Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38512733

RESUMEN

The design of neural networks typically involves trial-and-error, a time-consuming process for obtaining an optimal architecture, even for experienced researchers. Additionally, it is widely accepted that loss functions of deep neural networks are generally non-convex with respect to the parameters to be optimised. We propose the Layer-wise Convex Theorem to ensure that the loss is convex with respect to the parameters of a given layer, achieved by constraining each layer to be an overdetermined system of non-linear equations. Based on this theorem, we developed an end-to-end algorithm (the AutoNet) to automatically generate layer-wise convex networks (LCNs) for any given training set. We then demonstrate the performance of the AutoNet-generated LCNs (AutoNet-LCNs) compared to state-of-the-art models on three electrocardiogram (ECG) classification benchmark datasets, with further validation on two non-ECG benchmark datasets for more general tasks. The AutoNet-LCN was able to find networks customised for each dataset without manual fine-tuning under 2 GPU-hours, and the resulting networks outperformed the state-of-the-art models with fewer than 5% parameters on all the above five benchmark datasets. The efficiency and robustness of the AutoNet-LCN markedly reduce model discovery costs and enable efficient training of deep learning models in resource-constrained settings.

2.
IEEE Trans Pattern Anal Mach Intell ; 44(9): 5414-5429, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33760730

RESUMEN

The objective of deep metric learning (DML) is to learn embeddings that can capture semantic similarity and dissimilarity information among data points. Existing pairwise or tripletwise loss functions used in DML are known to suffer from slow convergence due to a large proportion of trivial pairs or triplets as the model improves. To improve this, ranking-motivated structured losses are proposed recently to incorporate multiple examples and exploit the structured information among them. They converge faster and achieve state-of-the-art performance. In this work, we unveil two limitations of existing ranking-motivated structured losses and propose a novel ranked list loss to solve both of them. First, given a query, only a fraction of data points is incorporated to build the similarity structure. Consequently, some useful examples are ignored and the structure is less informative. To address this, we propose to build a set-based similarity structure by exploiting all instances in the gallery. The learning setting can be interpreted as few-shot retrieval: given a mini-batch, every example is iteratively used as a query, and the rest ones compose the gallery to search, i.e., the support set in few-shot setting. The rest examples are split into a positive set and a negative set. For every mini-batch, the learning objective of ranked list loss is to make the query closer to the positive set than to the negative set by a margin. Second, previous methods aim to pull positive pairs as close as possible in the embedding space. As a result, the intraclass data distribution tends to be extremely compressed. In contrast, we propose to learn a hypersphere for each class in order to preserve useful similarity structure inside it, which functions as regularisation. Extensive experiments demonstrate the superiority of our proposal by comparing with the state-of-the-art methods on the fine-grained image retrieval task. Our source code is available online: https://github.com/XinshaoAmosWang/Ranked-List-Loss-for-DML.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...