Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 268(Pt 1): 131804, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38670186

RESUMEN

Cold stress significantly threatens grape quality, yield, and geographical distribution. Although ethylene-responsive factors (ERFs) are recognized for their pivotal roles in cold stress, the regulatory mechanisms of many ERFs contributing to tolerance remain unclear. In this study, we identified the cold-responsive gene VvERF117 and elucidated its positive regulatory function in cold tolerance. VvERF117 exhibits transcriptional activity and localizes to the nucleus. VvERF117 overexpression improved cold tolerance in transgenic Arabidopsis, grape calli, and grape leaves, whereas VvERF117 silencing increased cold sensitivity in grape calli and leaves. Furthermore, VvERF117 overexpression remarkably upregulated the expression of several stress-related genes. Importantly, BAS1, encoding a 2-Cys peroxidase (POD), was confirmed as a direct target gene of VvERF117. Meanwhile, compared to the wild-type, POD activity and H2O2 content were remarkably increased and decreased in VvERF117-overexpressing grape calli and leaves, respectively. Conversely, VvERF117 silencing displayed the opposite trend in grape calli and leaves under cold stress. These findings indicate that VvERF117 plays a positive role in cold resistance by, at least in part, enhancing antioxidant capacity through regulating the POD-encoding gene VvBAS1, leading to effective mitigation of reactive oxygen species.


Asunto(s)
Antioxidantes , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Vitis , Vitis/genética , Vitis/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Antioxidantes/metabolismo , Frío , Respuesta al Choque por Frío/genética , Arabidopsis/genética , Plantas Modificadas Genéticamente/genética , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Peróxido de Hidrógeno/metabolismo
2.
Hortic Res ; 11(1): uhad260, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38288254

RESUMEN

Grapes are globally recognized as economically significant fruit trees. Among grape varieties, Thompson Seedless holds paramount influence for fresh consumption and for extensive applications in winemaking, drying, and juicing. This variety is one of the most efficient genotypes for grape genetic modification. However, the lack of a high-quality genome has impeded effective breeding efforts. Here, we present the high-quality reference genome of Thompson Seedless with all 19 chromosomes represented as 19 contiguous sequences (N50 = 27.1 Mb) with zero gaps and prediction of all telomeres and centromeres. Compared with the previous assembly (TSv1 version), the new assembly incorporates an additional 31.5 Mb of high-quality sequenced data with annotation of a total of 30 397 protein-coding genes. We also performed a meticulous analysis to identify nucleotide-binding leucine-rich repeat genes (NLRs) in Thompson Seedless and two wild grape varieties renowned for their disease resistance. Our analysis revealed a significant reduction in the number of two types of NLRs, TIR-NB-LRR (TNL) and CC-NB-LRR (CNL), in Thompson Seedless, which may have led to its sensitivity to many fungal diseases, such as powdery mildew, and an increase in the number of a third type, RPW8 (resistance to powdery mildew 8)-NB-LRR (RNL). Subsequently, transcriptome analysis showed significant enrichment of NLRs during powdery mildew infection, emphasizing the pivotal role of these elements in grapevine's defense against powdery mildew. The successful assembly of a high-quality Thompson Seedless reference genome significantly contributes to grape genomics research, providing insight into the importance of seedlessness, disease resistance, and color traits, and these data can be used to facilitate grape molecular breeding efforts.

3.
New Phytol ; 237(5): 1856-1875, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36527243

RESUMEN

Powdery mildew (PM) is a severe fungal disease of cultivated grapevine world-wide. Proanthocyanidins (PAs) play an important role in resistance to fungal pathogens; however, little is known about PA-mediated PM resistance in grapevine. We identified a WRKY transcription factor, VqWRKY56, from Vitis quinquangularis, the expression of which was significantly induced by PM. Overexpression (OE) of VqWRKY56 in Vitis vinifera increased PA content and reduced susceptibility to PM. Furthermore, the transgenic plants showed more cell death and increased accumulation of salicylic acid and reactive oxygen species. Transient silencing of VqWRKY56 in V. quinquangularis and V. vinifera reduced PA accumulation and increased the susceptibility to PM. VqWRKY56 interacted with VqbZIPC22 in vitro and in planta. The protein VqWRKY56 can bind to VvCHS3, VvLAR1, and VvANR promoters, and VqbZIPC22 can bind to VvANR promoter. Co-expression of VqWRKY56 and VqbZIPC22 significantly increased the transcript level of VvCHS3, VvLAR1, and VvANR genes. Finally, transient OE of VqbZIPC22 in V. vinifera promoted PA accumulation and improved resistance to PM, while transient silencing in V. quinquangularis had the opposite effect. Our study provides new insights into the mechanism of PA regulation by VqWRKY56 in grapevine and provides a basis for further metabolic engineering of PA biosynthesis to improve PM resistance.


Asunto(s)
Proantocianidinas , Vitis , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Vitis/genética , Vitis/metabolismo , Regiones Promotoras Genéticas/genética , Metabolismo Secundario , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/microbiología
4.
Hortic Res ; 2022 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-35184164

RESUMEN

Anthocyanins are plant secondary metabolites that have a variety of biological functions, including pigmentation. The accumulation of anthocyanins is regulated by both transcriptional activators and repressors. Studies have shown that the bZIP family act primarily as positive regulators of anthocyanin biosynthesis, but there are few reports of negative regulation. Here, we report that a grapevine (Vitis vinifera) bZIP gene from group K, VvbZIP36, acts as a negative regulator of anthocyanin biosynthesis. Knocking-out one allele of VvbZIP36 in grapevine utilizing the CRISPR/Cas9 technology promoted anthocyanin accumulation. Correlation analysis of transcriptome and metabolome data showed that, compared with wild type, a range of anthocyanin biosynthesis genes were activated in VvbZIP36 mutant plants, resulting in the accumulation of related metabolites, including naringenin chalcone, naringenin, dihydroflavonols and cyanidin-3-O-glucoside. Furthermore, the synthesis of stilbenes (α-viniferin), lignans and some flavonols (including quercetin-3-O-rhamnoside, kaempferol-3-O-rhamnoside and kaempferol-7-O-rhamnoside) was significantly inhibited and several genes linked to these metabolism, were down-regulated in the mutant plants. In summary, our results demonstrate that VvbZIP36, as a negative regulator of anthocyanin biosynthesis, plays a role in balancing the synthesis of stilbenes (α-viniferin), lignans, flavonols and anthocyanins.

5.
Hortic Res ; 2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-35043152

RESUMEN

Powdery mildew (PM), caused by the fungal pathogen Erysiphe necator, is one of the most destructive diseases of grapevine (Vitis vinifera and other Vitis spp). Resistance to PM is an important goal for cultivar improvement, and understanding the underlying molecular mechanisms conditioning resistance is critical. Here, we report that transgenic expression of the WRKY transcription factor gene VqWRKY31 from the PM-resistant species Vitis quinquangularis conferred resistance to powdery mildew in V. vinifera through promoting salicylic acid signaling and specific metabolite synthesis. VqWRKY31 belongs to the WRKY IIb subfamily, and expression of the VqWRKY31 gene was induced in response to E. necator inoculation. Transgenic V. vinifera plants expressing VqWRKY31 were substantially less susceptible to E. necator infection, and this was associated with increased levels of salicylic acid and reactive oxygen species. Correlation analysis of transcriptomic and metabolomic data revealed that VqWRKY31 promoted expression of genes in metabolic pathways and the accumulation of many disease resistance-related metabolites, including stilbenes, flavonoids, and proanthocyanidins. In addition, results indicated that VqWRKY31 can directly bind to the promoters of two structural genes in stilbene synthesis, STS9 and STS48, and activate their expression. Based on our results, we propose a model where VqWRKY31 enhances grapevine PM resistance through activation of salicylic acid defense signaling and promotion of specific disease resistance-related metabolite synthesis. These findings can be directly exploited for molecular breeding strategies to produce PM-resistant grapevine germplasm.

6.
Hortic Res ; 8(1): 114, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33931634

RESUMEN

The CRISPR (clustered regularly interspaced short palindromic repeats)-associated protein 9 (Cas9) system is a powerful tool for targeted genome editing, with applications that include plant biotechnology and functional genomics research. However, the specificity of Cas9 targeting is poorly investigated in many plant species, including fruit trees. To assess the off-target mutation rate in grapevine (Vitis vinifera), we performed whole-genome sequencing (WGS) of seven Cas9-edited grapevine plants in which one of two genes was targeted by CRISPR/Cas9 and three wild-type (WT) plants. In total, we identified between 202,008 and 272,397 single nucleotide polymorphisms (SNPs) and between 26,391 and 55,414 insertions/deletions (indels) in the seven Cas9-edited grapevine plants compared with the three WT plants. Subsequently, 3272 potential off-target sites were selected for further analysis. Only one off-target indel mutation was identified from the WGS data and validated by Sanger sequencing. In addition, we found 243 newly generated off-target sites caused by genetic variants between the Thompson Seedless cultivar and the grape reference genome (PN40024) but no true off-target mutations. In conclusion, we observed high specificity of CRISPR/Cas9 for genome editing of grapevine.

7.
Foods ; 10(3)2021 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-33809507

RESUMEN

In this study, ultraviolet-C (UV-C) was utilized to improve the quality of post-harvest grape berries, and the transcriptomic and metabolomic basis of this improvement was elucidated. Berries of the red grape variety 'Zicui' and the white variety 'Xiangfei' were chosen to evaluate the effect of short- and long-term UV-C irradiation. Post-harvest UV-C application promoted malondialdehyde (MDA) and proline accumulation, and reduced the soluble solid content in berries. Both the variety and duration of irradiation could modulate the transcriptomic and metabolomic responses of berries to UV-C. Compared with the control, the differentially expressed genes (DEGs) identified under UV-C treatment were enriched in pathways related to metabolite accumulation, hormone biosynthesis and signal transduction, and reactive oxygen species (ROS) homeostasis. Flavonoid biosynthesis and biosynthesis of other secondary metabolites were the shared pathways enriched with differential metabolites. After long-term UV-C irradiation, cis-resveratrol accumulated in the berries of the two varieties, while the differential chalcone, dihydroflavone, flavonoid, flavanol, and tannin components primarily accumulated in 'Xiangfei', and some flavonols and anthocyanins primarily accumulated in 'Zicui'. Based on an exhaustive survey, we made a summary for the effect of UV-C in regulating the quality development of post-harvest grape berries. The results of this study may help to elucidate the mechanism by which UV-C functions and support its efficient application.

8.
Mol Plant Microbe Interact ; 34(1): 110-121, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33006532

RESUMEN

Elsinoë ampelina is an ascomycetous fungus that causes grape anthracnose, a potentially devastating disease worldwide. In this study, a dual RNA-seq analysis was used to simultaneously monitor the fungal genes related to pathogenesis and grape genes related to defense during the interaction at 2, 3, 4, and 5 days postinoculation. Consistent with their potential roles in pathogenicity, genes for carbohydrate-active enzymes, secondary metabolite synthesis, pathogen-host interaction, and those encoding secreted proteins are upregulated during infection. Based on Agrobacterium tumefaciens-mediated transient assays in Nicotiana benthamiana, we further showed that eight and nine candidate effectors, respectively, suppressed BAX- and INF1-mediated programmed cell death. The host response was characterized by the induction of multiple defense systems against E. ampelina, including synthesis of phenylpropanoids, stilbenes, and terpenoid biosynthesis, cell-wall modifications, regulation by phytohormones, and expression of defense-related genes. Together, these findings offer new insights into molecular mechanisms underlying the grape-E. ampelina interaction.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Ascomicetos , Interacciones Huésped-Patógeno , Enfermedades de las Plantas , Transcriptoma , Vitis , Ascomicetos/genética , Ascomicetos/patogenicidad , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Patógeno/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Transcriptoma/genética , Vitis/genética , Vitis/microbiología
9.
Hortic Res ; 7: 150, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32922822

RESUMEN

Drought stress severely affects grapevine quality and yield, and recent reports have revealed that lignin plays an important role in protection from drought stress. Since little is known about lignin-mediated drought resistance in grapevine, we investigated its significance. Herein, we show that VlbZIP30 mediates drought resistance by activating the expression of lignin biosynthetic genes and increasing lignin deposition. Transgenic grapevine plants overexpressing VlbZIP30 exhibited lignin deposition (mainly G and S monomers) in the stem secondary xylem under control conditions, which resulted from the upregulated expression of VvPRX4 and VvPRX72. Overexpression of VlbZIP30 improves drought tolerance, characterized by a reduction in the water loss rate, maintenance of an effective photosynthesis rate, and increased lignin content (mainly G monomer) in leaves under drought conditions. Electrophoretic mobility shift assay, luciferase reporter assays, and chromatin immunoprecipitation-qPCR assays indicated that VlbZIP30 directly binds to the G-box cis-element in the promoters of lignin biosynthetic (VvPRX N1) and drought-responsive (VvNAC17) genes to regulate their expression. In summary, we report a novel VlbZIP30-mediated mechanism linking lignification and drought tolerance in grapevine. The results of this study may be of value for the development of molecular breeding strategies to produce drought-resistant fruit crops.

10.
Plant Physiol Biochem ; 146: 98-111, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31734522

RESUMEN

Drought stress is the primary factor limiting the growth and fruit quality of grapevines worldwide. However, the biological function of the NAC [No apical meristem (NAM), Arabidopsis transcription activation factor (ATAF), Cup-shaped cotyledon (CUC)] transcription factor (TF) in grapevine is not clear. In this study, we reported that VvNAC17, a novel NAC transcription factor, was expressed in various tissues following drought, high temperature (45 °C), freezing (4 °C), salicylic acid (SA), and abscisic acid (ABA) treatments in grapevine. The VvNAC17 protein was localized in the nucleus of Arabidopsis thaliana protoplasts and demonstrated transcriptional activation activities at its C-terminus in yeast. The VvNAC17 gene was overexpressed in Arabidopsis thaliana. Under mannitol and salt stress, the germination rates of the VvNAC17-overexpression lines were higher than those of the wild-type plants, as were the root lengths. The VvNAC17-overexpression lines showed greater tolerance to freezing stress along with a higher survival rate. Following ABA treatment, the seed germination rate and the root length of the VvNAC17-overexpression lines were inhibited, and the stomatal opening and stomatal density were reduced. When subjected to drought and dehydration stress, the VvNAC17-overexpression lines showed improved survival and reduced water loss rates in comparison to the wild-type plants. Under drought conditions, the VvNAC17-overexpression lines had lower malondialdehyde and H2O2 contents, but higher peroxidase, superoxide dismutase, and catalase activities as well as higher proline content. Moreover, the expression of marker genes, including ABI5, AREB1, COR15A, COR47, P5CS, RD22, and RD29A, was up-regulated in the VvNAC17-overexpression lines when subjected to ABA and drought treatments. The results suggest that in transgenic Arabidopsis over-expression of VvNAC17 enhances resistance to drought while up-regulating the expression of ABA- and stress-related genes.


Asunto(s)
Arabidopsis , Vitis , Ácido Abscísico , Sequías , Congelación , Regulación de la Expresión Génica de las Plantas , Peróxido de Hidrógeno , Proteínas de Plantas , Plantas Modificadas Genéticamente , Salinidad , Estrés Fisiológico , Factores de Transcripción
11.
Hortic Res ; 5: 49, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30181889

RESUMEN

Drought stress limits the growth and development of grapevines, thereby reducing productivity, but the mechanisms by which grapevines respond to drought stress remain largely uncharacterized. Here, we characterized a group A bZIP gene from "Kyoho" grapevine, VlbZIP30, which was shown to be induced by abscisic acid (ABA) and dehydration stress. Overexpression of VlbZIP30 in transgenic Arabidopsis thaliana enhanced dehydration tolerance. Transcriptome analysis revealed that a major proportion of ABA-responsive and/or drought-responsive genes are transcriptionally regulated by VlbZIP30 during ABA or mannitol treatment at the cotyledon greening stage. We identified an A. thaliana G-box motif (CACGTG) and a potential grapevine G-box motif (MCACGTGK) in the promoters of the 39 selected A. thaliana genes upregulated in the transgenic plants and in the 35 grapevine homologs, respectively. Subsequently, using two grapevine-related databases, we found that 74% (23/31) and 84% (21/25) of the detected grapevine genes were significantly upregulated by ABA and drought stress, respectively, suggesting that these genes are involved in ABA or dehydration stress and may be regulated by VlbZIP30 in grapevine. We propose that VlbZIP30 functions as a positive regulator of dehydration-responsive signaling in the ABA core signaling pathway.

12.
Front Plant Sci ; 9: 545, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29922304

RESUMEN

WRKY transcription factors are known to play important roles in plant responses to various abiotic and biotic stresses. The grape WRKY gene, WRKY3 was previously reported to respond to salt and drought stress, as well as methyl jasmonate and ethylene treatments in Vitis labrusca × V. vinifera cv. 'Kyoho.' In the current study, WRKY3 from the 'Kyoho' grape cultivar was constitutively expressed in Arabidopsis thaliana under control of the cauliflower mosaic virus 35S promoter. The 35S::VlWRKY3 transgenic A. thaliana plants showed improved salt and drought stress tolerance during the germination, seedling and the mature plant stages. Various physiological traits related to abiotic stress responses were evaluated to gain further insight into the role of VlWRKY3, and it was found that abiotic stress caused less damage to the transgenic seedlings than to the wild-type (WT) plants. VlWRKY3 over-expression also resulted in altered expression levels of abiotic stress-responsive genes. Moreover, the 35S::VlWRKY3 transgenic A. thaliana lines showed improved resistance to Golovinomyces cichoracearum, but increased susceptibility to Botrytis cinerea, compared with the WT plants. Collectively, these results indicate that VlWRKY3 plays important roles in responses to both abiotic and biotic stress, and modification of its expression may represent a strategy to enhance stress tolerance in crops.

13.
Plant Biotechnol J ; 16(4): 844-855, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28905515

RESUMEN

The clustered regularly interspaced short palindromic repeats-associated protein 9 (CRISPR/Cas9) system is a powerful tool for editing plant genomes. Efficient genome editing of grape (Vitis vinifera) suspension cells using the type II CRISPR/Cas9 system has been demonstrated; however, it has not been established whether this system can be applied to get biallelic mutations in the first generation of grape. In this current study, we designed four guide RNAs for the VvWRKY52 transcription factor gene for using with the CRISPR/Cas9 system, and obtained transgenic plants via Agrobacterium-mediated transformation, using somatic embryos of the Thompson Seedless cultivar. Analysis of the first-generation transgenic plants verified 22 mutant plants of the 72 T-DNA-inserted plants. Of these, 15 lines carried biallelic mutations and seven were heterozygous. A range of RNA-guided editing events, including large deletions, were found in the mutant plants, while smaller deletions comprised the majority of the detected mutations. Sequencing of potential off-target sites for all four targets revealed no off-target events. In addition, knockout of VvWRKY52 in grape increased the resistance to Botrytis cinerea. We conclude that the CRISPR/Cas9 system allows precise genome editing in the first generation of grape and represents a useful tool for gene functional analysis and grape molecular breeding.


Asunto(s)
Sistemas CRISPR-Cas , Fitomejoramiento/métodos , Plantas Modificadas Genéticamente , Vitis/genética , Botrytis/patogenicidad , Resistencia a la Enfermedad/genética , Edición Génica , Técnicas de Inactivación de Genes , Vectores Genéticos , Homocigoto , Mutagénesis , Mutagénesis Sitio-Dirigida , Mutación , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Factores de Transcripción/genética , Vitis/microbiología
14.
Front Plant Sci ; 8: 97, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28197166

RESUMEN

WRKY transcription factors are known to play important roles in plant responses to biotic stresses. We previously showed that the expression of the WRKY gene, VqWRKY52, from Chinese wild Vitis quinquangularis was strongly induced 24 h post inoculation with powdery mildew. In this study, we analyzed the expression levels of VqWRKY52 following treatment with the defense related hormones salicylic acid (SA) and methyl jasmonate, revealing that VqWRKY52 was strongly induced by SA but not JA. We characterized the VqWRKY52 gene, which encodes a WRKY III gene family member, and found that ectopic expression in Arabidopsis thaliana enhanced resistance to powdery mildew and Pseudomonas syringae pv. tomato DC3000, but increased susceptibility to Botrytis cinerea, compared with wild type (WT) plants. The transgenic A. thaliana lines displayed strong cell death induced by the biotrophic powdery mildew pathogen, the hemibiotrophic P. syringe pathogen and the necrotrophic pathogen B. cinerea. In addition, the relative expression levels of various defense-related genes were compared between the transgenic A. thaliana lines and WT plants following the infection by different pathogens. Collectively, the results indicated that VqWRKY52 plays essential roles in the SA dependent signal transduction pathway and that it can enhance the hypersensitive response cell death triggered by microbial pathogens.

15.
Plant Sci ; 252: 311-323, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27717468

RESUMEN

Drought is one of the most serious factors that limit agricultural productivity and there is considerable interest in understanding the molecular bases of drought responses and their regulation. While numbers of basic leucine zipper (bZIP) transcription factors (TFs) are known to play key roles in response of plants to various abiotic stresses, only a few group K bZIP TFs have been functionally characterized in the context of stress signaling. In this study, we characterized the expression of the grape (Vitis vinifera) group K bZIP gene, VlbZIP36, and found evidence for its involvement in response to drought and the stress-associated phytohormone abscisic acid (ABA). Transgenic Arabidopsis thaliana lines over-expressing VlbZIP36 under the control of a constitutive promoter showed enhanced dehydration tolerance during the seed germination stage, as well as in the seedling and mature plant stages. The results indicated that VlbZIP36 plays a role in drought tolerance by improving the water status, through limiting water loss, and mitigating cellular damage. The latter was evidenced by reduced cell death, lower electrolyte leakage in the transgenic plants, as well as by increased activities of antioxidant enzymes. We concluded that VlbZIP36 enhances drought tolerance through the transcriptional regulation of ABA-/stress-related genes.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/fisiología , Proteínas de Plantas/fisiología , Estrés Fisiológico , Vitis/genética , Arabidopsis/genética , Arabidopsis/fisiología , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Sequías , Regulación de la Expresión Génica de las Plantas , Germinación/genética , Germinación/fisiología , Reguladores del Crecimiento de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/fisiología , Plantones/genética , Plantones/fisiología , Semillas/genética , Semillas/fisiología
16.
Plant Sci ; 248: 17-27, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27181943

RESUMEN

The grape aspartic protease gene, AP13 was previously reported to be responsive, in Chinese wild Vitis quinquangularis cv. 'Shang-24', to infection by Erysiphe necator, the causal agent of powdery mildew disease, as well as to treatment with salicylic acid in V. labrusca×V. vinifera cv. 'Kyoho'. In the current study, we evaluated the expression levels of AP13 in 'Shang-24' in response to salicylic acid (SA), methyl jasmonate (MeJA) and ethylene (ET) treatments, as well as to infection by the necrotrophic fungus, Botrytis cinerea, and the transcript levels of VqAP13 decreased after B. cinerea infection and MeJA treatment, but increased following ET and SA treatments. Transgenic Arabidopsis thaliana lines over-expressing VqAP13 under the control of a constitutive promoter showed enhanced resistance to powdery mildew and to the bacterium Pseudomonas syringae pv. tomato DC3000, and accumulated more callose than wild type plants, while the resistance of transgenic A. thaliana lines to B. cinerea inoculation was reduced. In addition, the expression profiles of various disease resistance- related genes in the transgenic A. thaliana lines following infection by different pathogens were compared to the equivalent profiles in the wild type plants. The results suggest that VqAP13 action promotes the SA dependent signal transduction pathway, but suppresses the JA signal transduction pathway.


Asunto(s)
Arabidopsis/microbiología , Ascomicetos/patogenicidad , Proteasas de Ácido Aspártico/fisiología , Botrytis/patogenicidad , Resistencia a la Enfermedad/fisiología , Expresión Génica Ectópica/fisiología , Enfermedades de las Plantas/microbiología , Vitis/enzimología , Arabidopsis/enzimología , Arabidopsis/fisiología , Proteasas de Ácido Aspártico/genética , Resistencia a la Enfermedad/genética , Susceptibilidad a Enfermedades/enzimología , Perfilación de la Expresión Génica , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/microbiología , Plantas Modificadas Genéticamente/fisiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Vitis/fisiología
17.
Front Plant Sci ; 6: 854, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26579134

RESUMEN

The necrotrophic fungus Botrytis cinerea is a major threat to grapevine cultivation worldwide. A screen of 41 Vitis genotypes for leaf resistance to B. cinerea suggested species independent variation and revealed 18 resistant Chinese wild Vitis genotypes, while most investigated V. vinifera, or its hybrids, were susceptible. A particularly resistant Chinese wild Vitis, "Pingli-5" (V. sp. [Qinling grape]) and a very susceptible V. vinifera cultivar, "Red Globe" were selected for further study. Microscopic analysis demonstrated that B. cinerea growth was limited during early infection on "Pingli-5" before 24 h post-inoculation (hpi) but not on Red Globe. It was found that reactive oxygen species (ROS) and antioxidative system were associated with fungal growth. O[Formula: see text] accumulated similarly in B. cinerea 4 hpi on both Vitis genotypes. Lower levels of O[Formula: see text] (not H2O2) were detected 4 hpi and ROS (H2O2 and O[Formula: see text]) accumulation from 8 hpi onwards was also lower in "Pingli-5" leaves than in "Red Globe" leaves. B. cinerea triggered sustained ROS production in "Red Globe" but not in "Pingli-5" with subsequent infection progresses. Red Globe displayed little change in antioxidative activities in response to B. cinerea infection, instead, antioxidative activities were highly and timely elevated in resistant "Pingli-5" which correlated with its minimal ROS increases and its high resistance. These findings not only enhance our understanding of the resistance of Chinese wild Vitis species to B. cinerea, but also lay the foundation for breeding B. cinerea resistant grapes in the future.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...