Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
1.
Br J Pharmacol ; 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39317434

RESUMEN

BACKGROUND AND PURPOSE: Physical activity is an effective therapeutic protocol for treating chronic obstructive pulmonary disease (COPD). However, the mechanisms underlying the benefits of physical activity in COPD are not fully elucidated. EXPERIMENTAL APPROACH: In a mouse model of COPD, analysis of biological markers and lung proteomics identified the molecular pathways through which exercise ameliorates COPD. KEY RESULTS: Exercise improved pulmonary function, emphysema, small airway disease, pulmonary inflammation, glucose metabolic dysregulation, and insulin resistance in COPD mice. Proteomic analysis revealed 430 differentially expressed proteins (DEPs) between the COPD and COPD + Exercise (COPD + Ex) groups. GO analysis indicated that the enriched pathways were predominantly related to the immune response, inflammatory processes, insulin secretion, and glucose metabolic processes. GO analysis revealed IL-33 as a crucial target for the exercise-related amelioration of COPD. KEGG analysis showed that DEPs were significantly enriched in primary immunodeficiency, the intestinal immune network for IgA production, and the NF-κB signalling pathway. Exercise inhibited NF-κB activation by suppressing the CD14/TLR4/MyD88 and TNF-α/TNF-R1/TRAF2/5 pathways in COPD mice. Exercise inhibited expression of BCR, IgM, IgD, IgG, IgE, and IgA by suppressing B-cell receptor signalling. Exercise attenuated glucose metabolic dysregulation and insulin resistance through the suppression of proinflammatory mediators, including MHC I, MHC II, TNF-α, IFN-γ, and IL-1ß, while concurrently increasing insulin expression. The qRT-PCR results were consistent with the proteomic results. CONCLUSION AND IMPLICATIONS: In a mouse model, exercise improved COPD and its metabolic comorbidities through immune system regulation and inflammation suppression, offering insights into potential therapeutic targets.

2.
J Colloid Interface Sci ; 678(Pt C): 409-416, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39303559

RESUMEN

Effectively harnessing the assembly of achiral carbon dots into a chiral manner is a prominent step for applying carbon dots into the area of stereoselective optoelectronics and theranostics. Herein, magnetic-modulated and circularly polarized luminescence (CPL)-active photonic thin films were presented in this article via co-assembly and magnetic-mediation strategy of cellulose nanocrystals, carbon dots and magnetic nanoparticles. The photonic bandgap of the composite films is modulated via interfacial interactions between the building blocks, and more efficiently via external magnetic field which can further enhance the selective reflection of the films with a maximum CPL anisotropic factor as high as -0.92, indicating the optimized condition for achieving CPL signals is basically when the photonic bandgap (PBG) are close to the emission peaks of nanocomposite films, which may essentially facilitate the selective reflection effect and leads to the output of opposite CPL signals. Such strategy would inevitably boost the development of carbon dots based chiral devices and reagents into the realm of chirality-related biological issues and next generation chiral optoelectronics.

3.
Curr Zool ; 70(4): 531-538, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39176055

RESUMEN

The ability to recognize and differentiate between conspecifics and heterospecifics as well as their signals is critical for the coexistence of closely related species. In the genus Rattus, species are morphologically similar and multiple species often coexist. Here, we investigated the interspecific recognition and signal differentiation of two sympatric rat species, the brown rat (Rattus norvegicus, RN) and the Asian house rat (Rattus tanezumi, RT). In a two-way choice test, both RN and RT females showed a preference for conspecific male rats to heterospecific ones. RT females showed a significant preference for accessible urine of males of same species to those of other species, but not for the inaccessible urine. On the other hand, there were significant differences in the structural characteristics of the ultrasonic vocalization emitted by males of these two rat species. Sodium dodecyl sulphate‒polyacrylamide gel electrophoresis (SDS‒PAGE) and isoelectric focusing electrophoresis unveiled that major urinary proteins (MUPs) in voided urine were more highly expressed in RN males versus RT males. The interspecific differences of urinary volatile compounds were also discussed. In conclusion, female rats had the ability to distinguish between males of either species.

4.
ACS Appl Mater Interfaces ; 16(33): 44164-44173, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39087727

RESUMEN

PbS quantum dots (QDs) are promising for short-wave infrared (SWIR) photodetection and imaging. Solid-state ligand exchange (SSLE) is a low-fabrication-threshold QD solid fabrication method. However, QD treatment by SSLE remains challenging in seeking refined surface passivation to achieve the desired device performance. This work investigates using NaAc in the ligand exchange process to enhance the film morphology and electronic coupling configuration of QD solids. By implementing various film and photodetector device characterization studies, we confirm that adding NaAc with a prominent adding ratio of 20 wt % NaAc with tetrabutylammonium iodide (TBAI) in the SSLE leads to an improved film morphology, reduced surface roughness, and decreased trap states in the QD solid films. Moreover, compared to the devices without NaAc treatment, those fabricated with NaAc-treated QD solids exhibit an enhanced performance, including lower dark current density (<100 nA/cm2), faster response speed, higher responsivity, detectivity, and external quantum efficiency (EQE reaching 25%). The discoveries can be insightful in developing efficient, low-cost, and low-fabrication-threshold QD SWIR detection and imager applications.

5.
Plants (Basel) ; 13(13)2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38999595

RESUMEN

The mass ratio hypothesis posits that ecosystem functions are predominantly influenced by the dominant species. However, it remains unclear whether a species must be abundant to exert functional dominance. We conducted a removal experiment in an alpine grassland near Pudacuo National Park, Yunnan, China, to assess the community and ecosystem impacts of the removed species. We implemented four treatments as follows: exclusive removal of the most abundant species (Blysmus sinocompressus), exclusive removal of a sparse species with high individual biomass (Primula secundiflora), simultaneous removal of both species, and a control with no removals. Results showed that removing B. sinocompressus significantly reduced biomass production, supporting the mass ratio hypothesis, while removal of P. secundiflora had negligible effects. B. sinocompressus removal positively impacted community metrics like coverage, species evenness, and the Shannon diversity index, but not species richness, likely due to its spatial dominance. Conversely, P. secundiflora removal had minimal community impact, probably due to its limited influence on nearby species. This study underscores the proportionate roles of the dominant species in alpine grasslands, emphasizing that their community and ecosystem impacts are proportional to their abundance.

6.
Nanoscale Adv ; 6(14): 3566-3572, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38989526

RESUMEN

The abundant water wave energy on Earth stands as one of the most promising renewable blue energy sources, as it exhibits minimal dependence on weather, time and temperature. However, the low fluctuation frequency and extremely irregular nature of the wave energy restrict both the methods and efficiency of energy harvesting. In this study, a packed box-like hybrid nanogenerator was designed, comprising two single-electrode triboelectric nanogenerators (TENGs) and two electromagnetic generators (EMGs). The outputs of both the TENG and EMG were demonstrated under different fluctuation frequencies and swing amplitudes, inspiring the development of a wave warning system. The maximum output voltage, current, and transferred charge of the single TENG, as part of hybrid nanogenerator (HG), reach approximately 110 V, 2.3 µA, and 50 nC, respectively. Its peak power reaches 85.3 µW under a resistance load of 20 MΩ at a frequency of 2 Hz. The EMG component produced maximum output voltages and currents of up to 0.45 V and 1.2 mA, respectively. The peak power is approximately 95.6 µW with a resistance load of 200 Ω. The output performances of the TENG and EMG increase linearly with the increase in the swing angle. Most importantly, a packed box-like hybrid nanogenerator can be conveniently packaged for harvesting energy from water waves. A wave energy collection array floating on the sea is proposed for harvesting blue energy and creating a self-powered ocean wave warning system.

7.
Cell ; 187(17): 4713-4732.e19, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-38968937

RESUMEN

Immune tolerance mechanisms are shared in cancer and pregnancy. Through cross-analyzing single-cell RNA-sequencing data from multiple human cancer types and the maternal-fetal interface, we found B7-H4 (VTCN1) is an onco-fetal immune tolerance checkpoint. We showed that genetic deficiency of B7-H4 resulted in immune activation and fetal resorption in allogeneic pregnancy models. Analogously, B7-H4 contributed to MPA/DMBA-induced breast cancer progression, accompanied by CD8+ T cell exhaustion. Female hormone screening revealed that progesterone stimulated B7-H4 expression in placental and breast cancer cells. Mechanistically, progesterone receptor (PR) bound to a newly identified -58 kb enhancer, thereby mediating B7-H4 transcription via the PR-P300-BRD4 axis. PR antagonist or BRD4 degrader potentiated immunotherapy in a murine B7-H4+ breast cancer model. Thus, our work unravels a mechanistic and biological connection of a female sex hormone (progesterone) to onco-fetal immune tolerance via B7-H4 and suggests that the PR-P300-BRD4 axis is targetable for treating B7-H4+ cancer.


Asunto(s)
Tolerancia Inmunológica , Progesterona , Progestinas , Inhibidor 1 de la Activación de Células T con Dominio V-Set , Animales , Femenino , Inhibidor 1 de la Activación de Células T con Dominio V-Set/metabolismo , Humanos , Ratones , Embarazo , Progestinas/farmacología , Progestinas/metabolismo , Progesterona/metabolismo , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Receptores de Progesterona/metabolismo , Factores de Transcripción/metabolismo , Línea Celular Tumoral , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Ratones Endogámicos C57BL , Placenta/metabolismo , Placenta/inmunología
8.
Environ Sci Technol ; 58(26): 11637-11648, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38822815

RESUMEN

Lithium (Li) is an important resource that drives sustainable mobility and renewable energy. Its demand is projected to continue to increase in the coming decades. However, the risk of Li pollution has also emerged as a global concern. Here, we investigated the pollution characteristics, sources, exposure levels, and associated health risks of Li in the Jinjiang River basin, the largest area for Li2CO3 production in China. Our results revealed the dominant role of Li extraction activities in the pollution of the river, with over 95% of dissolved Li in downstream river water being emitted from this source. Moreover, the Li concentration in aquatic plants (i.e., water hyacinth) and animals (i.e., fish) significantly increased from upstream to downstream areas, indicating a significant risk to local aquatic ecosystems. More importantly, our study found that local residents were suffering potential chronic noncarcinogenic health risks primarily from consuming contaminated water and vegetables. We also investigated the pollution characteristics of associated elements present in Li ores (e.g., Rb, Cs, Ni, and F-). By uncovering the remarkable impact of Li extraction activities on the Li content in ecosystems for the first time, our study emphasizes the importance of evaluating Li pollution from Li-related industrial activities, including mining, extraction, and recovery.


Asunto(s)
Litio , Litio/análisis , China , Contaminantes Químicos del Agua/análisis , Humanos , Ríos/química , Medición de Riesgo , Monitoreo del Ambiente , Animales
9.
Environ Sci Technol ; 58(22): 9770-9781, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38781163

RESUMEN

Magnetic particles (MPs), with magnetite (Fe3O4) and maghemite (γ-Fe2O3) as the most abundant species, are ubiquitously present in the natural environment. MPs are among the most applied engineered particles and can be produced incidentally by various human activities. Identification of the sources of MPs is crucial for their risk assessment and regulation, which, however, is still an unsolved problem. Here, we report a novel approach, hierarchical classification-aided stable isotopic fingerprinting, to address this problem. We found that naturally occurring, incidental, and engineered MPs have distinct Fe and O isotopic fingerprints due to significant Fe/O isotope fractionation during their generation processes, which enables the establishment of an Fe-O isotopic library covering complex sources. Furthermore, we developed a three-level machine learning model that not only can distinguish the sources of MPs with a high precision (94.3%) but also can identify the multiple species (Fe3O4 or γ-Fe2O3) and synthetic routes of engineered MPs with a precision of 81.6%. This work represents the first reliable strategy for the precise source tracing of particles with multiple species and complex sources.


Asunto(s)
Compuestos Férricos , Compuestos Férricos/química
10.
ACS Catal ; 14(9): 6799-6806, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38721378

RESUMEN

Plasmonic photocatalysis demonstrates great potential for efficiently harnessing light energy. However, the underlying mechanisms remain enigmatic due to the transient nature of the reaction processes. Typically, plasmonic photocatalysis relies on the excitation of surface plasmon resonance (SPR) in plasmonic materials, such as metal nanoparticles, leading to the generation of high-energy or "hot electrons", albeit accompanied by photothermal heating or Joule effect. The ability of hot electrons to participate in chemical reactions is one of the key mechanisms, underlying the enhanced photocatalytic activity observed in plasmonic photocatalysis. Interestingly, surface-enhanced Raman scattering (SERS) spectroscopy allows the analysis of chemical reactions driven by hot electrons, as both SERS and hot electrons stem from the decay of SPR and occur at the hot spots. Herein, we propose a highly efficient SERS substrate based on cellulose paper loaded with either Ag nanoplates (Ag NPs) or AgPd hollow nanoplates (AgPd HNPs) for the in situ monitoring of C-C homocoupling reactions. The data analysis allowed us to disentangle the impact of hot electrons and the Joule effect on plasmon-enhanced photocatalysis. Computational simulations revealed an increase in the rate of excitation of hot carriers from single/isolated AgPd HNPs to an in-plane with a vertical stacking assembly, suggesting its promise as a photocatalyst under broadband light. In addition, the results suggest that the incorporation of Pd into an alloy with plasmonic properties may enhance its catalytic performance under light irradiation due to the collection of plasmon-excitation-induced hot electrons. This work has demonstrated the performance-oriented synthesis of hybrid nanostructures, providing a unique route to uncover the mechanism of plasmon-enhanced photocatalysis.

11.
Environ Sci Technol ; 58(18): 8009-8019, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38557036

RESUMEN

With the increasing use of metal-organic frameworks (MOFs), they will inevitably enter the environment intentionally or unintentionally. However, the effects of MOFs on plant growth are poorly understood. Here, we investigated the effects of exposure of the rhizosphere to MOFs on plant growth. MIL-101(Cr) was selected as a research model due to its commercial availability and wide use. Soybean plants at the two-leaf stage were subjected to various durations (1-7 days) and concentrations (0-1000 mg/L) of exposure in hydroculture with a control group treated with ultrapure water. We found that MIL-101(Cr) had a positive effect on soybean growth at a lower dose (i.e., 200 mg/L); however, at higher doses (i.e., 500 and 1000 mg/L), it exhibited significant toxicity to plant growth, which is evidenced by leaf damage. To investigate the mechanism of this effect, we used Cr as an indicator to quantify, track, and image MIL-101(Cr) in the plant with laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Results indicated that MIL-101(Cr) primarily accumulated in the cortex of roots (up to 40 times higher than that in stems), with limited translocation to stems and negligible presence in leaves and cotyledons. In addition, metabolomic analysis of soybeans indicated that low-dose MIL-101(Cr) could increase the sucrose content of soybean roots to promote plant growth, while a high dose could induce lipid oxidation in roots. This study provides valuable insights into the ecological toxicology of MOFs and underscores the importance of assessing their environmental impact for sustainable agricultural practices.


Asunto(s)
Glycine max , Estructuras Metalorgánicas , Glycine max/efectos de los fármacos , Glycine max/crecimiento & desarrollo , Desarrollo de la Planta/efectos de los fármacos
12.
Angew Chem Int Ed Engl ; 63(27): e202403463, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38661020

RESUMEN

Metal sulfide (MS) is regarded as a promising candidate of the anode materials for sodium-ion battery (SIB) with ideal capacity and low cost, yet still suffers from the inferior cycling stability and voltage degradation. Herein, the coordination relationship between the discharge product Na2S with the Na+ (NaPF6) in the electrolyte, is revealed as the root cause for the cycling failure of MS. Na+-coordination effect assistants the dissolution of Na2S, further delocalizing Na2S from the reaction interface under the function of electric field, which leads to the solo oxidation of the discharge product element metal without the participation of Na2S. Besides, the higher highest occupied molecular orbital of Na2S suggest the facilitated Na2S solo oxidation to produce sodium polysulfides (NaPSs). Based on these, lowering the Na+ concentration of the electrolyte is proposed as a potential improvement strategy to change the coordination environment of Na2S, suppressing the side reactions of the solo-oxidation of element metal and Na2S. Consequently, the enhanced conversion reaction reversibility and prolonged cycle life are achieved. This work renders in-depth perception of failure mechanism and inspiration for realizing advanced conversion-type anode.

13.
Adv Mater ; 36(21): e2312685, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38618925

RESUMEN

Mn-based mullite oxides AMn2O5 (A = lanthanide, Y, Bi) is a novel type of ternary catalyst in terms of their electronic and geometric structures. The coexistence of pyramid Mn3+-O and octahedral Mn4+-O makes the d-orbital selectively active toward various catalytic reactions. The alternative edge- and corner-sharing stacking configuration constructs the confined active sites and abundant active oxygen species. As a result, they tend to show superior catalytic behaviors and thus gain great attention in environmental treatment and energy conversion and storage. In environmental applications, Mn-based mullites have been demonstrated to be highly active toward low-temperature oxidization of CO, NO, volatile organic compounds (VOCs), etc. Recent research further shows that mullites decompose O3 and ozonize VOCs from -20 °C to room temperature. Moreover, mullites enhance oxygen reduction reactions (ORR) and sulfur reduction reactions (SRR), critical kinetic steps in air-battery and Li-S batteries, respectively. Their distinctive structures also facilitate applications in gas-sensitive sensing, ionic conduction, high mobility dielectrics, oxygen storage, piezoelectricity, dehydration, H2O2 decomposition, and beyond. A comprehensive review from basic physicochemical properties to application certainly not only gains a full picture of mullite oxides but also provides new insights into designing heterogeneous catalysts.

14.
Eco Environ Health ; 3(2): 131-136, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38638173

RESUMEN

The quantity and complexity of environmental data show exponential growth in recent years. High-quality big data analysis is critical for performing a sophisticated characterization of the complex network of environmental pollution. Machine learning (ML) has been employed as a powerful tool for decoupling the complexities of environmental big data based on its remarkable fitting ability. Yet, due to the knowledge gap across different subjects, ML concepts and algorithms have not been well-popularized among researchers in environmental sustainability. In this context, we introduce a new research paradigm-"ChatGPT + ML + Environment", providing an unprecedented chance for environmental researchers to reduce the difficulty of using ML models. For instance, each step involved in applying ML models to environmental sustainability, including data preparation, model selection and construction, model training and evaluation, and hyper-parameter optimization, can be easily performed with guidance from ChatGPT. We also discuss the challenges and limitations of using this research paradigm in the field of environmental sustainability. Furthermore, we highlight the importance of "secondary training" for future application of "ChatGPT + ML + Environment".

15.
Cell Rep ; 43(3): 113942, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38489266

RESUMEN

Tumor-associated macrophages (TAMs) shape tumor immunity and therapeutic efficacy. However, it is poorly understood whether and how post-translational modifications (PTMs) intrinsically affect the phenotype and function of TAMs. Here, we reveal that peptidylarginine deiminase 4 (PAD4) exhibits the highest expression among common PTM enzymes in TAMs and negatively correlates with the clinical response to immune checkpoint blockade. Genetic and pharmacological inhibition of PAD4 in macrophages prevents tumor progression in tumor-bearing mouse models, accompanied by an increase in macrophage major histocompatibility complex (MHC) class II expression and T cell effector function. Mechanistically, PAD4 citrullinates STAT1 at arginine 121, thereby promoting the interaction between STAT1 and protein inhibitor of activated STAT1 (PIAS1), and the loss of PAD4 abolishes this interaction, ablating the inhibitory role of PIAS1 in the expression of MHC class II machinery in macrophages and enhancing T cell activation. Thus, the PAD4-STAT1-PIAS1 axis is an immune restriction mechanism in macrophages and may serve as a cancer immunotherapy target.


Asunto(s)
Hidrolasas , Procesamiento Proteico-Postraduccional , Ratones , Animales , Desiminasas de la Arginina Proteica/metabolismo , Arginina Deiminasa Proteína-Tipo 4/genética , Arginina Deiminasa Proteína-Tipo 4/metabolismo , Hidrolasas/metabolismo , Antígenos de Histocompatibilidad Clase II/metabolismo , Macrófagos/metabolismo
16.
Cancer Med ; 13(4): e7081, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38457217

RESUMEN

BACKGROUND: The intra- and inter-tumoral heterogeneity of gliomas and the complex tumor microenvironment make accurate treatment of gliomas challenging. At present, research on gliomas mainly relies on cell lines, stem cell tumor spheres, and xenotransplantation models. The similarity between traditional tumor models and patients with glioma is very low. AIMS: In this study, we aimed to address the limitations of traditional tumor models by generating patient-derived glioma organoids using two methods that summarized the cell diversity, histological features, gene expression, and mutant profiles of their respective parent tumors and assess the feasibility of organoids for personalized treatment. MATERIALS AND METHODS: We compared the organoids generated using two methods through growth analysis, immunohistological analysis, genetic testing, and the establishment of xenograft models. RESULTS: Both types of organoids exhibited rapid infiltration when transplanted into the brains of adult immunodeficient mice. However, organoids formed using the microtumor method demonstrated more similar cellular characteristics and tissue structures to the parent tumors. Furthermore, the microtumor method allowed for faster culture times and more convenient operational procedures compared to the Matrigel method. DISCUSSION: Patient-derived glioma organoids, especially those generated through the microtumor method, present a promising avenue for personalized treatment strategies. Their capacity to faithfully mimic the cellular and molecular characteristics of gliomas provides a valuable platform for elucidating tumor biology and evaluating therapeutic modalities. CONCLUSION: The success rates of the Matrigel and microtumor methods were 45.5% and 60.5%, respectively. The microtumor method had a higher success rate, shorter establishment time, more convenient passage and cryopreservation methods, better simulation of the cellular and histological characteristics of the parent tumor, and a high genetic guarantee.


Asunto(s)
Glioma , Adulto , Humanos , Animales , Ratones , Glioma/patología , Técnicas de Cultivo de Célula/métodos , Organoides/metabolismo , Organoides/patología , Células Madre Neoplásicas , Microambiente Tumoral
17.
Opt Express ; 32(4): 4944-4953, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38439233

RESUMEN

Single-frequency fiber lasers at S-, C-, and L-bands play a crucial role in various applications such as optical network expansion, high-precision metrology, coherent lidar, and atomic physics. However, compared to the C-band, the S- and L-bands have wavelength deviations and suffer from excited-state absorption, which limits the output performance. To address this issue, a strategy called ion hybridization has been proposed to increase the differences in site locations of rare earth (RE) ions in the laser matrix, thereby achieving a broader gain bandwidth. This strategy has been applied to an Er3+/Yb3+ co-doped modified phosphate fiber (EYMPF), resulting in gain coefficients per unit length greater than 2 dB/cm at S-, C-, and L-bands. To demonstrate its capabilities, several centimeter-long EYMPFs have been used to generate single-frequency laser outputs at S-, C- and L-bands with kHz-linewidths, high signal-to-noise ratios (>70 dB), and low relative intensity noise (<-130 dB/Hz) in a compact short linear-cavity configuration.

18.
Cancer Cell Int ; 24(1): 7, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172959

RESUMEN

BACKGROUND: The high invasiveness and infiltrative nature of Glioblastoma (GBM) pose significant challenges for surgical removal. This study aimed to investigate the role of KCNA1 in GBM progression. METHODS: CCK8, colony formation assay, scratch assay, transwell assay, and 3D tumor spheroid invasion assays were to determine how KCNA1 affects the growth and invasion of GBM cells. Subsequently, to confirm the impact of KCNA1 in ferroptosis, western blot, transmission electron microscopy and flow cytometry were conducted. To ascertain the impact of KCNA1 in vivo, patient-derived orthotopic xenograft models were established. RESULTS: In functional assays, KCNA1 promotes the growth and invasion of GBM cells. Besides, KCNA1 can increase the expression of SLC7A11 and protect cells from ferroptosis. The vivo experiments demonstrated that knocking down KCNA1 inhibited the growth and infiltration of primary tumors in mice and extended survival time. CONCLUSION: Therefore, our research suggests that KCNA1 may promote tumor growth and invasion by upregulating the expression of SLC7A11 and inhibiting ferroptosis, making it a promising therapeutic target for GBM.

19.
Environ Pollut ; 346: 123018, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38016590

RESUMEN

The disposal of coffee shell waste on farmland, is a common practice that can causing the environmental and waste valuable resources. Carbonization has been identified as an effective method for transforming coffee shells into useful products that mitigate environmental pollution. Through the response surface methodology, the carbonization conditions of the coffee shells were optimized and its potential as a biochar-based slow-release urea fertilizer was explored. Experiments were conducted on coffee shell performance under varying carbonization conditions such as temperature (600-1000 °C), time (1-5 h), and heating rate (5-20 °C/min). The results indicated that the ideal urea adsorption was 56.3 mg/g, achieved under carbonization conditions of 2.83 h, 809 °C, and 15.3 °C/min. The optimal nutrient release rate within seven days was 45.4% under carbonization conditions of 3.19 h, 813 °C, and 15.0 °C/min. The infrared spectroscopy analysis indicates that carbonization conditions influenced the absorption peak intensity of coffee shell biochar, while the functional group types remain unchanged. The biochar exhibits diverse functional groups and abundant pores, making it a promising candidate for use as a biochar-based fertilizer material. Overall, the findings demonstrate an effective waste management approach that significantly reduces environmental pollutants while remediating pollution.


Asunto(s)
Café , Restauración y Remediación Ambiental , Fertilizantes , Carbón Orgánico/química , Adsorción , Urea/química
20.
J Colloid Interface Sci ; 657: 334-343, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38043235

RESUMEN

Reconstruction universally occurs over non-layered transition metal sulfides (TMSs) during oxygen evolution reaction (OER), leading to the formation of active species metal (oxy)hydroxide and thus significantly influences the OER performance. However, the reconstruction process and underlying mechanism quantitatively remain largely unexplored. Herein, we proposed an electrochemical reaction mechanism, namely sulfide oxidation reaction (SOR), to elucidate the reconstruction process of pyrite-type TMSs. Based on this mechanism, we evaluated the reconstruction capability of NiS2 doped with transition metals V, Cr, Mn, Fe, Co, Cu, Mo, Ru, Rh, and Ir within different doped systems. Two key descriptors were thus proposed to describe the reconstruction abilities of TMSs: USOR (the theoretical electric potential of SOR) and ΔU (the difference between the theoretical electric potential of SOR and OER), representing the initiation electric potential of reconstruction and the intrinsic reconstruction abilities of TMSs, respectively. Our finding shows that a lower USOR readily initiate reconstruction at a lower potential and a larger ΔU indicating a poorer reconstruction ability of the catalyst during OER. Furthermore, Fe-doped CoS2 was used to validate the rationality of our proposed descriptors, being consistent with the experiment findings. Our work provides a new perspective on understanding the reconstruction mechanism and quantifying the reconstruction of TMSs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA