Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.056
Filtrar
1.
Exp Eye Res ; 244: 109919, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38729254

RESUMEN

Age-related macular degeneration (AMD) is the leading cause of vision loss among the elderly, which is primarily attributed to oxidative stress-induced damage to the retinal pigment epithelium (RPE). Human amniotic mesenchymal stem cells (hAMSC) were considered to be one of the most promising stem cells for clinical application due to their low immunogenicity, tissue repair ability, pluripotent potential and potent paracrine effects. The conditional medium (hAMSC-CM) and exosomes (hAMSC-exo) derived from hAMSC, as mediators of intercellular communication, play an important role in the treatment of retinal diseases, but their effect and mechanism on oxidative stress-induced retinal degeneration are not explored. Here, we reported that hAMSC-CM alleviated H2O2-induced ARPE-19 cell death through inhibiting mitochondrial-mediated apoptosis pathway in vitro. The overproduction of reactive oxygen species (ROS), alteration in mitochondrial morphology, loss of mitochondrial membrane potential and elevation of Bax/Bcl2 ratio in ARPE-19 cells under oxidative stress were efficiently reversed by hAMSC-CM. Moreover, it was found that hAMSC-CM protected cells against oxidative injury via PI3K/Akt/FoxO3 signaling. Intriguingly, exosome inhibitor GW4869 alleviated the inhibitory effect of hAMSC-CM on H2O2-induced decrease in cell viability of ARPE-19 cells. We further demonstrated that hAMSC-exo exerted the similar protective effect on ARPE-19 cells against oxidative damage as hAMSC-CM. Additionally, both hAMSC-CM and hAMSC-exo ameliorated sodium iodate-induced deterioration of RPE and retinal damage in vivo. These results first indicate that hAMSC-CM and hAMSC-exo protect RPE cells from oxidative damage by regulating PI3K/Akt/FoxO3 pathway, suggesting hAMSC-CM and hAMSC-exo will be a promising cell-free therapy for the treatment of AMD in the future.

2.
J Am Chem Soc ; 146(19): 13488-13498, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38709095

RESUMEN

Self-assembling peptides represent a captivating area of study in nanotechnology and biomaterials. This interest is largely driven by their unique properties and the vast application potential across various fields such as catalytic functions. However, design complexities, including high-dimensional sequence space and structural diversity, pose significant challenges in the study of such systems. In this work, we explored the possibility of self-assembled peptides to catalyze the hydrolysis of hydrosilane for hydrogen production using ab initio calculations and carried out wet-lab experiments to confirm the feasibility of these catalytic reactions under ambient conditions. Further, we delved into the nuanced interplay between sequence, structural conformation, and catalytic activity by combining modeling with experimental techniques such as transmission electron microscopy and nuclear magnetic resonance and proposed a dual mode of the microstructure of the catalytic center. Our results reveal that although research in this area is still at an early stage, the development of self-assembled peptide catalysts for hydrogen production has the potential to provide a more sustainable and efficient alternative to conventional hydrogen production methods. In addition, this work also demonstrates that a computation-driven rational design supplemented by experimental validation is an effective protocol for conducting research on functional self-assembled peptides.


Asunto(s)
Hidrógeno , Péptidos , Hidrógeno/química , Catálisis , Péptidos/química , Modelos Moleculares , Hidrólisis
4.
Parasit Vectors ; 17(1): 204, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38715075

RESUMEN

BACKGROUND: Mosquito-borne viruses cause various infectious diseases in humans and animals. Oya virus (OYAV) and Ebinur Lake virus (EBIV), belonging to the genus Orthobunyavirus within the family Peribunyaviridae, are recognized as neglected viruses with the potential to pose threats to animal or public health. The evaluation of vector competence is essential for predicting the arbovirus transmission risk. METHODS: To investigate the range of mosquito vectors for OYAV (strain SZC50) and EBIV (strain Cu20-XJ), the susceptibility of four mosquito species (Culex pipiens pallens, Cx. quinquefasciatus, Aedes albopictus, and Ae. aegypti) was measured through artificial oral infection. Then, mosquito species with a high infection rate (IR) were chosen to further evaluate the dissemination rate (DR), transmission rate (TR), and transmission efficiency. The viral RNA in each mosquito sample was determined by RT-qPCR. RESULTS: The results revealed that for OYAV, Cx. pipiens pallens had the highest IR (up to 40.0%) among the four species, but the DR and TR were 4.8% and 0.0%, respectively. For EBIV, Cx. pipiens pallens and Cx. quinquefasciatus had higher IR compared to Ae. albopictus (1.7%). However, the EBIV RNA and infectious virus were detected in Cx. pipiens pallens, with a TR of up to 15.4% and a transmission efficiency of 3.3%. CONCLUSIONS: The findings indicate that Cx. pipiens pallens was susceptible to OYAV but had an extremely low risk of transmitting the virus. Culex pipiens pallens and Cx. quinquefasciatus were susceptible to EBIV, and Cx. pipiens pallens had a higher transmission risk to EBIV than Cx. quinquefasciatus.


Asunto(s)
Aedes , Culex , Mosquitos Vectores , Orthobunyavirus , Animales , Mosquitos Vectores/virología , Aedes/virología , Culex/virología , Orthobunyavirus/genética , Orthobunyavirus/clasificación , Orthobunyavirus/aislamiento & purificación , ARN Viral/genética , Infecciones por Bunyaviridae/transmisión , Infecciones por Bunyaviridae/virología
5.
Commun Biol ; 7(1): 531, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710773

RESUMEN

Prior evidence suggests that increasingly efficient task performance in human learning is associated with large scale brain network dynamics. However, the specific nature of this general relationship has remained unclear. Here, we characterize performance improvement during feedback-driven stimulus-response (S-R) learning by learning rate as well as S-R habit strength and test whether and how these two behavioral measures are associated with a functional brain state transition from a more integrated to a more segregated brain state across learning. Capitalizing on two separate fMRI studies using similar but not identical experimental designs, we demonstrate for both studies that a higher learning rate is associated with a more rapid brain network segregation. By contrast, S-R habit strength is not reliably related to changes in brain network segregation. Overall, our current study results highlight the utility of dynamic functional brain state analysis. From a broader perspective taking into account previous study results, our findings align with a framework that conceptualizes brain network segregation as a general feature of processing efficiency not only in feedback-driven learning as in the present study but also in other types of learning and in other task domains.


Asunto(s)
Encéfalo , Aprendizaje , Imagen por Resonancia Magnética , Humanos , Encéfalo/fisiología , Aprendizaje/fisiología , Masculino , Femenino , Adulto Joven , Adulto , Red Nerviosa/fisiología , Mapeo Encefálico/métodos
6.
Front Psychiatry ; 15: 1391653, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38699445

RESUMEN

Background: Childhood trauma exerts enduring impacts on the physical and psychological well-being of individuals in adulthood, influencing their daily functioning. This study aims to investigate the impact of childhood trauma on stress recovery in adults, concentrating on heart rate variations during acute stress exposure. Methods: A cohort of 126 participants completed the Childhood Trauma Questionnaire (CTQ) and underwent the Trier Social Stress Test (TSST) to elicit acute stress, with continuous heart rate (HR) monitoring for stress recovery assessment. Results: The results revealed a negative correlation between childhood trauma and stress recovery, prominently observed in instances of emotional neglect and abuse. Individuals with heightened childhood trauma exhibited protracted stress recovery following acute stress exposure. Conclusion: Childhood traumatic experiences were associated with the recovery from acute stress, as indicated by heart rate indices. These findings contribute to the foundational framework for psychological interventions tailored to individuals with a history of childhood trauma.

7.
ACS Appl Bio Mater ; 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38701372

RESUMEN

Gold nanoclusters (AuNCs), with customized structures and diverse optical properties, are promising optical materials. Constructing composite systems by the assembly and incorporation of AuNCs can utilize their optical properties to achieve diagnostic and therapeutic applications in the biological field. Therefore, the exploration of the assembly behaviors of AuNCs and the enhancement of their performance has attracted widespread interest. In this review, we introduce multiple interactions and assembly modes that are prevalent in nanocomposites and microcomposites based on AuNCs. Then, the functions of AuNC composites for bioapplications are demonstrated in detail. These composite systems have inherited and enhanced the inherent optical performances of the AuNCs to meet diverse requirements for biological sensing and optical treatments. Finally, we discuss the prospects of AuNC composites and highlight the challenges and opportunities in biomedical applications.

8.
Int J Biol Macromol ; : 132055, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38704073

RESUMEN

Pretreatment is the key step to convert lignocelluloses to sustainable biofuels, biochemicals or biomaterials. In this study, a green pretreatment method based on choline chloride-lactic acid deep eutectic solvent (ChCl-LA) and niobium-based single-atom catalyst (Nb/CN) was developed for the fractionation of corn straw and further enzymatic hydrolysis of cellulose. With this strategy, significant lignin removal of 96.5 % could be achieved when corn straw was pretreated by ChCl-LA (1:2) DES over Nb/CN under 120 °C for 6 h. Enzymatic hydrolysis of the cellulose-enriched fraction (CEF) presented high glucose yield of 92.7 % and xylose yield of 67.5 %. In-depth investigations verified that the high yields of fractions and monosaccharides was attributed to the preliminary fractionation by DES and the deep fractionation by Nb/CN. Significantly, compared to other reported soluble catalysts, the synthesized single-atom catalyst displayed excellent reusability by simple filtration and enzymatic hydrolysis. The recyclability experiments showed that the combination of ChCl-LA DES and Nb/CN could be repeated at least three times for corn straw fractionation, moreover, the combination displayed remarkable feedstock adaptability.

9.
J Blood Med ; 15: 217-225, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38737581

RESUMEN

Introduction: COVID-19 infection has brought new challenges to the treatment of adult patients with immune thrombocytopenia (ITP). In adult ITP patients, there have been no relevant reports exploring the incidence, clinical characteristics, and risk factors of platelet elevation after COVID-19 infection. Materials and Methods: A total of 66 patients with previously diagnosed ITP from December 2022 to February 2023 in a single-center were collected and analyzed for this real-world clinical retrospective observational study. Results: In the platelet count increased group (n = 19), 13 patients (68.4%) were using thrombopoietin receptor agonists (TPO-RA) treatment at the time of COVID-19 infection; the median platelet count was 52 (2-207) ×109/L at the last visit before infection and 108 (19-453) ×109/L at the first visit after infection. In the platelet count stable group (n = 19) and platelet count decreased group (n = 28), 9 (47.4%) and 8 (28.6%) patients were using TPO-RA at the time of infection, respectively. ITP patients treated with TPO-RA had a significantly higher risk of increased platelet count than those not treated with TPO-RA at the time of infection (platelet count increased group vs platelet count decreased group: OR: 5.745, p = 0.009; platelet count increased group vs the non-increased group: OR: 3.616, p = 0.031). In the platelet count increased group, the median platelet count at 6 months post-infection was 67 (14-235) × 109/L, which was significantly higher than the platelet level at the last visit before infection (p = 0.040). Conclusion: This study showed that some adult ITP patients had an increase in platelet count after COVID-19 infection, and this phenomenon was strongly associated with the use of TPO-RA at the time of infection. Although no thrombotic events were observed in this study, it reminds clinicians that they should be alert to the possibility of thrombotic events in the long-term management of adult ITP patients during the COVID-19 pandemic.

10.
Funct Plant Biol ; 512024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38739736

RESUMEN

The forage quality of alfalfa (Medicago sativa ) stems is greater than the leaves. Sucrose hydrolysis provides energy for stem development, with starch being enzymatically converted into sucrose to maintain energy homeostasis. To understand the physiological and molecular networks controlling stem development, morphological characteristics and transcriptome profiles in the stems of two alfalfa cultivars (Zhungeer and WL168) were investigated. Based on transcriptome data, we analysed starch and sugar contents, and enzyme activity related to starch-sugar interconversion. Zhungeer stems were shorter and sturdier than WL168, resulting in significantly higher mechanical strength. Transcriptome analysis showed that starch and sucrose metabolism were significant enriched in the differentially expressed genes of stems development in both cultivars. Genes encoding INV , bglX , HK , TPS and glgC downregulated with the development of stems, while the gene encoding was AMY upregulated. Weighted gene co-expression network analysis revealed that the gene encoding glgC was pivotal in determining the variations in starch and sucrose contents between the two cultivars. Soluble carbohydrate, sucrose, and starch content of WL168 were higher than Zhungeer. Enzyme activities related to sucrose synthesis and hydrolysis (INV, bglX, HK, TPS) showed a downward trend. The change trend of enzyme activity was consistent with gene expression. WL168 stems had higher carbohydrate content than Zhungeer, which accounted for more rapid growth and taller plants. WL168 formed hollow stems were formed during rapid growth, which may be related to the redistribution of carbohydrates in the pith tissue. These results indicated that starch and sucrose metabolism play important roles in the stem development in alfalfa.


Asunto(s)
Medicago sativa , Tallos de la Planta , Almidón , Sacarosa , Medicago sativa/genética , Medicago sativa/metabolismo , Medicago sativa/crecimiento & desarrollo , Almidón/metabolismo , Tallos de la Planta/metabolismo , Tallos de la Planta/crecimiento & desarrollo , Tallos de la Planta/genética , Sacarosa/metabolismo , Regulación de la Expresión Génica de las Plantas , Transcriptoma , Metabolismo de los Hidratos de Carbono/genética , Perfilación de la Expresión Génica
11.
J Colloid Interface Sci ; 668: 607-617, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38696989

RESUMEN

Transition metal-based electrocatalysts generally take place surface reconstruction in alkaline conditions, but little is known about how to improve the reconstruction to a highly active oxyhydroxide surface for an efficient and stable oxygen evolution reaction (OER). Herein, we develop a strategy to accelerate surface reconstruction by combining boron modification and cyclic voltammetry (CV) activation. Density functional theory calculations and in-situ/ex-situ characterizations indicate that both B-doping and electrochemical activation can reduce the energy barrier and contribute to the surface evolution into highly active oxyhydroxides. The formed oxyhydroxide active phase can tune the electronic configuration and boost the OER process. The reconstructed catalyst of CV-B-NiFe-LDH displays excellent alkaline OER performance in freshwater, simulated seawater, and natural seawater with low overpotentials at 100 mA cm-2 (η100: 219, 236, and 255 mV, respectively) and good durability. This catalyst also presents outstanding Cl- corrosion resistance in alkalized seawater electrolytes. The CV-B-NiFe-LDH||Pt/C electrolyzer reveals prominent performance for alkalized freshwater/seawater splitting. This study provides a guideline for developing advanced OER electrocatalysts by promoting surface reconstruction.

13.
Stress Health ; : e3404, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38635165

RESUMEN

The way individuals handle daily stressors can significantly influence their mental health. Those who struggle with emotion regulation are especially vulnerable to the negative effects of stress. This study explored the role of catastrophizing, a maladaptive emotion regulation strategy, in shaping the relationships between daily stress responses and depressive symptoms. A total of 75 healthy college students participated in the study. We adopted an Ecological Momentary Assessment protocol over 14 consecutive days to capture the day-to-day dynamics of stress reactivity and recovery. Our findings indicate that individuals with higher levels of catastrophizing exhibited increased daily stress reactivity and delayed daily stress recovery, consequently raising their likelihood of experiencing amplified depressive symptoms. In contrast, those with lower levels of catastrophizing did not experience the same negative effects of increased daily stress reactivity on their mental health. These results enhance understanding of how real-life stressors contribute to the development of mental health issues and underscore the importance of adaptive emotion regulation for improved overall health and well-being.

14.
Int J Mol Sci ; 25(8)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38673941

RESUMEN

Abdominal aortic aneurysm (AAA) is a serious vascular disease which is associated with vascular remodeling. CD38 is a main NAD+-consuming enzyme in mammals, and our previous results showed that CD38 plays the important roles in many cardiovascular diseases. However, the role of CD38 in AAA has not been explored. Here, we report that smooth-muscle-cell-specific deletion of CD38 (CD38SKO) significantly reduced the morbidity of AngII-induced AAA in CD38SKOApoe-/- mice, which was accompanied with a increases in the aortic diameter, medial thickness, collagen deposition, and elastin degradation of aortas. In addition, CD38SKO significantly suppressed the AngII-induced decreases in α-SMA, SM22α, and MYH11 expression; the increase in Vimentin expression in VSMCs; and the increase in VCAM-1 expression in smooth muscle cells and macrophage infiltration. Furthermore, we demonstrated that the role of CD38SKO in attenuating AAA was associated with the activation of sirtuin signaling pathways. Therefore, we concluded that CD38 plays a pivotal role in AngII-induced AAA through promoting vascular remodeling, suggesting that CD38 may serve as a potential therapeutic target for the prevention of AAA.


Asunto(s)
ADP-Ribosil Ciclasa 1 , Angiotensina II , Aneurisma de la Aorta Abdominal , Ratones Noqueados , Miocitos del Músculo Liso , Remodelación Vascular , Animales , Aneurisma de la Aorta Abdominal/metabolismo , Aneurisma de la Aorta Abdominal/inducido químicamente , Aneurisma de la Aorta Abdominal/patología , Aneurisma de la Aorta Abdominal/genética , Aneurisma de la Aorta Abdominal/prevención & control , Aneurisma de la Aorta Abdominal/etiología , ADP-Ribosil Ciclasa 1/metabolismo , ADP-Ribosil Ciclasa 1/genética , Ratones , Remodelación Vascular/genética , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Masculino , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Transducción de Señal , Cadenas Pesadas de Miosina/metabolismo , Cadenas Pesadas de Miosina/genética
15.
Biomater Sci ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38686665

RESUMEN

Cells are the fundamental units of life. The cell membrane primarily composed of two layers of phospholipids (a bilayer) structurally defines the boundary of a cell, which can protect its interior from external disturbances and also selectively exchange substances and conduct signals from the extracellular environment. The complexity and particularity of transmembrane proteins provide the foundation for versatile cellular functions. Nanomedicine as an emerging therapeutic strategy holds tremendous potential in the healthcare field. However, it is susceptible to recognition and clearance by the immune system. To overcome this bottleneck, the technology of cell membrane coating has been extensively used in nanomedicines for their enhanced therapeutic efficacy, attributed to the favorable fluidity and biocompatibility of cell membranes with various membrane-anchored proteins. Meanwhile, some engineering strategies of cell membranes through various chemical, physical and biological ways have been progressively developed to enable their versatile therapeutic functions against complex diseases. In this review, we summarized the potential clinical applications of four typical cell membranes, elucidated their underlying therapeutic mechanisms, and outlined their current engineering approaches. In addition, we further discussed the limitation of this technology of cell membrane coating in clinical applications, and possible solutions to address these challenges.

16.
Molecules ; 29(7)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38611807

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) has evolved into a dangerous pathogen resistant to beta-lactam antibiotics (BLAs) and has become a worrisome superbug. In this study, a strategy in which shikimic acid (SA), which has anti-inflammatory and antibacterial activity, is combined with BLAs to restart BLA activity was proposed for MRSA treatment. The synergistic effects of oxacillin combined with SA against oxacillin resistance in vitro and in vivo were investigated. The excellent synergistic effect of the oxacillin and SA combination was confirmed by performing the checkerboard assay, time-killing assay, live/dead bacterial cell viability assay, and assessing protein leakage. SEM showed that the cells in the control group had a regular, smooth, and intact surface. In contrast, oxacillin and SA or the combination treatment group exhibited different degrees of surface collapse. q-PCR indicated that the combination treatment group significantly inhibited the expression of the mecA gene. In vivo, we showed that the combination treatment increased the survival rate and decreased the bacterial load in mice. These results suggest that the combination of oxacillin with SA is considered an effective treatment option for MRSA, and the combination of SA with oxacillin in the treatment of MRSA is a novel strategy.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Animales , Ratones , Ácido Shikímico/farmacología , Monobactamas , Antibióticos Betalactámicos , Oxacilina/farmacología
17.
Med Acupunct ; 36(2): 79-86, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38659726

RESUMEN

Objective: Ear acupuncture, as a system for treating and preventing diseases through stimulation of points on the auricle, has been systematically introduced during the last 60 years. Although the auricular cartography was described somatotopically as an inverted fetus by Paul Nogier, MD, the underlying mechanism of auricular stimulation remains unclear. The aim of this research was to gain an understanding of the structural basis of auricular stimulation, as well as showing the distribution of the nerve fibers, and the blood and lymphatic vessels. Materials and Methods: The distribution of nerve fibers, and blood and lymphatic vessels was examined in whole-mount auricular skins of mice by combining the biomarkers protein gene product 9.5, cluster of differentiation 31, and lymphatic-vessel endothelial hyaluronan receptor-1 following tissue-clearing treatment with multiple immunofluorescent staining. Results: The labeled nerve fibers, and the blood and lymphatic vessels were distributed extensively in the inner and outer parts of the auricular skin. Auricular nerves aligning with blood vessels ran from the basal region to the peripheral region and crossed over lymphatic vessels, thus forming the neural, vascular, and lymphatic networks. Conclusions: As these are important tissue components of auricular skin, this result implies that the auricular nerve fibers, and blood and lymphatic vessels may coordinate with each other to respond directly to auricular stimulation.

18.
BMC Genomics ; 25(1): 378, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632523

RESUMEN

OBJECTIVE: This study aims to analyze the molecular characteristics of the novel coronavirus (SARS-CoV-2) Omicron variant BA.2.76 in Jining City, China. METHODS: Whole-genome sequencing was performed on 87 cases of SARS-CoV-2 infection. Evolutionary trees were constructed using bioinformatics software to analyze sequence homology, variant sites, N-glycosylation sites, and phosphorylation sites. RESULTS: All 87 SARS-CoV-2 whole-genome sequences were classified under the evolutionary branch of the Omicron variant BA.2.76. Their similarity to the reference strain Wuhan-Hu-1 ranged from 99.72 to 99.74%. In comparison to the reference strain Wuhan-Hu-1, the 87 sequences exhibited 77-84 nucleotide differences and 27 nucleotide deletions. A total of 69 amino acid variant sites, 9 amino acid deletions, and 1 stop codon mutation were identified across 18 proteins. Among them, the spike (S) protein exhibited the highest number of variant sites, and the ORF8 protein showed a Q27 stop mutation. Multiple proteins displayed variations in glycosylation and phosphorylation sites. CONCLUSION: SARS-CoV-2 continues to evolve, giving rise to new strains with enhanced transmission, stronger immune evasion capabilities, and reduced pathogenicity. The application of high-throughput sequencing technologies in the epidemic prevention and control of COVID-19 provides crucial insights into the evolutionary and variant characteristics of the virus at the genomic level, thereby holding significant implications for the prevention and control of the COVID-19 pandemic.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Pandemias , Genómica , China , Aminoácidos , Nucleótidos
19.
Sci Rep ; 14(1): 9064, 2024 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-38643236

RESUMEN

Frontotemporal dementia (FTD) is a debilitating neurodegenerative disorder with currently no disease-modifying treatment options available. Mutations in GRN are one of the most common genetic causes of FTD, near ubiquitously resulting in progranulin (PGRN) haploinsufficiency. Small molecules that can restore PGRN protein to healthy levels in individuals bearing a heterozygous GRN mutation may thus have therapeutic value. Here, we show that epigenetic modulation through bromodomain and extra-terminal domain (BET) inhibitors (BETi) potently enhance PGRN protein levels, both intracellularly and secreted forms, in human central nervous system (CNS)-relevant cell types, including in microglia-like cells. In terms of potential for disease modification, we show BETi treatment effectively restores PGRN levels in neural cells with a GRN mutation known to cause PGRN haploinsufficiency and FTD. We demonstrate that BETi can rapidly and durably enhance PGRN in neural progenitor cells (NPCs) in a manner dependent upon BET protein expression, suggesting a gain-of-function mechanism. We further describe a CNS-optimized BETi chemotype that potently engages endogenous BRD4 and enhances PGRN expression in neuronal cells. Our results reveal a new epigenetic target for treating PGRN-deficient forms of FTD and provide mechanistic insight to aid in translating this discovery into therapeutics.


Asunto(s)
Demencia Frontotemporal , Humanos , Progranulinas/metabolismo , Demencia Frontotemporal/tratamiento farmacológico , Demencia Frontotemporal/genética , Demencia Frontotemporal/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Mutación , Epigénesis Genética , Proteínas que Contienen Bromodominio , Proteínas de Ciclo Celular/metabolismo
20.
Adv Sci (Weinh) ; : e2305895, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671590

RESUMEN

Myocardial infarction (MI), a consequence of coronary artery occlusion, triggers the degradation of ferritin, resulting in elevated levels of free iron in the heart and thereby inducing ferroptosis. Targeting myocardial ferroptosis through the chelation of excess iron has therapeutic potential for MI treatment. However, iron chelation in post ischemic injury areas using conventional iron-specific chelators is hindered by ineffective myocardial intracellular chelation, rapid clearance, and high systemic toxicity. A chitosan-desferrioxamine nanosponge (CDNS) is designed by co-crosslinking chitosan and deferoxamine through noncovalent gelation to address these challenges. This architecture facilitates direct iron chelation regardless of deferoxamine (DFO) release due to its sponge-like porous hydrogel structure. Upon cellular internalization, CDNS can effectively chelate cellular iron and facilitate the efflux of captured iron, thereby inhibiting ferroptosis and associated oxidative stress and lipid peroxidation. In MI mouse models, myocardial injection of CDNS promotes sustainable retention and the suppression of ferroptosis in the infarcted heart. This intervention improves cardiac function and alleviates adverse cardiac remodeling post-MI, leading to decreased oxidative stress and the promotion of angiogenesis due to ferroptosis inhibition by CDNS in the infarcted heart. This study reveals a nanosponge-based nanomedicine targeting myocardial ferroptosis with efficient iron chelation and efflux, offering a promising MI treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...