Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 170
Filtrar
1.
Ying Yong Sheng Tai Xue Bao ; 35(3): 749-758, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38646763

RESUMEN

With the economic development, a large number of engineering accumulation bodies with Lou soil as the main soil type were produced in Guanzhong area, Northwest China. We examined the characteristics of runoff and sediment yield of Lou soil accumulation bodies with earth (gravel content 0%) and earth-rock (gravel content 30%) under different rainfall intensities (1.0, 1.5, 2.0, 2.5 mm·min-1) and different slope lengths (3, 5, 6.5, 12 m) by the simulating rainfall method. The results showed that runoff rate was relatively stable when rainfall intensity was 1.0-1.5 mm·min-1, while runoff rate fluctuated obviously when rainfall intensity was 2.0-2.5 mm·min-1. The average runoff rate varied significantly across different rainfall intensities on the same slopes, and the difference of average runoff rate of the two slopes was significantly increased with rainfall intensity. Under the same rainfall intensity, the difference in runoff rate between the slope lengths of the earth-rock slope was more obvious than that of the earth slope. When the slope length was 3-6.5 m, flow velocity increased rapidly at first and then increased slowly or tended to be stable. When the slope length was 12 m, flow velocity increased significantly. In general, with the increases of rainfall intensity, inhibition effect of gravel on the average flow velocity was enhanced. When rainfall intensity was 2.5 mm·min-1, the maximum reduction in the average flow velocity of earth-rock slope was 61.5% lower than that of earth slope. When rainfall intensity was less than 2.0 mm·min-1, sediment yield rate showed a trend of gradual decline or stable change, while that under the other rainfall intensities showed a trend of rapid decline and then fluctuated sharply. The greater the rainfall intensity, the more obvious the fluctuation. There was a significant positive correlation between the average sediment yield rate and runoff parameters, with the runoff rate showing the best fitting effect. Among the factors, slope length had the highest contribution to runoff velocity and rainfall erosion, which was 51.8% and 35.5%, respectively. This study can provide scientific basis for soil and water erosion control of engineering accumulation in Lou soil areas.


Asunto(s)
Sedimentos Geológicos , Lluvia , Suelo , Movimientos del Agua , China , Suelo/química , Ecosistema , Monitoreo del Ambiente/métodos , Gravitación , Ingeniería
2.
Water Res ; 255: 121533, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38569359

RESUMEN

Low-pressure mercury lamps emitting at 254 nm (UV254) are used widely for disinfection. However, subsequent exposure to visible light results in photoreactivation of treated bacteria. This study employed a krypton chloride excimer lamp emitting at 222 nm (UV222) to inactivate E. coli. UV222 and UV254 treatment had similar E. coli-inactivation kinetics. Upon subsequent irradiation with visible light, E. coli inactivated by UV254 was reactivated from 2.71-log to 4.75-log, whereas E. coli inactivated by UV222 showed negligible photoreactivation. UV222 treatment irreversibly broke DNA strands in the bacterium, whereas UV254 treatment primarily formed nucleobase dimers. Additionally, UV222 treatment caused cell membrane damage, resulting in wizened, pitted cells and permeability changes. The damage to the cell membrane was mainly due to the photolysis of proteins and lipids by UV222. Furthermore, the photolysis of proteins by UV222 destroyed enzymes, which blocked photoreactivation and dark repair. The multiple damages can be further evidenced by 4.0-61.1 times higher quantum yield in the photolysis of nucleobases and amino acids for UV222 than UV254. This study demonstrates that UV222 treatment damages multiple sites in bacteria, leading to their inactivation. Employing UV222 treatment as an alternative to UV254 could be viable for inhibiting microorganism photoreactivation in water and wastewater.

3.
Environ Sci Technol ; 58(16): 7113-7123, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38547102

RESUMEN

Low-pressure mercury lamps with high-purity quartz can emit both vacuum-UV (VUV, 185 nm) and UV (254 nm) and are commercially available and promising for eliminating recalcitrant organic pollutants. The feasibility of VUV/UV as a chemical-free oxidation process was verified and quantitatively assessed by the concept of H2O2 equivalence (EQH2O2), at which UV/H2O2 showed the same performance as VUV/UV for the degradation of trace organic contaminants (TOrCs). Although VUV showed superior H2O activation and oxidation performance, its performance highly varied as a function of light path length (Lp) in water, while that of UV/H2O2 proportionally decreased with decreasing H2O2 dose regardless of Lp. On increasing Lp from 1.0 to 3.0 cm, the EQH2O2 of VUV/UV decreased from 0.81 to 0.22 mM H2O2. Chloride and nitrate hardly influenced UV/H2O2, but they dramatically inhibited VUV/UV. The competitive absorbance of VUV by chloride and nitrate was verified as the main reason. The inhibitory effect was partially compensated by •OH formation from the propagation reactions of chloride or nitrate VUV photolysis, which was verified by kinetic modeling in Kintecus. In water with an Lp of 2.0 cm, the EQH2O2 of VUV/UV decreased from 0.43 to 0.17 mM (60.8% decrease) on increasing the chloride concentration from 0 to 15 mM and to 0.20 mM (53.5% decrease) at 4 mM nitrate. The results of this study provide a comprehensive understanding of VUV/UV oxidation in comparison to UV/H2O2, which underscores the suitability and efficiency of chemical-free oxidation with VUV/UV.


Asunto(s)
Peróxido de Hidrógeno , Compuestos Orgánicos , Oxidación-Reducción , Rayos Ultravioleta , Peróxido de Hidrógeno/química , Compuestos Orgánicos/química , Fotólisis , Contaminantes Químicos del Agua/química , Nitratos/química
4.
Water Res ; 253: 121353, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38401473

RESUMEN

Ozonation of wastewater containing bromide (Br-) forms highly toxic organic bromine. The effectiveness of ozonation in mitigating wastewater toxicity is minimal. Simultaneous application of ozone (O3) (5 mg/L) and ferrate(VI) (Fe(VI)) (10 mg-Fe/L) reduced cytotoxicity and genotoxicity towards mammalian cells by 39.8% and 71.1% (pH 7.0), respectively, when the wastewater has low levels of Br-. This enhanced reduction in toxicity can be attributed to increased production of reactive iron species Fe(IV)/Fe(V) and reactive oxygen species (•OH) that possess higher oxidizing ability. When wastewater contains 2 mg/L Br-, ozonation increased cytotoxicity and genotoxicity by 168%-180% and 150%-155%, respectively, primarily due to the formation of organic bromine. However, O3/Fe(VI) significantly (p < 0.05) suppressed both total organic bromine (TOBr), BrO3-, as well as their associated toxicity. Electron donating capacity (EDC) measurement and precursor inference using Orbitrap ultra-high resolution mass spectrometry found that Fe(IV)/Fe(V) and •OH enhanced EDC removal from precursors present in wastewater, inhibiting electrophilic substitution and electrophilic addition reactions that lead to organic bromine formation. Additionally, HOBr quenched by self-decomposition-produced H2O2 from Fe(VI) also inhibits TOBr formation along with its associated toxicity. The adsorption of Fe(III) flocs resulting from Fe(VI) decomposition contributes only minimally to reducing toxicity. Compared to ozonation alone, integration of Fe(VI) with O3 offers improved safety for treating wastewater with varying concentrations of Br-.


Asunto(s)
Ozono , Contaminantes Químicos del Agua , Purificación del Agua , Animales , Bromo , Aguas Residuales , Compuestos Férricos , Peróxido de Hidrógeno/análisis , Oxidación-Reducción , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos , Hierro/química , Ozono/química , Mamíferos
5.
Environ Sci Process Impacts ; 26(5): 824-831, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38323647

RESUMEN

The control of viruses in water is critical to preventing the spread of infectious viral diseases. Many oxidants can inactivate viruses, and this study aims to systematically compare the disinfection effects of ozone (O3), peroxymonosulfate (PMS), and hydrogen peroxide (H2O2) on MS2 coliphage. The effects of oxidant dose and contact time on disinfection were explored, as were the disinfection effects of three oxidizing agents in secondary effluent. The 4-log inactivation of MS2 coliphage required 0.05 mM O3, 0.5 mM PMS, or 25 mM H2O2 with a contact time of 30 min. All three oxidants achieved at least 4-log disinfection within 30 min, and O3 required only 0.5 min. In secondary effluent, all three oxidants also achieved 4-log inactivation of MS2 coliphage. Excitation-emission matrix (EEM) results indicate that all three oxidants removed dissolved organic matter synchronously and O3 oxidized dissolved organic matter more thoroughly while maintaining disinfection efficacy. Considering the criteria of oxidant dose, contact time, and disinfection efficacy in secondary effluent, O3 is the best choice for MS2 coliphage disinfection among the three oxidants.


Asunto(s)
Desinfección , Peróxido de Hidrógeno , Levivirus , Ozono , Peróxidos , Purificación del Agua , Ozono/química , Ozono/farmacología , Desinfección/métodos , Levivirus/efectos de los fármacos , Peróxidos/química , Purificación del Agua/métodos , Microbiología del Agua , Desinfectantes/farmacología , Oxidantes/farmacología , Oxidantes/química
6.
Anal Chem ; 96(6): 2387-2395, 2024 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-38285925

RESUMEN

Highly sensitive and rapid measurement of food allergens is essential to avoid unanticipated food allergies and to determine whether cross-contamination occurs in the food industry. Commercial immunoassay kits offer high specificity and convenience for allergen detection but still suffer limited quantitative sensitivity, accuracy, and stability based on the optical readout. In this work, a paper-based mass spectrometric immunoassay platform was constructed to achieve facile and highly sensitive quantification of peanut allergen, which combined the advantages of good specificity and accurate quantification from mass spectrometry and simplicity from a paper-based immunoassay. In this platform, a novel quaternary ammonium-based mass tag and a paper chip with a microzone were designed and developed, contributing to a large signal enhancement. This method was able to detect Ara h1 with a linear range of 0.1-100 ng mL-1 and a detection limit of 0.08 ng mL-1 in milk matrices. It has also been successfully applied to the accurate quantification of Ara h1 in six milk-related beverages, two biscuits, and two candy bars with complicated matrices and presented a low-concentration quantitation capability. This method gives a new type of mass spectrometric immunoassay for rapid and ultrasensitive allergen regulation in the food industry and for individual allergen differentiation research.


Asunto(s)
Alérgenos , Hipersensibilidad a los Alimentos , Inmunoensayo/métodos , Alérgenos/análisis , Espectrometría de Masas , Arachis/química
7.
Environ Sci Technol ; 58(3): 1700-1708, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38154042

RESUMEN

Ozonation is universally used during water treatment but can form hazardous brominated disinfection byproducts (Br-DBPs). While sunlight exposure is advised to reduce the risk of Br-DBPs, their phototransformation pathways remain insufficiently understood. Here, sunlight irradiation was found to reduce adsorbable organic bromine by 63%. Applying high-resolution mass spectrometry, the study investigated transformations of dissolved organic matter in sunlit-ozonated reclaimed water, revealing the number and abundance of assigned formulas decreased after irradiation. The Br-DBPs with O/C < 0.6 and MW > 400 Da were decreased or removed after irradiation, with the majority being CHOBr compounds. The peak intensity reduction ratio of CHOBr compounds correlated positively with double bound equivalent minus oxygen ratios but negatively with O/C, suggesting that photo-susceptible CHOBr compounds were highly unsaturated. Mass difference analysis revealed that the photodegradation pathways were mainly oxidation aligned with debromination. Three typical CHOBr molecular structures were resolved, and their photoproducts were proposed. Toxicity estimates indicated decreased toxicity in these photoproducts compared to their parent compounds, in line with experimentally determined values. Our proposed phototransformation pathways for Br-DBPs enhance our comprehension of their degradation and irradiation-induced toxicity reduction in reclaimed water, further illuminating their transformation under sunlight in widespread environmental scenarios.


Asunto(s)
Desinfectantes , Contaminantes Químicos del Agua , Purificación del Agua , Desinfección/métodos , Desinfectantes/análisis , Desinfectantes/química , Desinfectantes/toxicidad , Halogenación , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos
8.
Eur J Med Chem ; 265: 116027, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38128236

RESUMEN

The Src homology 2 domain-containing protein tyrosine phosphatase 1 (SHP1) is a convergent node for oncogenic cell-signaling cascades. Consequently, SHP1 represents a potential target for drug development in cancer treatment. The development of efficient methods for rapidly tracing and modulating the SHP1 activity in complex biological systems is of considerable significance for advancing the integration of diagnosis and treatment of the related disease. Thus, we designed and synthesized a series of imidazo[1,2,4] triazole derivatives containing salicylic acid to explore novel scaffolds with inhibitory activities and good fluorescence properties for SHP1. The photophysical properties and inhibitory activities of these imidazo[1,2,4] triazole derivatives (5a-5y) against SHP1PTP were thoroughly studied from the theoretical simulation and experimental application aspects. The representative compound 5p exhibited remarkable fluorescence response (P: 0.002) with fluorescence quantum yield (QY) of 0.37 and inhibitory rate of 85.21 ± 5.17% against SHP1PTP at the concentration of 100 µM. Furthermore, compound 5p showed obvious aggregation caused quenching (ACQ) effect and had high selectivity for Fe3+ ions, good anti-interference and relatively low detection limit (5.55 µM). Finally, the cellular imaging test of compound 5p also exhibited good biocompatibility and certain potential biological imaging application. This study provides a potential way to develop molecules with fluorescent properties and bioactivities for SHP1.


Asunto(s)
Proteínas Tirosina Fosfatasas , Transducción de Señal , Fluorescencia , Proteína Tirosina Fosfatasa no Receptora Tipo 6/metabolismo , Triazoles/farmacología
9.
J Hazard Mater ; 464: 133011, 2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-37988868

RESUMEN

Microwave discharge electrodeless lamp (MDEL) is a novel ultraviolet (UV) light source. Synergistic disinfection using UV light emitted by MDEL (MWUV) coupled with ozone (O3) at an ultra-low dose was investigated. Escherichia coli and Bacillus subtilis were deactivated more effectively by MWUV/O3 than by either MWUV or O3 alone. MWUV/O3 treatment using an O3 concentration of 0.4 mg/L gave an E. coli inactivation rate of 5.52 log. The photoreactivation degree and rate of E. coli were lower after inactivation by MWUV/O3 treatment than after MWUV treatment alone. The maximum photoreactivation rates after the MWUV/O3 and MWUV treatments were 2.90% and 16.08%, respectively. MWUV/O3 disinfection also inhibited dark resurrection of E. coli and gave a maximum dark resurrection rate of 0.0036%. Electron paramagnetic resonance spectroscopy indicated that more hydroxyl radicals were generated during MWUV/O3 treatment. Scanning electron microscopy and laser confocal scanning microscopy observations indicated that O3 played a key role in breaking down the cell structure. MWUV/O3 treatment gave a good disinfection effect on fecal coliform bacteria in actual domestic wastewater. The results indicated that inactivation of bacteria can be more effectively achieved by MWUV treatment with O3.


Asunto(s)
Ozono , Purificación del Agua , Desinfección/métodos , Aguas Residuales , Escherichia coli , Microondas , Rayos Ultravioleta , Purificación del Agua/métodos
10.
J Environ Sci (China) ; 139: 12-22, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38105040

RESUMEN

Carbon nitride has been extensively used as a visible-light photocatalyst, but it has the disadvantages of a low specific surface area, rapid electron-hole recombination, and relatively low light absorbance. In this study, single-atom Ag was successfully anchored on ultrathin carbon nitride (UTCN) via thermal polymerization, the catalyst obtained is called AgUTCN. The Ag hardly changed the carbon nitride's layered and porous physical structure. AgUTCN exhibited efficient visible-light photocatalytic performances in the degradation of various recalcitrant pollutants, eliminations of 85% were achieved by visible-light irradiation for 1 hr. Doping with Ag improved the photocatalytic performance of UTCN by narrowing the forbidden band gap from 2.49 to 2.36 eV and suppressing electron-hole pair recombination. In addition, Ag doping facilitated O2 adsorption on UTCN by decreasing the adsorption energy from -0.2 to -2.22 eV and favored the formation of O2·-. Electron spin resonance and radical-quenching experiments showed that O2·- was the major reactive species in the degradation of Acetaminophen (paracetamol, APAP).


Asunto(s)
Acetaminofén , Contaminantes Ambientales , Nitrilos/química , Carbono , Catálisis
11.
Environ Int ; 182: 108314, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37979535

RESUMEN

Vacuum ultraviolet (VUV, 185 + 254 nm) irradiation performs well for oxidation of model pollutants. However, oxidation of pollutants does not necessarily lead to a reduction in toxicity. Currently, a comprehensive understanding of the effect of VUV irradiation on the toxicity of real wastewater is still lacking. In this study, the influence of VUV irradiation on the toxicity of secondary effluents to Chinese hamster ovary (CHO) cells was investigated. The induction units of endogenous reactive oxygen species (ROS) and 8-hydroxyguanosine (8-OHdG) in cells continuously decreased with prolonged irradiation time. After 36 min of irradiation, the cytotoxicity and the genotoxicity of the secondary effluents were reduced by 57%-63% and 56%-61%, respectively. The UV (254 nm), •OH, and other substances generated during the VUV irradiation directly drive toxicity changes of wastewater. The contribution of •OH generated during VUV irradiation to the reductions in cytotoxicity and genotoxicity of the secondary effluents reached 72%-78% and 77%-84%, respectively. Hydroxyl radicals generated during VUV irradiation played an important role in the detoxification. The relative signal intensity of dissolved organic carbon (DOC) > 500 Da was partially removed, whereas that of DOC < 500 Da was small changed. Since the content of DOC > 500 Da in the samples was much lower than that of DOC < 500 Da, the removal of total DOC was only 15.8%-20.0% after 36 min of irradiation. The UV254 values and the fluorescence intensity values for different molecular weights (MWs) were all reduced effectively by VUV irradiation. Electron-rich organic compounds of all MWs were all sensitive to VUV irradiation. There were mono-linear relationships between changes in chemical indexes and changes in cytotoxicity or genotoxicity. The total fluorescence intensity (Ex: 220-420 nm, Em: 280-560 nm) was identified as the best indicator of the reduction in toxicity.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Purificación del Agua , Cricetinae , Animales , Aguas Residuales , Células CHO , Vacio , Cricetulus , Rayos Ultravioleta , Compuestos Orgánicos , Materia Orgánica Disuelta , Oxidación-Reducción , Contaminantes Químicos del Agua/análisis
12.
Food Res Int ; 173(Pt 1): 113286, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37803599

RESUMEN

Foodborne microbial contamination (FMC) is the leading cause of food poisoning and foodborne illness. The foodborne microbial detection methods based on isothermal amplification have high sensitivity and short detection time, and functional nucleic acids (FNAs) could extend the detectable object of isothermal amplification to mycotoxins. Therefore, the strategy of FNAs-mediated isothermal amplification has been emergingly applied in biosensors for foodborne microbial contaminants detection, making biosensors more sensitive with lower cost and less dependent on nanomaterials for signal output. Here, the mechanism of six isothermal amplification technologies and their application in detecting FMC is firstly introduced. Then the strategy of FNAs-mediated isothermal amplification is systematically discussed from perspectives of FNAs' versatility including recognition elements (Aptamer, DNAzyme), programming tools (DNA tweezer, DNA walker and CRISPR-Cas) and signal units (G-quadruplex, FNAs-based nanomaterials). Finally, challenges and prospects are presented in terms of addressing the issue of nonspecific amplification reaction, developing better FNAs-based sensing elements and eliminating food matrix effects.


Asunto(s)
ADN Catalítico , G-Cuádruplex , Nanoestructuras , Técnicas de Amplificación de Ácido Nucleico/métodos , ADN , ADN Catalítico/genética
13.
Environ Pollut ; 339: 122771, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37858698

RESUMEN

The ammonia/chlorine oxidation process can greatly degrade PPCPs in water. However, its effect on molecular transformations of natural organic matter (NOM) and effluent organic matter (EfOM) are still poorly understood. In this study, molecular transformations of NOM and EfOM occurring during ammonia/chlorine were explored and compared with those occurred during chlorination, using spectroscopy and mass spectrometry. Phenolic and highly unsaturated aliphatic compounds together with aliphatic compounds were found to be predominant in both NOM and EfOM samples, all of which were significantly degraded after two processes. The ammonia/chlorine process led to greater decreases in the molecular weights of such components but lower reductions in aromaticity. Compared with chlorination, ammonia/chlorine was found to be more likely to degrade compounds while remaining fluorophores or chromophores. The CH(N)O(S) precursors were found to be similar for both processes but their products were quite different. The CH(N)O(S) precursors that only found in ammonia/chlorine had higher molecular weights and greater degrees of oxidation but lower degrees of saturation. In contrast, the unique CH(N)O(S) products that only found in ammonia/chlorine exhibited lower molecular weights and lower degrees of oxidation degrees together with higher degrees of saturation. Lower total abundance of chlorinated byproducts was found by ammonia/chlorine compared with chlorination, although the former process provided a richer diversity. In all water samples, chlorinated byproducts were mainly generated by substitution reactions during ammonia/chlorine and chlorination. Overall, the findings of this study could provide new insights into the transformations of NOM and EfOM induced by ammonia/chlorine and chlorination.


Asunto(s)
Cloro , Purificación del Agua , Cloro/química , Halogenación , Desinfección/métodos , Materia Orgánica Disuelta , Amoníaco/química , Purificación del Agua/métodos , Agua
14.
Ying Yong Sheng Tai Xue Bao ; 34(7): 1862-1870, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37694470

RESUMEN

Gully head is the main active part of gully erosion, which seriously affects the occurrence of gully headcut erosion. To investigate root distribution and soil physical and mechanical characteristics of typical vegetation gully head, we analyzed the infiltration, root distribution, physical and mechanical properties of soil-root complex of soil in different layers (0-1 m) in natural restoration gully head and artificial restoration gully head. The results showed that the variability of soil bulk and total porosity among different vegetation gully heads was low, with bulk density ranging from 1.10 to 1.37 g·cm-3 and total porosity ranging from 48.3% to 58.4%. Infiltration index of different vegetation gully heads generally decreased with increasing soil depth. The infiltration rate of different soil layers in natural restoration gully head tended to stabilize in 20-30 min, while that of artificial restoration gully head tended to stabilize in 40 min. The infiltration capacity and average infiltration rate of artificial restoration gully head were generally higher than those of natural restoration gully head in all soil layers. Root length density, root surface area density, and average diameter all tended to decrease with increasing soil depth. Except for the 20-40 cm soil layer, root length density, root surface area density and average diameter of natural restoration gully head were all lower than those of artificial restoration gully head. Root system of both vegetation gully heads mainly consisted of 0-0.5 mm roots, accounting for 84.2%-93.6% of the total root length. In the vertical depth, with the increases of water content, the cohesion force decreased linearly with the deepening of soil layer, ranging from 0.42 to 22.67 kPa. The average cohesion force of artificial restoration gully head was higher than natural restoration gully head at each level of water content. The study revealed the effects of vegetation on the gully head cut erosion, which could provide scientific basis for the effective prevention and control of soil erosion in the region.


Asunto(s)
Suelo , Agua , Resistencia al Corte , China , Porosidad
15.
Cells ; 12(17)2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37681860

RESUMEN

Androgen has been shown to regulate male physiological activities and cancer proliferation. It is used to antagonize estrogen-induced proliferative effects in breast cancer cells. However, evidence indicates that androgen can stimulate cancer cell growth in estrogen receptor (ER)-positive and ER-negative breast cancer cells via different types of receptors and different mechanisms. Androgen-induced cancer growth and metastasis link with different types of integrins. Integrin αvß3 is predominantly expressed and activated in cancer cells and rapidly dividing endothelial cells. Programmed death-ligand 1 (PD-L1) also plays a vital role in cancer growth. The part of integrins in action with androgen in cancer cells is not fully mechanically understood. To clarify the interactions between androgen and integrin αvß3, we carried out molecular modeling to explain the potential interactions of androgen with integrin αvß3. The androgen-regulated mechanisms on PD-L1 and its effects were also addressed.


Asunto(s)
Andrógenos , Antígeno B7-H1 , Masculino , Humanos , Andrógenos/farmacología , Células Endoteliales , Integrina alfaVbeta3 , Transformación Celular Neoplásica
16.
World J Gastroenterol ; 29(32): 4900-4911, 2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37701133

RESUMEN

BACKGROUND: Wilson disease (WD) is the most common genetic metabolic liver disease. Some studies have shown that comorbidities may have important effects on WD. Data on hepatitis B virus (HBV) infection in patients with WD are limited. AIM: To investigate the prevalence and clinical impact of HBV infection in patients with WD. METHODS: The clinical data of patients with WD were analyzed retrospectively, and the data of patients with concurrent WD and HBV infection were compared with those of patients with isolated WD. RESULTS: Among a total of 915 WD patients recruited, the total prevalence of current and previous HBV infection was 2.1% [95% confidence interval (CI): 1.2%-3.0%] and 9.2% (95%CI: 7.3%-11.1%), respectively. The main finding of this study was the identification of 19 patients with concurrent WD and chronic hepatitis B (CHB) infection. The diagnosis of WD was missed in all but two patients with CHB infection. The mean delay in the diagnosis of WD in patients with concurrent WD and CHB infection was 32.5 mo, which was significantly longer than that in patients with isolated WD (10.5 mo). The rates of severe liver disease and mortality in patients with concurrent WD and CHB infection were significantly higher than those in patients with isolated WD (63.1% vs 19.3%, P = 0.000 and 36.8% vs 4.1%, P < 0.001, respectively). Binary logistic regression analysis revealed a significantly higher risk of severe liver disease at the diagnosis of WD in patients with current HBV infection [odds ratio (OR) = 7.748; 95%CI: 2.890-20.774; P = 0.000)] or previous HBV infection (OR = 5.525; 95%CI: 3.159-8.739; P = 0.000) than in patients with isolated WD. CONCLUSION: The total prevalence of current HBV infection in patients with WD was 2.1%. The diagnosis of WD in CHB patients is usually missed. HBV infection is an independent risk factor for severe liver disease in WD patients. The diagnosis of WD should be ruled out in some patients with CHB infection.


Asunto(s)
Hepatitis B , Degeneración Hepatolenticular , Humanos , Virus de la Hepatitis B , Degeneración Hepatolenticular/diagnóstico , Degeneración Hepatolenticular/epidemiología , Estudios Retrospectivos , Hepatitis B/diagnóstico , Hepatitis B/epidemiología
17.
Molecules ; 28(16)2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37630424

RESUMEN

Due to the excellent characteristics of fluorescence-based imaging, such as non-invasive detection of biomarkers in vitro and in vivo with high sensitivity, good spatio-temporal resolution and fast response times, it has shown significant prospects in various applications. Compounds with both biological activities and fluorescent properties have the potential for integrated diagnosis and treatment application. Alectinib and Rilpivirine are two excellent drugs on sale that represent a clinically approved targeted therapy for ALK-rearranged NSCLC and have exhibited more favorable safety and tolerance profiles in Phase III clinical trials, ECHO and THRIVE, respectively. The optical properties of these two drugs, Alectinib and Rilpivirine, were deeply explored, firstly through the simulation of molecular structures, electrostatic potential, OPA/TPA and emission spectral properties and experiments on UV-vis spectra, fluorescence and cell imaging. It was found that Alectinib exhibited 7.8% of fluorescence quantum yield at the 450 nm excited wavelength, due to a larger electronic transition dipole moment (8.41 Debye), bigger charge transition quantity (0.682 e) and smaller reorganization energy (2821.6 cm-1). The stronger UV-vis spectra of Rilpivirine were due to a larger electron-hole overlap index (Sr: 0.733) and were also seen in CDD plots. Furthermore, Alectinib possessed obvious active two-photon absorption properties (δmaxTPA* ϕ = 201.75 GM), which have potential TPA imaging applications in bio-systems. Lastly, Alectinib and Rilpivirine displayed green fluorescence in HeLa cells, suggesting the potential ability for biological imaging. Investigation using theoretical and experimental methods is certainly encouraged, given the particular significance of developing integrated diagnosis and treatment.


Asunto(s)
Neoplasias Pulmonares , Rilpivirina , Humanos , Células HeLa , Carbazoles/farmacología
18.
J Mol Graph Model ; 125: 108585, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37544021

RESUMEN

Protein tyrosine phosphatase 1B (PTP1B) has proven to be an attractive target for the treatment of cancer, diabetes and other diseases. Although many PTP1B inhibitors with various scaffolds have been developed, there is still a lack of PTP1B inhibitor with high specificity and acceptable pharmacological properties. Therefore, it is urgent to develop more methods to explore complex action mode of PTP1B and ligands for designing ideal PTP1B modulators. In this work, we developed a potential molecular dynamics (MD) analytic mode to analyze the mechanism of active compounds 6a and 6e against PTP1B from different perspectives, including the stable ability, interactions and binding site of ligand and protein, the binding energy, relative movement between residues and changes in protein internal interactions. The simulated results demonstrated that compound 6a bound more stably to the active pocket of PTP1B than 6e due to its smaller molecular volume (326 Å3), matched electronegativity, and enhanced the positive correlation motion of residues, especially for WPD loop and P loop. Lastly, compound 6a as a competitive inhibitor for PTP1B was verified by enzyme kinetic assay. This work successfully studied the mechanism of compound 6a against PTP1B from various aspects, enriched the analysis of interaction mode between PTP1B and inhibitors. In summary, we hope that this work could provide more theoretical information for designing and developing more novel and ideal PTP1B inhibitors in the future.


Asunto(s)
Simulación de Dinámica Molecular , Neoplasias , Humanos , Sitios de Unión , Inhibidores Enzimáticos/química , Unión Proteica , Proteína Tirosina Fosfatasa no Receptora Tipo 1
19.
Water Res ; 243: 120435, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37536248

RESUMEN

Electroneutral carbonyls (ENCs) with low molecular weights (e.g., aldehydes and ketones) are recalcitrant to single water treatment process to achieve ultralow concentration. Residual ENCs are present in reverse osmosis permeate and pose risks to human health during potable use or industrial application in manufacturing processes. Herein, a combined vacuum-UV (VUV) oxidation and anion-exchange resin (AER) adsorption method was developed to treat the ENCs and reduce total organic carbon (TOC) to an ultralow concentration (< 5 µg/L) with high efficiency and at low cost. VUV-AER was 2.1-2.4 times more efficient than VUV alone for the removal of TOC. VUV oxidized the ENCs to electronegative carboxylic acids, which were adsorbed by the AER through electrostatic interactions and hydrogen bonding. When the VUV fluence was lower than 643 mJ cm-2, the AER could not achieve ultralow TOC removal of ENCs. The treat capacity of 1500-2900 valid bed volume (BVs) was achieved after increasing the VUV fluence to 1929 mJ cm-2. The AER could more efficiently adsorb carboxylic acids that contained more carboxylic groups or shorter carbon chain. Acetate was identified as the primary breakthrough product at relatively low VUV fluence, and oxalate was the main byproduct at relatively high VUV fluence. A mathematical model to predict TOC breakthrough was developed considering the VUV-oxidation kinetics and the AER breakthrough curve. The model was used to optimize the method to maximize TOC removal and minimize energy consumption. These results imply that VUV-AER is technically feasible and economically applicable to eliminate recalcitrant ENCs to ultralow concentration for the production of water requires high quality (e.g., potable water or electronic-grade ultrapure water).


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Humanos , Vacio , Adsorción , Rayos Ultravioleta , Oxidación-Reducción , Purificación del Agua/métodos , Ácidos Carboxílicos , Carbono , Aniones
20.
Zhongguo Zhong Yao Za Zhi ; 48(13): 3612-3622, 2023 Jul.
Artículo en Chino | MEDLINE | ID: mdl-37474994

RESUMEN

This study aimed to analyze the effect of Bletilla striata polysaccharide(BSP) on endogenous metabolites in serum of tumor-bearing mice treated with 5-fluorouracil(5-FU) by untargeted metabolomics techniques and explore the mechanism of BSP in alleviating the toxic and side effects induced by 5-FU. Male BALB/C mice were randomly divided into a normal group, a model group, a 5-FU group, and a 5-FU + BSP group, with eight mice in each group. Mouse colon cancer cells(CT26) were transplanted into the mice except for those in the normal group to construct the tumor-bearing mouse model by subcutaneous injection, and 5-FU chemotherapy and BSP treatment were carried out from the second day of modeling. The changes in body weight, diarrhea, and white blood cell count in the peripheral blood were recorded. The mice were sacrificed and sampled when the tumor weight of mice in the model group reached approximately 1 g. TUNEL staining was used to detect the cell apoptosis in the small intestine of each group. The proportions of hematopoietic stem cells and myeloid progenitor cells in bone marrow were measured by flow cytometry. Five serum samples were selected randomly from each group for untargeted metabolomics analysis. The results showed that BSP was not effective in inhibiting colon cancer in mice, but diarrhea, leukopenia, and weight loss caused by 5-FU chemotherapy were significantly improved after BSP intervention. In addition, apoptotic cells decreased in the small intestinal tissues and the percentages of hematopoietic stem cells and myeloid progenitor cells in bone marrow were significantly higher after BSP treatment. Metabolomics results showed that the toxic and side effects of 5-FU resulted in significant decrease in 29 metabolites and significant increase in 22 metabolites in mouse serum. Among them, 19 disordered metabolites showed a return to normal levels in the 5-FU+BSP group. The results of pathway enrichment indicated that metabolic pathways mainly involved pyrimidine metabolism, arachidonic acid metabolism, and steroid hormone biosynthesis. Therefore, BSP may ameliorate the toxic and side effects of 5-FU in the intestinal tract and bone marrow presumably by regulating nucleotide synthesis, inflammatory damage, and hormone production.


Asunto(s)
Neoplasias del Colon , Fluorouracilo , Animales , Masculino , Ratones , Neoplasias del Colon/tratamiento farmacológico , Diarrea , Fluorouracilo/efectos adversos , Hormonas , Metabolómica , Ratones Endogámicos BALB C , Polisacáridos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...