Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
JMIR Form Res ; 8: e56687, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38885498

RESUMEN

BACKGROUND: Internet medical treatment, also known as telemedicine, represents a paradigm shift in health care delivery. This contactless model allows patients to seek medical advice remotely, often before they physically visit a doctor's clinic. Herein, physicians are in a relatively passive position, as patients browse and choose their health care providers. Although a wealth of experience is undoubtedly a draw for many patients, it remains unclear which specific facets of a doctor's credentials and accomplishments patients prioritize during their selection process. OBJECTIVE: Our primary aim is to delve deeper into the correlation between physicians' static characteristics-such as their qualifications, experiences, and profiles on the internet-and the number of patient visits they receive. We seek to achieve this by analyzing comprehensive internet hospital data from public hospitals. Furthermore, we aim to offer insights into how doctors can present themselves more effectively on web-based platforms, thereby attracting more patients and improving overall patient satisfaction. METHODS: We retrospectively gathered web-based diagnosis and treatment data from the First Affiliated Hospital of Guangxi Medical University in 2023. These data underwent rigorous analysis, encompassing basic descriptive statistics, correlation analyses between key factors in doctors' internet-based introductions, and the number of patient consultation visits. Additionally, we conducted subgroup analyses to ascertain the independence of these vital factors. To further distill the essence from these data, we used nonnegative matrix factorization to identify crucial demographic characteristics that significantly impact patient choice. RESULTS: The statistical results suggested that there were significant differences in the distribution of consultation volume (P<.001), and the correlation analysis results suggested that there was a strong correlation between the two groups of data (ρ=0.93; P<.001). There was a correlation between the richness of a profile and popularity (P<.001). Patients were more interested in physicians with advanced titles, doctoral degrees, social activities, and scientific achievements (P<.001) as well as other institutional visit experiences (P=.003). More prosperous social activities, scientific achievements, experiences of other institutional visits, and awards were more common among people with advanced professional titles. Doctoral degrees remained attractive to patients when data were limited to senior physicians (P<.001). Patients trusted the medical staff with advanced titles, social activities, scientific achievements, and doctoral degrees (P<.001). CONCLUSIONS: Patient preferences for choosing a health care provider differed significantly between free and paid consultations. Notably, patients tended to trust doctors with advanced professional titles more and were more likely to seek out those with doctoral qualifications over other professional ranks. Additionally, physicians who actively participated in social events and scientific endeavors often had an advantage in attracting new patients. Given these insights, doctors who invest in enhancing their personal and professional experiences within these domains are likely to see increased popularity and patient satisfaction.

2.
ACS Appl Mater Interfaces ; 16(17): 22471-22481, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38647074

RESUMEN

Ceramic coatings that can effectively prevent hydrogen permeation have a wide range of applications in hydrogen energy and nuclear fusion reactors. In this study, for the first time, the internal stress of Er2O3 coatings was found to be a key factor that could determine their hydrogen permeation resistance and lifespan. The internal stress was controlled by designing layered Er2O3 coatings. The internal stress increased with an increasing number of Er2O3 layers. When the number of layers was below 15, the increased internal stress did not adversely affect the coating performance and might help to increase its hydrogen permeation resistance. Although the overall thickness of the 15-layer Er2O3 coating was only 97 nm, its hydrogen permeation reduction factor (PRF) reached the highest value of 626, whereas a further increase in the internal stress detrimentally affected the ability of the coating to reduce hydrogen permeation. In addition, the experimental observations and simulation results revealed that the performance of the Er2O3 coatings was related to the hydrogen atoms that penetrated the coating, which weakened the Er-O bonds and consequently decreased the Er2O3 fracture limit. This study provides insights into the effects of internal stress and hydrogen penetration on the performance of ceramic coatings as hydrogen permeation barriers and will help guide strategies for the structure design of hydrogen permeation barriers possessing high PRFs and long lifespans.

3.
J Agric Food Chem ; 72(18): 10605-10615, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38647030

RESUMEN

Acinetobacter johnsonii and Shewanella putrefaciens were identified as specific spoilage organisms in aquatic food. The interactions among specific spoilage organisms under cold stress have a significant impact on the assembly of microbial communities, which play crucial roles in the spoilage and cold adaptation processes. The limited understanding of A. johnsonii and S. putrefaciens interactions in the cold adaptation mechanism hinders the elucidation of their roles in protein and metabolism levels. 4D quantitative proteomic analysis showed that the coculture of A. johnsonii and S. putrefaciens responds to low temperatures through ABC transporter proteins, resulting in phospholipid transport and inner membrane components. SapA and FtsX proteins were significantly upregulated, while LolC, LolD, LolE, PotD, PotA, PotB, and PotC proteins were significantly downregulated. Metabolome assays revealed that metabolites of glutathione and spermidine/putrescin were significantly upregulated, while metabolites of arginine/lysine/ornithine were significantly downregulated and involved in the ABC transporter metabolism. The results of ultramicroscopic analyses showed that the coculture of A. johnsonii and S. putrefaciens surface combined with the presence of the leakage of intracellular contents, suggesting that the bacteria were severely damaged and wrinkled to absorb metabolic nutrients and adapt to cold temperatures.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Acinetobacter , Proteínas Bacterianas , Frío , Shewanella putrefaciens , Shewanella putrefaciens/metabolismo , Shewanella putrefaciens/fisiología , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Acinetobacter/metabolismo , Acinetobacter/fisiología , Almacenamiento de Alimentos , Adaptación Fisiológica , Técnicas de Cocultivo
4.
J Bacteriol ; 206(5): e0000324, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38606980

RESUMEN

In most actinomycetes, GlnR governs both nitrogen and non-nitrogen metabolisms (e.g., carbon, phosphate, and secondary metabolisms). Although GlnR has been recognized as a global regulator, its regulatory role in central carbon metabolism [e.g., glycolysis, gluconeogenesis, and the tricarboxylic acid (TCA) cycle] is largely unknown. In this study, we characterized GlnR as a direct transcriptional repressor of the pckA gene that encodes phosphoenolpyruvate carboxykinase, catalyzing the conversion of the TCA cycle intermediate oxaloacetate to phosphoenolpyruvate, a key step in gluconeogenesis. Through the transcriptomic and quantitative real-time PCR analyses, we first showed that the pckA transcription was upregulated in the glnR null mutant of Amycolatopsis mediterranei. Next, we proved that the pckA gene was essential for A. mediterranei gluconeogenesis when the TCA cycle intermediate was used as a sole carbon source. Furthermore, with the employment of the electrophoretic mobility shift assay and DNase I footprinting assay, we revealed that GlnR was able to specifically bind to the pckA promoter region from both A. mediterranei and two other representative actinomycetes (Streptomyces coelicolor and Mycobacterium smegmatis). Therefore, our data suggest that GlnR may repress pckA transcription in actinomycetes, which highlights the global regulatory role of GlnR in both nitrogen and central carbon metabolisms in response to environmental nutrient stresses. IMPORTANCE: The GlnR regulator of actinomycetes controls nitrogen metabolism genes and many other genes involved in carbon, phosphate, and secondary metabolisms. Currently, the known GlnR-regulated genes in carbon metabolism are involved in the transport of carbon sources, the assimilation of short-chain fatty acid, and the 2-methylcitrate cycle, although little is known about the relationship between GlnR and the TCA cycle and gluconeogenesis. Here, based on the biochemical and genetic results, we identified GlnR as a direct transcriptional repressor of pckA, the gene that encodes phosphoenolpyruvate carboxykinase, a key enzyme for gluconeogenesis, thus highlighting that GlnR plays a central and complex role for dynamic orchestration of cellular carbon, nitrogen, and phosphate fluxes and bioactive secondary metabolites in actinomycetes to adapt to changing surroundings.


Asunto(s)
Proteínas Bacterianas , Regulación Bacteriana de la Expresión Génica , Gluconeogénesis , Nitrógeno , Gluconeogénesis/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Nitrógeno/metabolismo , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Amycolatopsis/metabolismo , Amycolatopsis/genética , Regiones Promotoras Genéticas , Fosfoenolpiruvato Carboxiquinasa (ATP)/metabolismo , Fosfoenolpiruvato Carboxiquinasa (ATP)/genética , Ciclo del Ácido Cítrico/genética , Actinobacteria/genética , Actinobacteria/metabolismo
5.
J Chem Phys ; 160(9)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38450732

RESUMEN

One of the primary hurdles in microdevice fabrication lies in ascertaining the most impactful tactics for adapting metal surfaces. Through a one-pot tackle and distinct mechanochemical reactions evoked by 15 min aqueous wet sand-milling (SM-15), we successfully grafted Mo-based metal-organic frameworks (Mo-MOFs) onto graphene oxides (GOs). Following this, a convenient and readily scalable methodology of electrophoretic deposition was implemented to create controllable thickness of SM-15 GOs@Mo-MOFs lubricating films, achieving considerable enhancements of 143% and 91% in hardness and Young's modulus, respectively, when compared to those of SM-15 Mo-MOFs. The successful synthesis of SM-15 GOs@Mo-MOFs was corroborated using strategies such as x-ray diffraction, Fourier transform infrared spectroscopy, and field emission scanning electron microscopy. Analyses using the micro-tribotester indicated that the new film exhibited a lowest friction coefficient of roughly 0.5 when imposed with a load of 5 N and sliding speed of 8 mm/s. In addition, the optical profiler nano-indentation in situ scanning probe microscope revealed that SM-15 GOs@Mo-MOFs films had smaller and shallower scratches and grooves compared to SM-15 Mo-MOFs ones. The calculated results of key descriptors (EHOMO, ELUMO, ΔE, etc.) in density functional theory quantitatively disclosed the interaction mechanisms between GOs@Mo-MOFs molecules and microdevices. We first scrutinized the innate properties of molecule adsorption energy and frictional mechanical behaviors using synergetic cross-scale simulations, such as Monte Carlo and finite element methods. The expectation was that this process would motivate a valuable technique for shielding in the thriving micromanufacturing.

6.
Materials (Basel) ; 16(23)2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38068157

RESUMEN

As industrial modernization surges forward, the heat treatment industry strives for lower pollution, reduced oxidation and defects, minimized waste, and automatization. This paper reviews the mechanisms, processes, equipment, and simulations of the vacuum gas quenching technology, presenting a comprehensive account of the structure and working principle of a typical vacuum gas quenching furnace. Firstly, the mechanism of the heat transfer process, flow process, and flow-heat transfer-phase transition coupling were summarized. Then, the influences of process parameters on the mechanical properties and distortion of vacuum gas quenched workpieces, as well as the process optimization methods, were discussed. Finally, the advantages of vacuum gas quenching in energy saving, low pollution, and high efficiency were introduced, with the future development directions figured out.

7.
J Agric Food Chem ; 71(24): 9558-9568, 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37306251

RESUMEN

Shewanella putrefaciens is a typical spoiler that is commonly found in seafood and has high spoilage potential. However, the spoilage mechanism against Shewanella putrefaciens at the gene and metabolism levels has not been well elucidated. This work determined the spoilage targets on Shewanella putrefaciens XY07 from spoiled bigeye tuna by genome sequencing, metabolomics, and Fourier transform infrared (FTIR) analysis. Shewanella putrefaciens XY07 contained some genes on spoilage regulating of cys genes, his genes, spe genes and rpoS gene involved in sulfur metabolism, histidine metabolism, arginine and proline degradation, and biofilm formation at the genome level, respectively. Some spoilage genes like speC, cysM, trxB genes were identified. In addition, ABC transporters, arginine and proline metabolism; beta-alanine metabolism; glycine, serine, and threonine metabolism; histidine metabolism; sulfur metabolism; and lipid metabolism were identified as important pathways related to aquatic food during spoilage, which indicated the functions of amino acid degradation in S. putrefaciens XY 07 by metabolomics analysis. The metabolites of l-ornithine, 5-aminopentanoate, and 4-aminobutyraldehyde could be further metabolized to spermidine and spermine, producing a spoilage odor, and were involved in arginine and proline metabolism serving as key spoilage regulating metabolisms. Therefore, Shewanella putrefaciens XY07 was applied to genomics, metabolomics analysis, and FTIR to provide comprehensive insight into the investigation of spoilage targets.


Asunto(s)
Shewanella putrefaciens , Shewanella , Animales , Shewanella putrefaciens/genética , Atún , Análisis de Fourier , Histidina/metabolismo , Genómica , Metabolómica , Prolina/metabolismo , Azufre/metabolismo , Shewanella/genética
8.
Heliyon ; 9(4): e15088, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37128346

RESUMEN

Objective: Bohai algae oil contains polyunsaturated fatty acids, such as EPA (eicosapentaenoic acid) and DHA (docosahexaenoic acid), which are the very important polyunsaturated fatty acids for the human body. In Traditional Chinese Cooking, all cooking methods cannot do without oils. However, the heat of cooking may always lead to formation of large amounts of decomposition products that affect the sensory, nutritional and functional quality of the oils to be unhealthy and the products being cooked, especially the food or edible oil rich in polyunsaturated fatty acids. Therefore, the objective of this study was to research the effect and change of heating on the quality characteristics of Bohai algae oil comparison with soybean oil and olive oil. Method: Quality characteristics such as the iodine values (IVs), peroxide values (POVs) and acid values (AVs) of Bohai algae oil, soybean oil and olive oil were measured, cooking conditions as factors of the study. Result: The POVs percentage changes of Bohai algae oil were larger than the IVs and AVs percentage changes. Bohai algae oil was better heated in a microwave oven at microwave P-20 within 3min, microwave P-60 and P-H1 within 2min, or in induction cooker at 1500w within 1min, or on electric stove (direct heated) within 2min. Conclusion: Bohai algae oil was suitable used for low-temperature and short-time cooking or for salad. This study has important significance for promoting the commercial value and extensive application of Bohai algae oil in daily cooking. It plays a theoretical significance role in Bohai algae oil's better processing and traditional chinese cooking. It can improve product quality to further expand the food processing research scope of Bohai algae oil and increase the richness, diversity and universality of edible methods of Bohai algae oil.

9.
ACS Nano ; 17(8): 7170-7179, 2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37036127

RESUMEN

2D materials with ferroelectric and piezoelectric properties are of interest for energy harvesting, memory storage and electromechanical systems. Here, we present a systematic study of the ferroelectric properties in NbOX2 (X = Cl, I) across different spatial scales. The in-plane ferroelectricity in NbOX2 was investigated using transport and piezoresponse force microscopy (PFM) measurements, where it was observed that NbOCl2 has a stronger ferroelectric order than NbOI2. A high local field, exerted by both PFM and scanning tunneling microscopy (STM) tips, was found to induce 1D collinear ferroelectric strips in NbOCl2. STM imaging reveals the unreconstructed atomic structures of NbOX2 surfaces, and scanning tunneling spectroscopy was used to probe the electronic states induced at defect (vacancy) sites.

10.
Materials (Basel) ; 16(4)2023 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-36837344

RESUMEN

The effect and mechanism of grain sizes on the tribological behavior of CoCrFeMnNi high entropy alloy (HEA) were studied by friction experiments and wear morphology analysis. Under normal low load and low sliding speed, the primary wear mechanism of the HEA samples is adhesive wear. With the increase in sliding speed, the wear mechanisms of the samples are adhesive wear and oxidation wear. The oxide layer formed under the action of friction heat of the coarse grain (CG) sample is easy to break due to the softening of the CG. With the increase of normal load and sliding speed, the wear mechanisms of the HEA samples are mainly adhesive wear, oxidation wear, and plastic deformation. The oxide layer of CG sample has many cracks, and the worn surface also has plastic deformation, which leads to the increase of friction coefficient and specific wear rate and the decrease of wear resistance. Therefore, the fine grain size HEA sample has better wear resistance than the CG sample due to its high surface strength.

11.
J Clin Med ; 12(4)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36836120

RESUMEN

This study aims to explore the value of a machine learning (ML) model based on radiomics features and clinical features in predicting the outcome of spontaneous supratentorial intracerebral hemorrhage (sICH) 90 days after surgery. A total of 348 patients with sICH underwent craniotomy evacuation of hematoma from three medical centers. One hundred and eight radiomics features were extracted from sICH lesions on baseline CT. Radiomics features were screened using 12 feature selection algorithms. Clinical features included age, gender, admission Glasgow Coma Scale (GCS), intraventricular hemorrhage (IVH), midline shift (MLS), and deep ICH. Nine ML models were constructed based on clinical feature, and clinical features + radiomics features, respectively. Grid search was performed on different combinations of feature selection and ML model for parameter tuning. The averaged receiver operating characteristics (ROC) area under curve (AUC) was calculated and the model with the largest AUC was selected. It was then tested using multicenter data. The combination of lasso regression feature selection and logistic regression model based on clinical features + radiomics features had the best performance (AUC: 0.87). The best model predicted an AUC of 0.85 (95%CI, 0.75-0.94) on the internal test set and 0.81 (95%CI, 0.64-0.99) and 0.83 (95%CI, 0.68-0.97) on the two external test sets, respectively. Twenty-two radiomics features were selected by lasso regression. The second-order feature gray level non-uniformity normalized was the most important radiomics feature. Age is the feature with the greatest contribution to prediction. The combination of clinical features and radiomics features using logistic regression models can improve the outcome prediction of patients with sICH 90 days after surgery.

12.
Nanomaterials (Basel) ; 13(1)2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36616125

RESUMEN

Carbon nanotubes (CNTs) were considered a promising activator for persulfates due to their high electrical conductivity, large specific surface area and low toxicity. The functional groups and surface defects of CNTs could significantly affect their activation performance. In this study, CNTs with high C=O ratio and defect density (CNT-O-H) were prepared through a facile treatment of raw CNTs with HNO3 oxidation followed by calcination at 800 °C under an argon atmosphere. X-ray photoelectron spectroscopy (XPS) and Raman results showed that the C=O proportion and defect degree (ID/IG) rose to 75% and 1.53, respectively. The obtained CNT-O-H possessed a superior performance towards peroxydisulfate (PDS) activation, and the degradation efficiency of tetracycline (TC) in the CNT-O-H/PDS system was increased to 75.2% from 56.2% of the raw CNTs/PDS system within 40 min. Moreover, the activity of CNT-O-H after use could be easily recovered with re-calcination. In addition, the CNT-O-H/PDS system exhibited high adaptabilities towards wide solution pH (2-10), common coexisting substances and diverse organic pollutants. Singlet oxygen (1O2) was confirmed to be the dominant reactive oxygen species (ROS) generated in the CNT-O-H/PDS system. It was inferred that surface C=O groups and defects of CNTs were the key site to activate PDS for TC degradation.

13.
Thorac Cancer ; 14(4): 419-422, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36635969

RESUMEN

Tracheal tumors are rare, accounting for 0.1% of all malignancies. Squamous cell carcinoma and adenoid cystic carcinoma are the two most prevalent tracheal cancers. Less than 20 cases of extramedullary plasmacytoma in the trachea and main bronchus have ever been documented in the literature, making it extremely uncommon. Although the origin of these lesions is unclear, viral pathogenesis and persistent inflammation are thought to be the main causes. Clinically, these individuals exhibit vague symptoms such as stridor, a persistent cough, dyspnea, or wheezing, making a correct diagnosis difficult.


Asunto(s)
Neoplasias Óseas , Neoplasias de los Bronquios , Plasmacitoma , Neoplasias de la Tráquea , Humanos , Tráquea/patología , Plasmacitoma/diagnóstico , Plasmacitoma/patología , Neoplasias de la Tráquea/diagnóstico , Bronquios/patología , Neoplasias de los Bronquios/diagnóstico , Neoplasias de los Bronquios/patología , Neoplasias Óseas/patología
14.
Materials (Basel) ; 15(24)2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36556736

RESUMEN

The high strength of 300M steel originates from the heat treatment process after forging, but how hot deformation affects the heat-treated microstructure and mechanical properties is unclear. In this study, compression tests under different hot deformation parameters and post-deformation heat treatment experiments were carried out, and the martensite transformation process was investigated using in situ observation. The results show that the grain size of the specimen deformed at low temperature and high strain rate is smaller, and annealing twins will be formed. Both austenite grain boundaries and twin boundaries hinder the growth of martensite blocks, reducing the size of martensite units after heat treatment and thus resulting in higher yield strength. Besides, the mathematical models were established to describe the relationship between hot deformation parameters and grain size after deformation, martensite packet size and martensite block width, respectively, after heat treatment. The relationship between yield strength and hot deformation parameters was also analyzed. According to the results and models, the hot deformation parameters would be optimized more reasonably to improve the final mechanical properties of 300M steel forgings.

15.
Materials (Basel) ; 15(19)2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36234360

RESUMEN

The plastic forming process involves many influencing factors and has some inevitable disturbance factors, rendering the multi-objective collaborative optimization difficult. With the rapid development of big data and artificial intelligence (AI) technology, intelligent process optimization has become one of the critical technologies for plastic forming. This paper elaborated on the research progress on the intelligent optimization of plastic forming and the data-driven process planning and decision-making system in plastic forming process optimization. The development trend in intelligent optimization of the plastic forming process was researched. This review showed that the intelligent optimization algorithm has great potential in controlling forming quality, microstructure, and performance in plastic forming. It is a general trend to develop an intelligent optimization model of the plastic forming process with high integration, versatility, and high performance. Future research will take the data-driven expert system and digital twin system as the carrier, integrate the optimization algorithm and model, and realize the multi-scale, high-precision, high-efficiency, and real-time optimization of the plastic forming process.

16.
J Agric Food Chem ; 70(32): 10000-10010, 2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-35919963

RESUMEN

Acinetobacter johnsonii is one of the major food-spoilage bacteria and can survive under cold stress. In this study, the membrane composition, membrane permeability, and energy transduction of A. johnsonii XY27 cultured at 4 and 30 °C were examined comparatively by flow cytometry combined with liquid chromatography-mass spectrometry and gas chromatography-mass spectrometry. The Na+/K+ATPase activity, alkaline phosphatase and ATPase activity, fluorescence intensity, and cell viability in A. johnsonii XY27 increased with the decrease in cultivation temperature. The polyunsaturated fatty acid and monounsaturated fatty acids have a higher content in A. johnsonii XY27 cultured at 4 °C compared to that cultured at 30 °C, in which the contents of methyl palmitoleate, methyl myristoleate, and methyl oleate increased dramatically with decreasing temperature. Comparative proteomics analysis revealed that 31 proteins were downregulated and 4 proteins were upregulated, in which catalase-peroxidase 1 and cold shock proteins as biomarker proteins could effectively control A. johnsonii during cold adaptation.


Asunto(s)
Proteómica , Atún , Acinetobacter , Adenosina Trifosfatasas/metabolismo , Animales , Biomarcadores/metabolismo , Proteínas de la Membrana/metabolismo
17.
Neoplasma ; 69(5): 1175-1184, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36004648

RESUMEN

Osteosarcoma (OS) is a high-grade, aggressive bone sarcoma. LncRNAs play a key regulatory role in controlling biological and pathological processes. The expression of lncRNA SNHG9 varies among different cancer tissues, and the role of SNHG9 in OS progression is unclear. In this study, we found SNHG9 overexpression in OS tissues and cells. In addition, downregulated SNHG9 expression impaired the proliferation, migration, and invasion abilities of OS cells. SNHG9 expression was positively regulated by the transcription factor SOX4. SNHG9 interacted with miR-214-5p as a molecular sponge and SOX4 was identified as the target of miR-214-5p. The interaction affected the expression of SNHG9, miR-214-5p, and SOX4, and regulated OS cell proliferation, migration, and invasion. Therefore, the SNHG9/miR-214-5p/SOX4 feedback loop performs an important role in OS progression and might be used as a new potential therapeutic target for the treatment of OS.


Asunto(s)
Neoplasias Óseas , MicroARNs , Osteosarcoma , ARN Largo no Codificante , Apoptosis/genética , Neoplasias Óseas/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Retroalimentación , Regulación Neoplásica de la Expresión Génica , Humanos , MicroARNs/metabolismo , Osteosarcoma/genética , Osteosarcoma/patología , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Factores de Transcripción SOXC/genética , Factores de Transcripción/genética
18.
Front Pediatr ; 10: 907724, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35799694

RESUMEN

Objective: Fetal MRI has played an essential role in the evaluation and management of congenital diaphragmatic hernia (CDH). We aimed to investigate whether the mediastinal shift angle (MSA) value was associated with the prognosis and the severity of left CDH and explore the relationship between the MSA value and fetal and neonatal cardiac structures and functions. Methods: From January 2012 to December 2020, the fetal MSA values of left CDH in our institution were retrospectively measured. Other prenatal parameters and clinical outcomes of them are collected. We also measured the fetal and postnatal echocardiography parameters to analyze linear correlation with MSA values. Results: A total of 94 patients with left CDH were included. MSA was significantly higher in the deceased group than in the survived group [((38.3 ± 4.7)° vs. 32.3 ± 5.3)°, p < 0.001]. The MSA value of the high-risk defect group [CDH Study Group (CDHSG) C/D type] was significantly higher than that of the low-risk defect group [CDHSG A/B type; (36.0 ± 4.9)° vs. (30.1 ± 4.8)°, p < 0.001]. The AUC for severity was 0.766 (95% CI, 0.661-0.851, p < 0.0001) and the best cut-off value for MSA was 30.7°. Higher MSA correlates with decreased fetal Z-score of left ventricle (LV) width, the diameter of the mitral valve (MV), peak velocity of MV and tricuspid valve (TV), and neonatal LV end-diastolic diameter (LVEDD) and velocity of tricuspid regurgitation (TR; p < 0.05). Conclusion: A high MSA value can effectively predict high-risk defects and high mortality of left CDH. The higher the MSA value, the worse the neonatal conditions, the respiratory and cardiovascular prognosis. The MSA values could reflect the level of left heart underdevelopment, including decreased dimensions and diastolic dysfunction of the left ventricle.

19.
Nat Commun ; 13(1): 3104, 2022 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-35662239

RESUMEN

Two-dimensional (2D) organic-inorganic hybrid perovskites have attracted intense interests due to their quantum well structure and tunable excitonic properties. As an alternative to the well-studied divalent metal hybrid perovskite based on Pb2+, Sn2+ and Cu2+, the trivalent metal-based (eg. Sb3+ with ns2 outer-shell electronic configuration) hybrid perovskite with the A3M2X9 formula (A = monovalent cations, M = trivalent metal, X = halide) offer intriguing possibilities for engineering ferroic properties. Here, we synthesized 2D ferroelectric hybrid perovskite (TMA)3Sb2Cl9 with measurable in-plane and out-of-plane polarization. Interestingly, (TMA)3Sb2Cl9 can be intercalated with FeCl4 ions to form a ferroelastic and piezoelectric single crystal, (TMA)4-Fe(iii)Cl4-Sb2Cl9. Density functional theory calculations were carried out to investigate the unusual mechanism of ferroelectric-ferroelastic crossover in these crystals.

20.
J Colloid Interface Sci ; 624: 137-149, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-35660882

RESUMEN

In this study, zincperoxide (ZnO2) with broad energy gap was firstly used for visible-light-induced photocatalytic degradation of tetracycline (TC) and inactivation of Escherichia coli (E. coli). A small amount of ZnO2 (10 mg) could efficiently degrade 100 mL of 50 mg/L TC in a wide pH range (4-12), and the degradation performance was rarely suppressed by common matrix species and natural water sources. Also, 100 mg/L ZnO2 could inactivate around 7-log E. coli cells within 60 min under visible-light irradiation. Quenching experiments and electron paramagnetic resonance (EPR) results confirmed that superoxide radical (•O2-) and singlet oxygen (1O2) were the main reactive oxygen species (ROS), which were attributed to the self-sensitization of TC and the photoexcitation of released H2O2 under the catalysis of Zn(OH)2 from the hydrolysis of partial ZnO2, respectively. The pathways of TC degradation and processes of visible-light-induced TC degradation and E. coli inactivation were proposed and deduced in detail. This work presented the enhanced visible-light photocatalytic activities of ZnO2 for antibiotic degradation and bacterial inactivation, and provided a deep insight into the mechanisms of visible-light-induced TC degradation andE. coli inactivation over ZnO2.


Asunto(s)
Escherichia coli , Óxido de Zinc , Antibacterianos/metabolismo , Antibacterianos/farmacología , Catálisis , Escherichia coli/metabolismo , Peróxido de Hidrógeno/metabolismo , Luz , Tetraciclina/química , Zinc , Óxido de Zinc/metabolismo , Óxido de Zinc/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...