Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
J Exp Biol ; 227(15)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39136099

RESUMEN

The presence of cardiac shunts in ectothermic tetrapods is thought to be consistent with active vascular modulations for proper hemodynamic support. Local control of blood flow modulates tissue perfusion and thus systemic conductance (Gsys) is assumed to increase with body temperature (Tb) to accommodate higher aerobic demand. However, the general increase of Gsys presses for a higher right-to-left (R-L) shunt, which reduces arterial oxygen concentration. In contrast, Tb reduction leads to a Gsys decrease and a left-to-right shunt, which purportedly increases pulmonary perfusion and plasma filtration in the respiratory area. This investigation addressed the role of compensatory vascular adjustments in the face of the metabolic alterations caused by Tb change in the South American rattlesnake (Crotalus durissus). Cardiovascular recordings were performed in decerebrated rattlesnake preparations at 10, 20 and 30°C. The rise in Tb increased metabolic demand, and correlated with an augmentation in heart rate. Although cardiac output increased, systemic stroke volume reduced while pulmonary stroke volume remained stable. Although that resulted in a proportionally higher increase in pulmonary blood flow, the R-L shunt was maintained. While the systemic compliance of large arteries was the most relevant factor in regulating arterial systemic blood pressure, peripheral conductance of pulmonary circulation was the major factor influencing the final cardiac shunt. Such dynamic adjustment of systemic compliance and pulmonary resistance for shunt modulation has not been demonstrated before and contrasts with previous knowledge on shunt control.


Asunto(s)
Crotalus , Hemodinámica , Animales , Crotalus/fisiología , Temperatura Corporal/fisiología , Frecuencia Cardíaca/fisiología , Temperatura , Gasto Cardíaco/fisiología , Circulación Pulmonar/fisiología , Masculino , Serpientes Venenosas
3.
Artículo en Inglés | MEDLINE | ID: mdl-39038601

RESUMEN

To describe the cardiovascular changes following intramuscular (handled) and intravascular (undisturbed, via intraarterial catheter) alfaxalone administration, we studied 20 healthy ball pythons (Python regius) in a randomised, prospective study. The pythons were instrumented with occlusive arterial catheters to facilitate undisturbed, continuous monitoring of heart rate and blood pressure. Six pythons were administered intramuscular (IM) saline, followed by 20 mg/kg IM alfaxalone, and were manually restrained for both injections. Six pythons received intraarterial (IA) saline, followed by 10 mg/kg IA alfaxalone, and remained undisturbed for both injections. Arterial blood samples were taken at 0, 12 and 60 min post-injection, and heart rate and blood pressure were recorded for 60 min. The remaining eight snakes received 20 mg/kg IM or 10 mg/kg IA alfaxalone (n = 4 per treatment) and were not handled for intubation 10 min post-injection, to examine the effects of handling during anaesthesia. IM administration of 20 mg/kg alfaxalone or an equivalent volume of saline elicited a profound tachycardia and hypertension, which recovered to resting values after 20 min. However, when 10 mg/kg alfaxalone or saline were injected IA, mild hypotension and a lower magnitude tachycardia occurred. Arterial PCO2 and PO2, pH and lactate concentrations did not change following IA alfaxalone, but an acidosis was observed during IM alfaxalone anaesthesia. There were no significant changes in plasma catecholamines and corticosterone among treatments. Handling for injection and during anaesthesia associated with intubation significantly affects cardiovascular parameters, whereas alfaxalone per se only elicits minor changes in cardiovascular physiology.

4.
J Exp Biol ; 227(7)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38533751

RESUMEN

The physiological processes underlying the post-prandial rise in metabolic rate, most commonly known as the 'specific dynamic action' (SDA), remain debated and controversial. This Commentary examines the SDA response from two opposing hypotheses: (i) the classic interpretation, where the SDA represents the energy cost of digestion, versus (ii) the alternative view that much of the SDA represents the energy cost of growth. The traditional viewpoint implies that individuals with a reduced SDA should grow faster given the same caloric intake, but experimental evidence for this effect remains scarce and inconclusive. Alternatively, we suggest that the SDA reflects an organism's efficacy in allocating the ingested food to growth, emphasising the role of post-absorptive processes, particularly protein synthesis. Although both viewpoints recognise the trade-offs in energy allocation and the dynamic nature of energy distribution among physiological processes, we argue that equating the SDA with 'the energy cost of digestion' oversimplifies the complexities of energy use in relation to the SDA and growth. In many instances, a reduced SDA may reflect diminished nutrient absorption (e.g. due to lower digestive efficiency) rather than increased 'free' energy available for somatic growth. Considering these perspectives, we summarise evidence both for and against the opposing hypotheses with a focus on ectothermic vertebrates. We conclude by presenting a number of future directions for experiments that may clarify what the SDA is, and what it is not.


Asunto(s)
Ingestión de Energía , Periodo Posprandial , Humanos , Animales , Periodo Posprandial/fisiología , Consumo de Oxígeno , Digestión/fisiología , Metabolismo Energético/fisiología
5.
Artículo en Inglés | MEDLINE | ID: mdl-38373589

RESUMEN

Vertebrates elevate heart rate when metabolism increases during digestion. Part of this tachycardia is due to a non-adrenergic-non-cholinergic (NANC) stimulation of the cardiac pacemaker, and it has been suggested these NANC factors are circulating hormones that are released from either gastrointestinal or endocrine glands. The NANC stimulation is particularly pronounced in species with large metabolic responses to digestion, such as reptiles. To investigate the possibility that the pancreas may release hormones that exert positive chronotropic effects on the digesting Burmese python heart, a species with very large postprandial changes in heart rate and oxygen uptake, we evaluate how pancreatectomy affects postprandial heart rate before and after autonomic blockade of the muscarinic and the beta-adrenergic receptors. We also measured the rates of oxygen consumption and evaluated the short-term control of the heart using the spectral analysis of heart rate variability and the baroreflex sequence method. Digestion caused the ubiquitous tachycardia, but the intrinsic heart rate (revealed after the combination of atropine and propranolol) was not affected by pancreatectomy and therefore hormones, such as glucagon and insulin, do not appear to contribute to the regulation of heart rate during digestion in Burmese pythons.


Asunto(s)
Boidae , Animales , Frecuencia Cardíaca/fisiología , Boidae/fisiología , Taquicardia , Páncreas , Hormonas/metabolismo
6.
Artículo en Inglés | MEDLINE | ID: mdl-38220130

RESUMEN

Assessments of arterial and venous blood gases are required to understand the function of respiratory organs in animals at different stages of development. We measured blood gases in the arteries entering and veins leaving the chorioallantoic membrane (CAM) in embryonic alligators (Alligator mississippiensis). The CAM accounts for virtually all gas exchange in these animals, and we hypothesized that the CAM vasculature would be larger in eggs incubated in hypoxia (10% O2 for 50% or 70% of incubation), which would be reflected in a lower partial pressure of CO2 (PCO2). Contrary to this hypothesis, our measurements revealed no effects of hypoxic incubation on PCO2, and seemingly no increase in vascularization of the CAM in response to incubation in 10% O2. PCO2 was lower on the venous side, but only significantly different from arterial blood at 70% of incubation. The calculated blood flow to the CAM increased with development and was lower in both groups of alligators that had been incubated in hypoxia. Future studies should include measurements of blood parameters taken from embryos held in conditions that mirror incubation O2 levels, in combination with direct measurements of CAM artery blood flow.


Asunto(s)
Caimanes y Cocodrilos , Membrana Corioalantoides , Animales , Gases , Arterias , Hipoxia
7.
Artículo en Inglés | MEDLINE | ID: mdl-38135145

RESUMEN

BACKGROUND: The crocodilian heart is unique among reptiles with its four-chambered structure and complete intracardiac separation of pulmonary and systemic blood flows and pressures. Crocodiles have retained two aortic arches; one from each ventricle, that communicate via Foramen of Panizza, immediately distally from the aortic valves. Moreover, crocodiles can regulate vascular resistance in the pulmonary portion of the right ventricular outflow tract (RVOT). These unique features allow for a complex regulation of shunting between the pulmonary and systemic circulations. Studies on crocodile shunting have predominantly been based on invasive measurements, but here we report on the use of echocardiography. METHODS: Experiments were performed on seven pentobarbital anaesthetized juvenile Nile crocodiles (length and mass of 192 ± 13 cm and 26 ± 5 kg, respectively). Echocardiographic imaging was performed using a transesophageal (TEE) approach. All images were EKG-gated. RESULTS: We obtain excellent views of cardiac structures and central vasculature through the esophagus. Standard imaging planes were defined for both long- and short axis views of the left ventricle and truncus arteriosus. For the RV, only a short axis view could be obtained. Color Doppler was used to visualize flow. Pulsed waved Doppler for measuring flow profiles across the atrioventricular valves, in the two RVOTs and the left ventricular outflow tract. Shunting across the Foramen of Panizza could be visualized and gated to the EKG. CONCLUSION: TEE can be used to image the unique features of the crocodile heart and allow for in-vivo imaging of the complex shunting hemodynamics, including timing of cardiac shunts.


Asunto(s)
Caimanes y Cocodrilos , Ecocardiografía Transesofágica , Animales , Corazón/diagnóstico por imagen , Corazón/fisiología , Hemodinámica , Ecocardiografía/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA