatic cancer after surgery, and can even guide clinicians to improve prognosis by early adjustment of pH value.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA