Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
1.
Acc Chem Res ; 56(21): 2992-2999, 2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37847868

RESUMEN

The development of various chemical methods has enabled scientists to decipher the distribution features and biological functions of RNA modifications in the past decade. In addition to modifying noncoding RNAs such as tRNAs and rRNAs, N6-methyladenosine (m6A) has been proven to be the most abundant internal chemical modification on mRNAs in eukaryotic cells and is also the most widely studied mRNA modification to date. Extensive studies have repeatedly demonstrated the important functions of m6A in various biological conditions, ranging from embryonic organ development to adult organ function and pathogenesis. Unlike DNA methylation which is relatively stable, the reversible m6A modification on mRNA is highly dynamic and easily influenced by various internal or external factors, such as cell type, developmental stage, nutrient supply, circadian rhythm, and environmental stresses.In this Account, we review our previous findings on the site selectivity mechanisms regulating m6A formation, as well as the physiological roles of m6A modification in cerebellum development and long-term memory consolidation. In our initial efforts to profile m6A in various types of mouse and human cells, we surprisingly found that the sequence motifs surrounding m6A sites were often complementary with the seed sequences of miRNAs. By manipulating the abundance of the miRNA biogenesis enzyme Dicer or individual miRNAs or mutating miRNA sequences, we were able to reveal a new role of nucleus localized miRNAs, which is to guide the m6A methyltransferase METTL3 to bind to mRNAs and to promote m6A formation. As a result, we partially answered the question of why only a small proportion of m6A motifs within an mRNA could have m6A modification at a certain time point. We further explored the functions of m6A modification in regulating brain development and brain functions. We found that cerebellum had the most severe defects when Mettl3 was knocked out in developing mouse embryonic brain and revealed that the underlying mechanisms could be attributed to aberrant mRNA splicing and enhanced cell apoptosis under m6A deficit conditions. On the other hand, knocking out Mettl3 in postnatal hippocampus did not cause morphological defects in the mouse brain but impaired the efficacy of long-term memory consolidation. Under learning stimuli, formation of m6A modifications could be detected on transcripts encoding proteins related to dendrite growth, synapse formation, and other memory related functions. Loss of m6A modifications on these transcripts would result in translation deficiency and reduced protein production, particularly in the translation of early response genes, and therefore would compromise the efficacy of long-term memory consolidation. Interestingly, excessive training sessions or increased training intensity could overcome such m6A deficiency related memory defects, which is likely due to the longer turnover cycle and the cumulative abundance of proteins throughout the training process. In addition to revealing the roles of m6A modification in regulating long-term memory formation, our work also demonstrated an effective method for studying memory formation efficacy. As the lack of an appropriate model for studying memory formation efficacy has been a long-lasting problem in the field of neural science, our hippocampus-specific postnatal m6A knockout model could also be utilized to study other questions related to memory formation efficacy.


Asunto(s)
Metiltransferasas , MicroARNs , Animales , Humanos , Ratones , Adenosina/metabolismo , Metilación , Metiltransferasas/metabolismo , MicroARNs/metabolismo , ARN Mensajero/metabolismo
2.
Mol Plant Pathol ; 24(4): 359-373, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36762904

RESUMEN

Chemical signal-mediated biological communication is common within bacteria and between bacteria and their hosts. Many plant-associated bacteria respond to unknown plant compounds to regulate bacterial gene expression. However, the nature of the plant compounds that mediate such interkingdom communication and the underlying mechanisms remain poorly characterized. Xanthomonas campestris pv. campestris (Xcc) causes black rot disease on brassica vegetables. Xcc contains an orphan LuxR regulator (XccR) which senses a plant signal that was validated to be glucose by HPLC-MS. The glucose concentration increases in apoplast fluid after Xcc infection, which is caused by the enhanced activity of plant sugar transporters translocating sugar and cell-wall invertases releasing glucose from sucrose. XccR recruits glucose, but not fructose, sucrose, glucose 6-phosphate, and UDP-glucose, to activate pip expression. Deletion of the bacterial glucose transporter gene sglT impaired pathogen virulence and pip expression. Structural prediction showed that the N-terminal domain of XccR forms an alternative pocket neighbouring the AHL-binding pocket for glucose docking. Substitution of three residues affecting structural stability abolished the ability of XccR to bind to the luxXc box in the pip promoter. Several other XccR homologues from plant-associated bacteria can also form stable complexes with glucose, indicating that glucose may function as a common signal molecule for pathogen-plant interactions. The conservation of a glucose/XccR/pip-like system in plant-associated bacteria suggests that some phytopathogens have evolved the ability to utilize host compounds as virulence signals, indicating that LuxRs mediate an interkingdom signalling circuit.


Asunto(s)
Glucosa , Xanthomonas campestris , Virulencia , Glucosa/metabolismo , Plantas/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Sacarosa/metabolismo , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Enfermedades de las Plantas/microbiología
3.
Bioact Mater ; 18: 138-150, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35387155

RESUMEN

Despite the recent advances in artificial tissue and organ engineering, how to generate large size viable and functional complex organs still remains as a grand challenge for regenerative medicine. Three-dimensional bioprinting has demonstrated its advantages as one of the major methods in fabricating simple tissues, yet it still faces difficulties to generate vasculatures and preserve cell functions in complex organ production. Here, we overcome the limitations of conventional bioprinting systems by converting a six degree-of-freedom robotic arm into a bioprinter, therefore enables cell printing on 3D complex-shaped vascular scaffolds from all directions. We also developed an oil bath-based cell printing method to better preserve cell natural functions after printing. Together with a self-designed bioreactor and a repeated print-and-culture strategy, our bioprinting system is capable to generate vascularized, contractible, and long-term survived cardiac tissues. Such bioprinting strategy mimics the in vivo organ development process and presents a promising solution for in vitro fabrication of complex organs.

4.
Inflammation ; 45(4): 1568-1584, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35175495

RESUMEN

Intermedin (IMD), a paracrine/autocrine peptide, protects against cardiac fibrosis. However, the underlying mechanism remains poorly understood. Previous study reports that activation of nucleotide-binding oligomerization domain (NOD)-like receptor family pyrin domain containing 3 (NLRP3) inflammasome contributes to cardiac fibrosis. In this study, we aimed to investigate whether IMD mitigated cardiac fibrosis by inhibiting NLRP3. Cardiac fibrosis was induced by angiotensin II (Ang II) infusion for 2 weeks in rats. Western blot, real-time PCR, histological staining, immunofluorescence assay, RNA sequencing, echocardiography, and hemodynamics were used to detect the role and the mechanism of IMD in cardiac fibrosis. Ang II infusion resulted in rat cardiac fibrosis, shown as over-deposition of myocardial interstitial collagen and cardiac dysfunction. Importantly, NLRP3 activation and endoplasmic reticulum stress (ERS) were found in Ang II-treated rat myocardium. Ang II infusion decreased the expression of IMD and increased the expression of the receptor system of IMD in the fibrotic rat myocardium. IMD treatment attenuated the cardiac fibrosis and improved cardiac function. In addition, IMD inhibited the upregulation of NLRP3 markers and ERS markers induced by Ang II. In vitro, IMD knockdown by small interfering RNA significantly promoted the Ang II-induced cardiac fibroblast and NLRP3 activation. Moreover, silencing of inositol requiring enzyme 1 α (IRE1α) blocked the effects of IMD inhibiting fibroblast and NLRP3 activation. Pre-incubation with PKA pathway inhibitor H89 blocked the effects of IMD on the anti-ERS, anti-NLRP3, and anti-fibrotic response. In conclusion, IMD alleviated cardiac fibrosis by inhibiting NLRP3 inflammasome activation through suppressing IRE1α via the cAMP/PKA pathway.


Asunto(s)
Adrenomedulina , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Neuropéptidos , Adrenomedulina/genética , Adrenomedulina/metabolismo , Angiotensina II/farmacología , Animales , Células Cultivadas , Endorribonucleasas , Fibrosis , Inflamasomas/metabolismo , Complejos Multienzimáticos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Neuropéptidos/genética , Neuropéptidos/metabolismo , Proteínas Serina-Treonina Quinasas , Ratas
5.
Cell Prolif ; 55(2): e13189, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35060660

RESUMEN

OBJECTIVES: Human pluripotent stem cells (hPSCs) are of great importance in both scientific research and regenerative medicine. The most classic and widely used culture method for hPSCs is co-culture with feeder cells, usually mouse embryonic fibroblasts. However, whether these feeder cell residues can affect the transcriptomic data analysis of hPSCs, especially gene or miRNA expression quantification, is still largely unknown. METHODS AND RESULTS: In this study, reanalysis of published mRNA-Seq and miRNA-Seq data sets revealed the existence of feeder cell-derived reads in the hPSC transcriptomic samples. We identified potentially influenced human genes and miRNAs due to misalignment of sequencing fragments affected by mouse feeder cells. Furthermore, we developed an optimized miRNA analysis pipeline to avoid quantification bias from different miRNA isoforms in the same family. Finally, by comparing the levels of feeder cell residues in hPSC samples isolated by different methods, we found that fluorescence-activated cell sorting and adhesion methods were more effective in feeder cell removal than the gradient centrifugation method. CONCLUSIONS: Collectively, our results demonstrate that feeder cell residues affect the transcriptomic data analysis of hPSCs. To minimize the impact of feeder cell contamination in hPSC samples, we provide solutions for both data analysis and sample preparation.


Asunto(s)
Diferenciación Celular/fisiología , Células Nutrientes/citología , Fibroblastos/citología , Células Madre Pluripotentes/citología , Animales , Técnicas de Cultivo de Célula/métodos , Línea Celular , Técnicas de Cocultivo , Perfilación de la Expresión Génica/métodos , Humanos , Ratones
6.
Brief Bioinform ; 23(2)2022 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-35048116

RESUMEN

Accurate cell classification is the groundwork for downstream analysis of single-cell sequencing data, yet how to identify true marker genes for different cell types still remains a big challenge. Here, we report COSine similarity-based marker Gene identification (COSG) as a cosine similarity-based method for more accurate and scalable marker gene identification. COSG is applicable to single-cell RNA sequencing data, single-cell ATAC sequencing data and spatially resolved transcriptome data. COSG is fast and scalable for ultra-large datasets of million-scale cells. Application on both simulated and real experimental datasets showed that the marker genes or genomic regions identified by COSG have greater cell-type specificity, demonstrating the superior performance of COSG in terms of both accuracy and efficiency as compared with other available methods.


Asunto(s)
Análisis de la Célula Individual , Transcriptoma , Perfilación de la Expresión Génica , Análisis de Secuencia de ARN , Análisis de la Célula Individual/métodos , Secuenciación del Exoma
7.
Sheng Li Xue Bao ; 73(5): 781-794, 2021 Oct 25.
Artículo en Chino | MEDLINE | ID: mdl-34708235

RESUMEN

The balance of glucose and lipid metabolism is a coordinated result of multiple factors and organs, and is one of the fundamental requirements for the maintenance of human health. As the most important organ for human metabolism, liver plays a key role in regulating glucose and lipid metabolism. With the advances of researches, the number of publications related to hepatic glucose and lipid metabolism has increased rapidly, which posed a challenge for grasping the hot research topics and developmental trends of hepatic glucose and lipid metabolism in a short time. To solve such problem, we developed an information analysis method, which systematically analyzes the research status, research techniques, and hot research topics of the hepatic glucose and lipid metabolism research field through Medical Subject Headings (MeSH) of related papers and high-throughput experimental data. The results showed that the number of publications related to hepatic glucose and lipid metabolism, especially publications by Chinese scholars, has increased dramatically in this century, along with the remarkable increment of the numbers of authors and affiliations per paper. Such increment is in part positively correlated with the impact of publications. Nowadays, various types of high-throughput experimental techniques have become the main research methods for genetic studies of hepatic glucose and lipid metabolism. Transcription factors, such as peroxisome proliferator-activated receptors (PPARs), sterol regulatory element binding proteins (SREBPs), and NF-E2-related factor 2 (Nrf2), have become the new research hotspots. These results systematically showed the current focuses and developmental trends of hepatic glucose and lipid metabolism research, and the data analysis method developed in this work can also be applied to other research fields.


Asunto(s)
Glucosa , Metabolismo de los Lípidos , Glucosa/metabolismo , Humanos , Hígado
8.
Sheng Li Xue Bao ; 73(4): 584-596, 2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34405215

RESUMEN

Heart failure (HF), a clinical syndrome with high morbidity and mortality, is becoming a growing public health problem. Dilated cardiomyopathy (DCM) is one of the major causes of HF, yet the molecular mechanisms underlying DCM-mediated HF are not completely understood. Previous studies have shown that dysregulation of arachidonic acid (AA) metabolism could contribute to the development of HF. To explore the roles of microRNAs (miRNAs) in regulating AA metabolism in HF, we used two public datasets to analyze the expression changes of miRNAs in the patients of DCM-mediated HF. A total of 101 and 88 miRNAs with significant abundance alterations in the two dataset were obtained, respectively. Around 1/3 of these miRNAs were predicted to target AA metabolic pathway genes. We also investigated the distribution of known single nucleotide polymorphisms (SNPs) within the sequences of miRNAs dysregulated in DCM-mediated HF patients, and identified miRNAs harboring high number of SNPs in either the seed regions or the entire sequences. These information could provide clues for further functional studies of miRNAs in the pathogeny of DCM-mediated HF.


Asunto(s)
Cardiomiopatía Dilatada , Insuficiencia Cardíaca , MicroARNs , Ácido Araquidónico , Cardiomiopatía Dilatada/genética , Insuficiencia Cardíaca/genética , Humanos , MicroARNs/genética
9.
Nucleic Acids Res ; 49(5): 2522-2536, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33561291

RESUMEN

Simultaneous dysregulation of multiple microRNAs (miRs) affects various pathological pathways related to cardiac failure. In addition to being potential cardiac disease-specific markers, miR-23b/27b/24-1 were reported to be responsible for conferring cardiac pathophysiological processes. In this study, we identified a conserved guanine-rich RNA motif within the miR-23b/27b/24-1 cluster that can form an RNA G-quadruplex (rG4) in vitro and in cells. Disruption of this intragenic rG4 significantly increased the production of all three miRs. Conversely, a G4-binding ligand tetrandrine (TET) stabilized the rG4 and suppressed miRs production in human and rodent cardiomyocytes. Our further study showed that the rG4 prevented Drosha-DGCR8 binding and processing of the pri-miR, suppressing the biogenesis of all three miRs. Moreover, CRISPR/Cas9-mediated G4 deletion in the rat genome aberrantly elevated all three miRs in the heart in vivo, leading to cardiac contractile dysfunction. Importantly, loss of the G4 resulted in reduced targets for the aforementioned miRs critical for normal heart function and defects in the L-type Ca2+ channel-ryanodine receptor (LCC-RyR) coupling in cardiomyocytes. Our results reveal a novel mechanism for G4-dependent regulation of miR biogenesis, which is essential for maintaining normal heart function.


Asunto(s)
G-Cuádruplex , MicroARNs/química , MicroARNs/metabolismo , Contracción Miocárdica/genética , Miocitos Cardíacos/metabolismo , Animales , Bencilisoquinolinas/farmacología , Sistemas CRISPR-Cas , Células Cultivadas , G-Cuádruplex/efectos de los fármacos , Regulación de la Expresión Génica , Miocardio/metabolismo , Miocitos Cardíacos/fisiología , Procesamiento Postranscripcional del ARN , Proteínas de Unión al ARN/metabolismo , Ratas , Ratas Sprague-Dawley , Ribonucleasa III/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo
10.
Adv Genet (Hoboken) ; 2(1): e10035, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36618441

RESUMEN

Male juvenile zebra finches learn to sing by imitating songs of adult males early in life. The development of the song control circuit and song learning and maturation are highly intertwined processes, involving gene expression, neurogenesis, circuit formation, synaptic modification, and sensory-motor learning. To better understand the genetic and genomic mechanisms underlying these events, we used RNA-Seq to examine genome-wide transcriptomes in the song control nucleus HVC of male juvenile (45 d) and adult (100 d) zebra finches. We report that gene groups related to axon guidance, RNA processing, lipid metabolism, and mitochondrial functions show enriched expression in juvenile HVC compared to the rest of the brain. As juveniles mature into adulthood, massive gene expression changes occur. Expression of genes related to amino acid metabolism, cell cycle, and mitochondrial function is reduced, accompanied by increased and enriched expression of genes with synaptic functions, including genes related to G-protein signaling, neurotransmitter receptors, transport of small molecules, and potassium channels. Unexpectedly, a group of genes with immune system functions is also developmentally regulated, suggesting potential roles in the development and functions of HVC. These data will serve as a rich resource for investigations into the development and function of a neural circuit that controls vocal behavior.

11.
RNA Biol ; 18(6): 875-887, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-32991228

RESUMEN

The pluripotency of embryonic stem cells (ESCs) is controlled by a multilayer regulatory network, of which the key factors include core pluripotency genes Oct4, Sox2 and Nanog, and multiple microRNAs (miRNAs). Recently, long noncoding RNAs (lncRNAs) have been discovered as a class of new regulators for ESCs, and some lncRNAs could function as competing endogenous RNAs (ceRNAs) to regulate mRNAs by competitively binding to miRNAs. Here, we identify mmu-miR-139-5p as a new regulator for Nanog by targeting Nanog 3' untranslated region (UTR) to repress Nanog expression in mouse ESCs and embryos. Such regulation could be released by an ESC-specifically expressed ceRNA named lnc-NAP. The expression of lnc-NAP is activated by OCT4, SOX2, as well as NANOG through promoter binding. Downregulation of lnc-NAP reduces Nanog abundance, which leads to decreased pluripotency of mouse ESCs and embryonic lethality. These results reveal lnc-NAP as a new regulator for Nanog in mouse ESCs, and uncover a feed-forward regulatory loop of Nanog through the participation of lnc-NAP.


Asunto(s)
Embrión de Mamíferos/metabolismo , Células Madre Embrionarias/metabolismo , Regulación del Desarrollo de la Expresión Génica , MicroARNs/genética , Proteína Homeótica Nanog/genética , ARN Largo no Codificante/genética , Regiones no Traducidas 3'/genética , Animales , Diferenciación Celular/genética , Embrión de Mamíferos/citología , Embrión de Mamíferos/embriología , Células Madre Embrionarias/citología , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Endogámicos NOD , Ratones SCID , Proteína Homeótica Nanog/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Regiones Promotoras Genéticas/genética , Unión Proteica , RNA-Seq/métodos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo
14.
Curr Protein Pept Sci ; 21(2): 142-152, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31752653

RESUMEN

Hymenoptera venom allergy is one of the common causes of anaphylaxis. However, when physicians make the diagnosis of Hymenoptera venom allergy, the history of being stung is not always consistent with the results of venom-specific IgE. With the development of component-resolved diagnosis, it is possible to accurately localize an allergic reaction to certain sensitized proteins. This paper reviewed the studies that have addressed the identified allergenicity and cross-reactivity of Hymenoptera venom allergens accepted by the WHO/IUIS Nomenclature Sub-committee, the componentresolved diagnosis of Hymenoptera venom allergy and its predictive values for the efficacy and safety of venom immunotherapy. Also special attention was paid to the spread of Hymenoptera venom allergy in Asian countries.


Asunto(s)
Alérgenos/inmunología , Anafilaxia/inmunología , Animales , Venenos de Artrópodos/inmunología , Humanos , Himenópteros/inmunología , Insectos
15.
Front Neurol ; 10: 475, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31293492

RESUMEN

Objective: This study aims to evaluate the effects of combining Acute Physiology and Chronic Health Disease Classification System II (APACHE II) scores and the NIHSS score for short-term prognosis of cerebral hemorrhage patients. Methods: APACHE II and NIHSS scores were respectively carried out for 189 acute cerebral hemorrhage patients who were admitted to the hospital for 24 h, and the area under ROC curve was used to measure the ability of these score systems to forecast the prognosis, in order to find the best dividing value. The discriminant analysis method should be used to carry out a comprehensive analysis of these two score methods and establish the mathematical model to provide a reasonable basis for accurately mastering these illness conditions, and its prognosis. Results: The areas under the ROC curve of APACHE II and NIHSS scores in forecasting cerebral hemorrhage prognosis was 0.853 and 0.845, respectively, the dividing value was 15 and 17, respectively, and the forecasting accuracy was 77.2 and 79.9%, respectively; The forecasting accuracy of the combined discrimination model was 85.96%. Conclusion: APACHE II and NIHSS scores have good forecasting value to the short-term prognosis of acute cerebral hemorrhage patients, and the combination of these two can provide a higher forecasting value.

16.
Nat Plants ; 5(6): 616-625, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31182849

RESUMEN

The lipid-derived hormone jasmonate (JA) regulates plant immunity and adaptive growth by triggering a genome-wide transcriptional programme. In Arabidopsis thaliana, JA-triggered transcriptional programming is largely orchestrated by the master transcription factor MYC2. The function of MYC2 is dependent on its physical interaction with the MED25 subunit of the Mediator transcriptional co-activator complex. Here we report the identification of JA enhancers (JAEs) through profiling the occupancy pattern of MYC2 and MED25. JA regulates the dynamic chromatin looping between JAEs and their promoters in a MED25-dependent manner, while MYC2 auto-regulates itself through JAEs. Interestingly, the JAE of the MYC2 locus (named ME2) positively regulates MYC2 expression during short-term JA responses but negatively regulates it during constant JA responses. We demonstrate that new gene editing tools open up new avenues to elucidate the in vivo function of enhancers. Our work provides a paradigm for functional study of plant enhancers in the regulation of specific physiological processes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Ciclopentanos/metabolismo , Proteínas Nucleares/metabolismo , Oxilipinas/metabolismo , Transducción de Señal , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Arseniato Reductasas/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Cromatina/metabolismo , Proteínas de Unión al ADN , Elementos de Facilitación Genéticos , Regulación de la Expresión Génica de las Plantas , Histonas/metabolismo , Regiones Promotoras Genéticas , Unión Proteica
17.
Aging Cell ; 18(4): e12969, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31087498

RESUMEN

Aging is an independent risk factor for vascular diseases. Perivascular adipose tissue (PVAT), an active component of the vasculature, contributes to vascular dysfunction during aging. Identification of underlying cell types and their changes during aging may provide meaningful insights regarding the clinical relevance of aging-related vascular diseases. Here, we take advantage of single-cell RNA sequence to characterize the resident stromal cells in the PVAT (PVASCs) and identified different clusters between young and aged PVASCs. Bioinformatics analysis revealed decreased endothelial and brown adipogenic differentiation capacities of PVASCs during aging, which contributed to neointimal hyperplasia after perivascular delivery to ligated carotid arteries. Mechanistically, in vitro and in vivo studies both suggested that aging-induced loss of peroxisome proliferator-activated receptor-γ coactivator-1 α (PGC1α) was a key regulator of decreased brown adipogenic differentiation in senescent PVASCs. We further demonstrated the existence of human PVASCs (hPVASCs) and overexpression of PGC1α improved hPVASC delivery-induced vascular remodeling. Our finding emphasizes that differentiation capacities of PVASCs alter during aging and loss of PGC1α in aged PVASCs contributes to vascular remodeling via decreased brown adipogenic differentiation.


Asunto(s)
Tejido Adiposo Pardo/citología , Envejecimiento/fisiología , Células Madre Mesenquimatosas/metabolismo , Remodelación Vascular/fisiología , Adipogénesis/genética , Adulto , Anciano , Animales , Puente de Arteria Coronaria , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Desnudos , Ratones Transgénicos , Persona de Mediana Edad , Neointima/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Transcriptoma
18.
Chemosphere ; 218: 632-642, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30502702

RESUMEN

Laboratory experiments were carried out to determine the long-term effects of N-acyl-homoserine lactone (AHL)-based quorum sensing on the characteristics of ANAMMOX granules in high-loaded reactors. Results clearly showed that adding 30 mg L-1 N-octanoyl-DL-homoserinelactone (C8-HSL) at the initial stage (1-40 d) of the experiment had long-term positive effects on the settleability of granules and controlled the sludge floatation effectively. C8-HSL decreased the content of bound extracellular polymeric substances (B-EPS) and the ratio of protein to carbohydrate (PN/PS) by 17% and 48%, respectively and increased the relative hydrophobicity (RH) of the granules by 28%. The results of batch tests indicated that C8-HSL significantly reduced the content of loosely-bound EPS (LB-EPS) in the B-EPS, which was responsible for variations in granule settleability and stability. Thus, the settleability of the granules was improved significantly due to addition of C8-HSL, contributing to operational stability and the high TN removal efficiency of the reactor. On day 150, when the nitrogen loading rates of all reactors were 13.4 kg TN m-3 d-1, the nitrogen removal rate and nitrogen removal efficiency of the reactor with C8-HSL (R3) were up to 11.2 kg TN m-3 d-1 and 88%, respectively. N-hexanoyl-DL-homoserine lactone (C6-HSL) improved activity of the granules, while N-dodecanoyl-DL-homoserine lactone (C12-HSL) had no effect on the characteristics of the granules. The long-term effects of C8-HSL on the settleability of granules may be attributed to sustainable release of endogenous signals induced by exogenous signal.


Asunto(s)
4-Butirolactona/análogos & derivados , Compuestos de Amonio/química , Reactores Biológicos , Oxígeno/química , Percepción de Quorum , 4-Butirolactona/farmacología , 4-Butirolactona/fisiología , Acil-Butirolactonas , Nitrógeno/aislamiento & purificación , Aguas del Alcantarillado
19.
Nucleic Acids Res ; 47(D1): D976-D982, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30365030

RESUMEN

Traditional Chinese medicine (TCM) is not only an effective solution for primary health care, but also a great resource for drug innovation and discovery. To meet the increasing needs for TCM-related data resources, we developed ETCM, an Encyclopedia of Traditional Chinese Medicine. ETCM includes comprehensive and standardized information for the commonly used herbs and formulas of TCM, as well as their ingredients. The herb basic property and quality control standard, formula composition, ingredient drug-likeness, as well as many other information provided by ETCM can serve as a convenient resource for users to obtain thorough information about a herb or a formula. To facilitate functional and mechanistic studies of TCM, ETCM provides predicted target genes of TCM ingredients, herbs, and formulas, according to the chemical fingerprint similarity between TCM ingredients and known drugs. A systematic analysis function is also developed in ETCM, which allows users to explore the relationships or build networks among TCM herbs, formulas,ingredients, gene targets, and related pathways or diseases. ETCM is freely accessible at http://www.nrc.ac.cn:9090/ETCM/. We expect ETCM to develop into a major data warehouse for TCM and to promote TCM related researches and drug development in the future.


Asunto(s)
Bases de Datos Farmacéuticas , Medicamentos Herbarios Chinos , Medicina Tradicional China , Enfermedad/genética , Descubrimiento de Drogas , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/normas , Humanos , Interfaz Usuario-Computador
20.
Sci Bull (Beijing) ; 64(14): 1011-1017, 2019 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-36659800

RESUMEN

MicroRNAs (miRNAs) play important roles in maintaining normal heart function. Abnormal expression of miR-331 has been observed in the hearts of patients with atrial fibrillation and Marfan syndrome. However, whether miR-331 regulates cardiac function under physiological and pathological conditions still remains unknown. In the present study, we investigated the function and underlying mechanisms of miR-331 in a pressure overload-induced heart failure model and miR-331 transgenic rat model. First, we found that the expression of miR-331-3p exhibited a 1.7-fold increase in hypertrophy compared with that in the sham group (P < 0.01), yet the expression of miR-331-5p remained unchanged. Furthermore, overexpression of miR-331 in cardiomyocytes and defective excitation-contraction (E-C) coupling efficiency were observed. Luciferase assays showed that miR-331-3p suppressed JPH2 expression by binding to the coding region of JPH2 mRNA. Finally, in the miR-331 transgenic rat model, JPH2 expression was suppressed at both the mRNA and protein levels in vivo, which resulted in impairment of both the E-C coupling efficiency of cardiomyocytes and systolic function of the heart. This finding mechanistically linked miR-331 to JPH2 downregulation and suggested an important role for the abnormal expression of miR-331 leading to the dysfunction of E-C coupling in heart failure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...