Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Waste Manag ; 174: 96-105, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38039939

RESUMEN

Hydrothermal carbonization is an efficient technique for the disposal of livestock manure, enabling its harmless treatment, quantity reduction, and resourceful utilization. Co-hydrothermal of modified materials facilitates the production of more valuable carbonaceous materials. However, further exploration is needed to understand their potential impact on the environmental risks associated with livestock manure disposal and the application of products derived from it. Therefore, the carbonization degree, heavy metals stabilization, and phosphorus retention during the hydrothermal treatment of swine manure were systematically investigated in this study under the influence of in-situ formed MgFe2O4. The results revealed that the in-situ formation of MgFe2O4 improved the dehydration and decarboxylation of organic components in swine manure, thereby improving its carbonization degree. Furthermore, both hydrothermal carbonization and MgFe2O4 modified hydrothermal carbonization resulted in an enhanced stabilization of heavy metals, leading to a significant reduction in their soluble/exchangeable fraction and reducible fraction. Phosphorus was predominantly retained in the hydrochars, with the highest retention rate reaching 88%, attributed to the significant decrease in soluble and exchangeable phosphorus fractions facilitated by the in-situ formation of MgFe2O4. Moreover, MgFe2O4 modified hydrochars exhibited remarkable adsorption capacity for Pb(II) and Cu(II) without any leaching of heavy metals. Overall, the findings indicated that the in-situ formation of MgFe2O4 positively influenced the hydrothermal of swine manure, improving certain economic benefits in its practical application.


Asunto(s)
Metales Pesados , Fósforo , Animales , Porcinos , Carbono , Estiércol
2.
Front Microbiol ; 14: 1072151, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36778853

RESUMEN

Alginate oligosaccharides (AOS) can be obtained by acidolysis and enzymatic hydrolysis. The products obtained by different methods have different structures and physiological functions. AOS have received increasing interest because of their many health-promoting properties. AOS have been reported to exert protective roles for intestinal homeostasis by modulating gut microbiota, which is closely associated with intestinal inflammation, gut barrier strength, bacterial infection, tissue injury, and biological activities. However, the roles of AOS in intestinal inflammation network remain not well understood. A review of published reports may help us to establish the linkage that AOS may improve intestinal inflammation network by affecting T helper type 1 (Th1) Th2, Th9, Th17, Th22 and regulatory T (Treg) cells, and their secreted cytokines [the hub genes of protein-protein interaction networks include interleukin-1 beta (IL-1ß), IL-2, IL-4, IL-6, IL-10 and tumor necrosis factor alpha (TNF-α)] via the regulation of probiotics. The potential functional roles of molecular mechanisms are explored in this study. However, the exact mechanism for the direct interaction between AOS and probiotics or pathogenic bacteria is not yet fully understood. AOS receptors may be located on the plasma membrane of gut microbiota and will be a key solution to address such an important issue. The present paper provides a better understanding of the protecting functions of AOS on intestinal inflammation and immunity.

3.
Chemosphere ; 321: 138125, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36781000

RESUMEN

The machine learning (ML) technique was used to examine the effects of different microscopic material features on the ability of iron modified carbon-based materials (Fe-CBMs) to remove As(V) and As(III). The findings showed that specific CBMs and Fe-CBMs features (such as surface functionality) from sophisticated microscopic and spectroscopic techniques led to models that were more accurate than those constructed using more basic information, such as bulk elemental composition and surface area (the root-mean-square error fell by 44.7% for As(V) and 56.9% for As(III), respectively). The high non-polar carbon (NPC) content of CBMs and Fe-CBMs had a detrimental influence on As(V) and As(III) removal capability, whereas surface oxygen-containing functional groups (SOFGs) contents on CBMs and Fe-CBMs played an essential role in arsenic removal based on ML approaches. The relative importance of CO was greater by 77.8% and 40.6% than that of C-O on the elimination of As(V) and As(III), respectively. The accurate ML models are helpful for the future design of Fe-CBMs and the relative importance and partial dependence plot analysis can direct the use of Fe-CBMs for arsenic removal in a sensible manner under different application situations.


Asunto(s)
Arsénico , Contaminantes Químicos del Agua , Hierro/química , Carbono/química , Arsénico/química , Contaminantes Químicos del Agua/química , Adsorción
4.
Sci Total Environ ; 863: 160866, 2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36526173

RESUMEN

As the application of biodegradable polymers has grown, so has the interest in exploring the environmental behaviors of biodegradable microplastics (MPs). In this study, we investigated the interaction of oxytetracycline (OTC) with poly(butylene adipate-co-terephthalate) (PBAT) MPs after biodegradation, and explored the effect of the coexisting Cu(II) on OTC adsorption and desorption processes. The maximum adsorption amounts of virgin PBAT, biofilm PBAT, and degraded PBAT reached 692.05 µg·g-1, 1396.21 µg·g-1, and 1869.93 µg·g-1, respectively, and the presence of Cu(II) increased the OTC adsorption capacities by 431.16 %, 165.99 %, and 132.94 %, respectively. The enhanced adsorption capacities were attributed to the formation of PBAT-Cu-OTC complexes. The remarkable desorption hysteresis of OTC was observed on the degraded PBAT but not on the biofilm PBAT when Cu(II) was present, due to the complexation between Cu(II) and biofilms. The effect of Cu(II) varied depending on the MP physiochemical properties (e.g., surface areas, zeta potentials, and functional groups) and the environmental factors (e.g., the solution pH and coexisting dissolved organic matter). Fourier transform infrared spectroscopy (FTIR) coupled with X-ray photoelectron spectroscopy (XPS) identified the Cu(II) bridging effect, and various interaction forces between PBAT and OTC, including hydrogen-bonding, π-π, cation-π, and electrostatic interactions.


Asunto(s)
Microplásticos , Oxitetraciclina , Plásticos , Poliésteres/química , Materia Orgánica Disuelta , Agua , Adsorción , Adipatos , Concentración de Iones de Hidrógeno
5.
Environ Pollut ; 316(Pt 2): 120668, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36400139

RESUMEN

In this study, a floating FeMo3Ox/C3N4-EP (FM-C-P) composite with highly stability and reusability was synthesized by an impregnation/calcination process and used to activate peroxymonosulfate (PMS) for oxytetracycline (OTC) degradation under visible light irradiation. The results demonstrated that 98.1% of OTC (50 mg/L) removal can be achieved by the activation of PMS (5 mM) using FM-C-P (1 g/L) in 30 min under visible light irradiation. The pseudo-first-order rate constant was calculated to be 0.181 min-1. The degradation process with PMS was hardly affected by pH (3-11) and co-existing substance. ·SO4-, ·OH, ·O2- and 1O2 were produced in the Vis/PMS/FM-C-P system and 1O2 was determined to be the main reactive oxygen species (ROSs). The high efficiency of ROSs production mainly contributed to two mechanisms. Firstly, via the combination of ≡Fe (II)-·SO5- and free state ·SO5-, 1O2 could be generated on the Fe-Nx site. Secondly, photo-induced electrons in the FeMo3Ox/g-C3N4 heterojunction could react with Fe (III) and Mo (VI) to form catalytically active species Fe (II) and Mo (IV). Moreover, the proposed degradation pathway and the toxicity of intermediated products was analyzed. Overall, this study was expected to deepen the understanding of the photo-assisted PMS activation and the generation of 1O2 with the presence of metal-oxide/C3N4 heterojunction.


Asunto(s)
Peróxido de Hidrógeno , Oxitetraciclina , Animales , Peróxidos , Luz , Pollos
6.
J Hazard Mater ; 441: 129896, 2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36096059

RESUMEN

A novel A/R-TiO2 NSs/NRs photoelectrode was constructed through electrodeposition of anatase TiO2 nanosheets (A-TiO2 NSs) with highly exposed {001} facet onto the 1D upright rutile TiO2 nanorods (R-TiO2 NRs). At first, A/R-TiO2 NSs/NRs exhibited enhanced adsorption of dimethyl phthalate (DMP) due to the specific recognition between Lewis acid sites of {001} facet and Lewis basic DMP. NH3-TPD and Py-IR revealed that the Lewis acidity on the {001} facet of A-TiO2 NSs was much stronger than that of R-TiO2 NRs, demonstrating superior adsorption capacity to DMP. DFT theoretical calculations coupled with in-situ ATR-FTIR spectra were performed to investigate the binding adsorption behavior of DMP on A/R-TiO2 NSs/NRs. Secondly, the rapid separation of excited charges and strong oxidation of h+ were achieved by the synergistic effect of dual heterojunctions (A/R "phase heterojunction" and {111}/{110} "facet heterojunction"). The A/R-TiO2 NSs/NRs exhibited 100% degradation efficiency for the target pollutant DMP within 3 h, whose rate constant (k) was 18.02 × 10-3 min-1, 2.16 times that of pure R-TiO2 NRs. In real wastewater application, A/R-TiO2 NSs/NRs achieved 93.8% elimination of DMP during 4 h and preserved excellent stability after 5 cycles, promising a wide-range of applications in water environment remediation.

7.
RSC Adv ; 12(42): 27115, 2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36282997

RESUMEN

[This corrects the article DOI: 10.1039/C5RA06056G.].

8.
Front Plant Sci ; 13: 942117, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36161034

RESUMEN

China has implemented a series of policies to reduce the usage of chemical pesticides to maintain food production safety and to reduce water and soil pollution. However, there is still a huge gap in developing biological pesticides to replace chemical agents or managing pests to prevent crop production loss. It is necessary to predict the future use of chemical pesticides and to exploit the potential ways to control pests and crop diseases. Pesticide usage is affected by seasonal changes and analyzed by using a seasonal autoregressive integrated moving average (ARIMA) model (a statistical model that predicts future trends using time-series data). The future development of biopesticides in China was predicted using the compound annual growth rate (CAGR), which is calculated via the equation [(Final value/Starting value)1/years - 1] according to the annual growth rate of target products over time. According to the reducing trend of pesticide and biological pesticide usage annually, China is predicted possibly step into the era of pesticide-free agriculture in 2050 based on the analysis of the ARIMA model. With CAGR calculation, China will produce from 500 thousand to one million tons of biopesticides in 2050, which can meet the need to replace chemical pesticides in agriculture to prevent the present crop production loss. To achieve the goal, China still has the greatest challenges to develop biopesticides and use various strategies to control pest and crop diseases. China may step into the dawn of chemical pesticide-free agriculture in 2050 if biopesticides can be developed smoothly and pests can be controlled well using various strategies.

9.
Front Microbiol ; 13: 896556, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35572688

RESUMEN

It is highly possible to obtain high-quality microbial products in appreciable amounts, as aerospace technology is advancing continuously. Genome-wide genetic variations in microorganisms can be triggered by space microgravity and radiation. Mutation rate is high, mutant range is wide, and final mutant character is stable. Therefore, space microorganism breeding is growing to be a new and promising area in microbial science and has greatly propelled the development of fermentation technology. Numerous studies have discovered the following improvements of fermentation potential in microorganisms after exposure to space: (1) reduction in fermentation cycle and increase in growth rate; (2) improvement of mixed fermentation species; (3) increase in bacterial conjugation efficiency and motility; (4) improvement of the bioactivity of various key enzymes and product quality; (5) enhancement of multiple adverse stress resistance; (6) improvement of fermentation metabolites, flavor, appearance, and stability. Aerospace fermentation technology predominantly contributes to bioprocessing in a microgravity environment. Unlike terrestrial fermentation, aerospace fermentation keeps cells suspended in the fluid medium without significant shear forces. Space radiation and microgravity have physical, chemical, and biological effects on mutant microorganisms by causing alternation in fluid dynamics and genome, transcriptome, proteome, and metabolome levels.

10.
Sci Total Environ ; 833: 155251, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35429565

RESUMEN

Few studies have mentioned the enrichment of heavy metal pollutants on microplastics derived from degradable plastics. This study investigated the adsorption behavior of Pb(II) onto biodegradable poly(butylene succinate) (PBS) microplastics during its biodegradation. The results indicated that Pb(II) adsorbed by biofilm-colonized biodegraded-PBS microplastics (B-PBS) was about 10-folds higher than that of virgin PBS (647.09 µg·g-1 versus 64.13 µg·g-1) due to the biofilm colonization and the degradation of PBS. After removing the biofilm, the biodegraded PBS still had high Pb(II) adsorption capacity, which was attributed to the complexation of Pb(II) and the stably adhered extracellular polymeric substances (EPS). Pb(II) adsorption onto both virgin PBS and B-PBS was highly pH-dependent, its adsorption on virgin PBS was dominated by electrostatic interaction, while as for B-PBS, the adsorption mechanisms mainly involved the coordination/complexation of Pb(II) and the EPS components on the colonized biofilm, surface complexation, and electrostatic interaction. This study suggested that the enrichment of heavy metal pollutants onto the biodegradable microplastics may pose risks to the aquatic ecosystem.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Adsorción , Biopelículas , Butileno Glicoles , Ecosistema , Microplásticos , Plásticos , Polímeros , Contaminantes Químicos del Agua/análisis
11.
Artículo en Inglés | MEDLINE | ID: mdl-35131601

RESUMEN

During rearing in hatcheries and transportation to restocking sites, sea cucumbers are often exposed to air for several hours, which may depress their non-specific immunity and lead to mass mortality. We performed transcriptome analysis of Apostichopus japonicus coelomocytes after air exposure to identify stress-related genes and pathways. After exposure to air for 1 h, individuals were re-submerged in aerated seawater and coelomocytes were collected at 0, 1, 4, and 16 h (B, H1, H4, and H16, respectively). We identified 6148 differentially expressed genes, of which 3216 were upregulated and 2932 were downregulated. Many genes involved in the immune response, antioxidant defense, and apoptosis were highly induced in response to air exposure. Enrichment analysis of Gene Ontology terms showed that the most abundant terms in the biological process category were oxidation-reduction process, protein folding and phosphorylation, and receptor-mediated endocytosis for the comparison of H1 vs. B, H4 vs. H1, and H16 vs. H4, respectively. Kyoto Eecyclopedia of Genes and Genomes enrichment analysis showed that six pathways related to the metabolism of proteins, fats, and carbohydrates were shared among the three comparisons. These results indicated that sea cucumbers regulate the expression of genes related to the antioxidant system and energy metabolism to resist the negative effects of air exposure stress. These findings may be applied to optimize juvenile sea cucumber production, and facilitate molecular marker-assisted selective breeding of an anoxia-resistant strain.


Asunto(s)
Pepinos de Mar , Stichopus , Animales , Antioxidantes/metabolismo , Perfilación de la Expresión Génica , Humanos , Inmunidad Innata , Pepinos de Mar/genética , Pepinos de Mar/metabolismo , Stichopus/fisiología , Transcriptoma
12.
Sci Total Environ ; 824: 153630, 2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35176364

RESUMEN

In this study, expanded perlite supported oxygen vacancies-CuFe2O4 (OVs-CFEp) was synthesized via a simple method and utilized as floating catalyst to activate peroxymonosulfate (PMS) for the removal of sulfamethazine (SMT) under visible light irradiation. OVs-CFEp/Vis/PMS synergy presents much superior performance than that of OVs-CFEp/Vis system and OVs-CFEp/PMS system. PMS was efficiently activated by OVs-CFEp at a wide range of pH values, while the degrading rate of SMT was up to 95% in OVs-CFEp/Vis/PMS system. Oxygen vacancies and ·O2- accelerated the conversion of Fe(III)/Fe(II) and Cu(I)/Cu(II). The combination of the floating loader boosted light absorption capacity and sufficiently prevented metal ions leaching, which was all beneficial to enhance catalytic performance and recyclability. Besides, the reactive oxygen species were investigated systematically, proving that visible light and OVs-CFEp could activate PMS to produce ·SO4-, ·OH, O2·-, and 1O2 reactive species. Furthermore, based on intermediates identification and Density Functional Theory (DFT) calculation, three types and seven main degradation pathways involving cleavage of bond, SMT molecular rearrangement, and hydroxylation reaction were proposed. So this high photo-absorbing catalyst coupling with advanced oxidation progress was promising for extensive environmental remediation.


Asunto(s)
Oxígeno , Sulfametazina , Compuestos Férricos/química , Luz , Peróxidos
13.
J Hazard Mater ; 423(Pt A): 127013, 2022 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-34461535

RESUMEN

In this work, the superabsorbent polymer hydrogel (SPH) of Poly(potassium acrylate-co-acrylamide (PPAA)) incorporated with Fe-Mn binary oxides (FMBOs) was synthesized and used for the removal of Sb(III) from water. Characterization analysis proved that FMBO3 was successfully encapsulated into the SPH. The Fe/Mn oxide species in the composite SPH comprised FeO(OH), Fe2O3, MnO(OH), and MnO2. The functional groups including N-H, -OH, carboxy as well as Fe atoms were confirmed adsorption sites through ligand exchange and inner-sphere complexes formation. Mn oxides can partially oxidize Sb(III) to Sb(V). Compared with the pseudo-first-order model, the pseudo-second-order model could better describe the adsorption kinetics. And the swelling degree of the composite SPH had a positive impact on the removal rate. The Langmuir-Freundlich model was the most suitable isotherm model to analyze the experimental data. According to thermodynamic parameters, the adsorption process was a spontaneous exothermic reaction. The maximum adsorption capacity of the composite SPH for Sb(III) could be up to 105.59 mg/g at 288 K. In addition, a stable removal rate can be achieved over a wide pH range of 3-10, with little metal leaching even under acidic conditions. Furthermore, coexisting ions and DOM displayed an insignificant influence on the adsorption of Sb(III).


Asunto(s)
Óxidos , Contaminantes Químicos del Agua , Adsorción , Hidrogeles , Concentración de Iones de Hidrógeno , Cinética , Compuestos de Manganeso , Polímeros , Agua , Contaminantes Químicos del Agua/análisis
14.
Chemosphere ; 286(Pt 2): 131664, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34358891

RESUMEN

This work discussed the feasibility and stability of utilizing C-S-H phosphorus recovered products, HAP/C-S-H, to remove Zn(Ⅱ) from aqueous solution and in-situ immobilize Zn(Ⅱ) in contaminated soil. The removal mechanisms of Zn(Ⅱ) by HAP/C-S-H were relatively complex, combining multiple reactions including electrostatic attraction, ion exchange, surface complexation and (co-)precipitation. The removal rate of Zn(Ⅱ) by HAP/C-S-H raised with the increase of pH value, reaching 99.47% at pH of 8 in aqueous solution. The ion strength of background solution negatively affected the adsorption efficiency. The pseudo-second-order model and Langmuir model were more suitable to fit the Zn(Ⅱ) adsorption experimental data for the adsorbent. The adsorption process was endothermic and spontaneous naturally according to thermodynamic parameter. The maximum adsorption capacity of HAP/C-S-H can reach 114.0 mg/g at 308 K. After 28 days of immobilization, the release of Zn(Ⅱ) in soil with HAP/C-S-H remarkably decreased to 0.6 mg/L, compared with control group (2.9 mg/L). BCR sequential extraction results indicated that HAP/C-S-H could convert acid-soluble Zn(Ⅱ) into reducible and residual Zn(Ⅱ), reducing the bioavailability and ecotoxicity of Zn(Ⅱ) in contaminated soil. pH-dependent leaching tests revealed that the soil with HAP/C-S-H had stronger resistance to acid impact.


Asunto(s)
Suelo , Zinc , Adsorción , Compuestos de Calcio , Durapatita , Fósforo , Silicatos
15.
J Hazard Mater ; 424(Pt A): 127387, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34879577

RESUMEN

In the conventional Fenton system, the relatively low efficiency of Fe (II) regeneration is a significant drawback. To address this shortcoming, a novel floating Z-scheme photo-Fenton catalyst FeMo3Ox/g-C3N4/EP was prepared by a facile dip-calcination method, in which iron and molybdenum oxides with mixed valence states (FeMo3Ox) and graphitic carbon nitride (g-C3N4) were loaded on the expanded perlite. The removal efficiencies reached the maximum at 98.0%, 93.1% and 97.1% for tetracycline, oxytetracycline and chlortetracycline, respectively, after 60 min dark adsorption and 60 min photo-Fenton process. The aid of dual ion (Fe and Mo) synergy system and photoreduction by Z-scheme photocatalyst enhanced the Fe (II) regeneration, resulting in the excellent performance. Radical scavenger experiment, electron spin resonance spectra (ESR) and X-ray photoelectron spectra (XPS) were used to confirm the mechanism of free radicals' formation and Fe/Mo redox cycling. ·OH, ·O2- and 1O2 played important roles in the pollutant's degradation, while the generation of ·O2- was enhanced due to the floatability in this system. The possible degradation pathways of TC were put forward according to the results of mass spectrum and Orbital-Weighted Fukui Function. Overall, this work provides new insights on the cooperation between iron-based mix oxides and semiconductor in the photo-Fenton system.


Asunto(s)
Peróxido de Hidrógeno , Tetraciclinas , Óxido de Aluminio , Catálisis , Luz , Dióxido de Silicio
16.
J Hazard Mater ; 416: 125729, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-34492776

RESUMEN

Metal sites (Ni, Bi or Ag) were introduced into carbon strengthened expanded graphite (CEG) based photocatalysts, and performed as a novel strategy to enhance the elimination of Microcystis aeruginosa and microcystin-LR from water. Results show that metal doping can efficiently improve the adsorption of harmful algae and enhance the photocatalytic activities in inactivation of harmful algae and degradation of MC-LR. Among the CEG catalysts, Ni-CEG can achieve the highest removal rate up to 90.6% for algal cells with 5 h visible light irradiation, while Bi-CEG catalyst provides the best performance for MC-LR degradation with the removal rate of 80.9% in 6 h visible light irradiation. In general, considering the coexistence of algal cells and microcystin-LR, Bi-CEG is proved to be an excellent candidate for the remediation of eutrophicated waters since it can achieve the efficient removal of both harmful algae and MC-LR. DFT calculations indicate that metal doping can transform the photocatalysts into n-type semiconductor, and provide the mid-gap state. In addition, the partial charge density distribution near Fermi level was mainly composed by the metal dopants, which can enhance the interaction with harmful algae and MC-LR.


Asunto(s)
Contaminantes Ambientales , Grafito , Microcystis , Contaminantes Químicos del Agua , Carbono , Microcistinas , Agua
17.
Sci Total Environ ; 790: 148087, 2021 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-34091329

RESUMEN

The coexistence of antibiotics, heavy metals and microplastics is becoming commonplace and may affect antibiotic resistance in manured soil. The current understanding of the role of microplastics in soil with combined pollution of antibiotics, heavy metals and antibiotic resistance genes (ARGs) is limited. Here, the effects of the coexistence of tetracycline (TC), Cu and environmental microplastics (EM) on the fate of nine ARGs and three heavy metal resistance genes in agricultural soil were investigated by batch and microcosm experiments. EM were obtained by exposing virgin microplastics to soil environments for 80 days, which exhibited higher adsorption affinity for Cu and TC than soil particles and virgin microplastics. 1% EM in soil increased bioavailable concentrations of TC and Cu by 79-138% and 88-135%, respectively, and decreased TC dissipation from 11.79 mg kg-1 to 3.08 mg kg-1. Correspondingly, the total relative abundances of target ARGs increased by 219-348%. The significant correlations of tetG, tetB, tetQ, sul2, sul1 and intl1 with bioavailable fractions of TC and Cu in soil environments were revealed by network analysis. Moreover, scanning electron micrographs showed the special plastisphere around EM. Attributed to the biofilm generation and higher pollutant accumulation in the plastisphere, EM could be the source of antibiotic-resistant bacteria and ARGs in soil environments. Structure equation models further identified that indirect effects of EM acted a major role in the propagation of ARGs by altering soil properties, soil microbial diversity and intl1 abundance. This study revealed that EM could increase the stimulative effects of Cu and TC on antibiotic resistance and magnify the environmental risk of manure application in soil environments.


Asunto(s)
Estiércol , Suelo , Antibacterianos/farmacología , Cobre/toxicidad , Farmacorresistencia Microbiana/genética , Genes Bacterianos , Microplásticos , Plásticos , Microbiología del Suelo , Tetraciclina/toxicidad
18.
Chemosphere ; 280: 130926, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34162108

RESUMEN

The present work provides the first attempt of using manganese dioxide loaded poly(sodium acrylate) hydrogel (MnO2@PSA) to address potential threats posed by oxytetracycline (OTC) antibiotics in aqueous environment. The MnO2@PSA was prepared via a facile approach and demonstrated enhanced removal performance even under extremely high concentrations of OTC. The outstanding performance exhibited by MnO2@PSA was attributed to synergetic effects of adsorption oxidative degradation. The synthesized composite was characterized evaluated under varying conditions. The adsorption pH was optimized at pH 5, at which the removal efficiency OTC was reached 91.46%. According to the kinetics study, the pseudo-second-order kinetic model was the best to explain the adsorption data, implying the interaction mechanisms were dominated by chemisorption. The Langmuir isotherm model was the best to explain the isotherm data, and the corresponding maximum adsorbed amount of OTC was 1150.4 mg g-1. The MnO2@PSA was highly selective for OTC adsorption and degradation under the presence of natural organic matter and common environmental metal ions. The oxidative degradation study indicated that OTC molecules were structurally degraded into 15 intermediate products via six reaction pathways. Both the theoretical models and spectroscopic methods demonstrated the removal mechanism of OTC onto MnO2@PSA was governed by ion exchange, cation-π bonding, hydrogen-bonding, and π-π electron donor-acceptor. Overall, MnO2@PSA is an excellent and environmentally sustainable material to remove OTC from water and wastewater via the combined effects of adsorption and oxidative degradation.


Asunto(s)
Oxitetraciclina , Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Antibacterianos , Hidrogeles , Concentración de Iones de Hidrógeno , Compuestos de Manganeso , Estrés Oxidativo , Óxidos , Agua , Contaminantes Químicos del Agua/análisis
19.
J Enzyme Inhib Med Chem ; 36(1): 707-718, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33663315

RESUMEN

In discovery of novel HDAC inhibitory with anticancer potency, pharmacophores of phenanthridine were introduced to the structure of HDAC inhibitors. Fatty and aromatic linkers were evaluated for their solubility and activity. Both enzyme inhibitory and in vitro antiproliferative (against U937 cells) screening results revealed better activities of compounds with aromatic linker than molecules with fatty linker. Compared with SAHA (IC50 values of 1.34, 0.14, 2.58, 0.67 and 18.17 µM), molecule Fb-4 exhibited 0.87, 0.09, 0.32, 0.34 and 17.37 µM of IC50 values against K562, U266, MCF-7, U937 and HEPG2 cells, respectively. As revealed by cell cycle and apoptotic analysis, induction of G2/M phase arrest and apoptosis plays an important role in the inhibition of MCF-7 cells by Fb-4. Generally, a potent HDAC inhibitor was developed in the present study which could be utilised as a lead compound for further anticancer drug design.


Asunto(s)
Antineoplásicos/farmacología , Descubrimiento de Drogas , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Fenantridinas/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores de Histona Desacetilasas/síntesis química , Inhibidores de Histona Desacetilasas/química , Humanos , Estructura Molecular , Fenantridinas/síntesis química , Fenantridinas/química , Relación Estructura-Actividad , Células Tumorales Cultivadas
20.
Huan Jing Ke Xue ; 42(2): 867-873, 2021 Feb 08.
Artículo en Chino | MEDLINE | ID: mdl-33742881

RESUMEN

Blast furnace slag loaded with sulfide nano zero valent iron (S-nZVI@BFS) was applied to remove oxytetracycline (OTC) from water. S-nZVI@BFS was synthesized via liquid reduction and characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), and Brunauer, Emmett and Teller (BET) theory. The effect of reaction time, initial concentration of OTC, initial pH, and coexisting hexavalent chromium[Cr(Ⅵ)] were investigated. The results show that Fe and S were successfully immobilized on the surface of S-nZVI@BFS, the specific surface area and pore volume of which increased to 141.986 m2·g-1 and 0.388 cm3·g-1, respectively, following the loading of nZVI and sulfurization. The utilization rate of the surface active sites of S-nZVI@BFS was improved with an increase of the initial concentration of OTC; the removal rate increased from 20.12 mg·g-1 to 202.74 mg·g-1 when the initial concentration of OTC was increased from 10 mg·L-1 to 100 mg·L-1. The removal rate decreased with pH, declining from 99.78 mg·g-1 to 41.12 mg·g-1 when pH was increased from 3 to 11 due to the switch from Fendon oxidation to electrostatic adsorption. There was notable competition between OTC and Cr(Ⅵ) meaning that Cr(Ⅵ) can inhibit the removal of OTC, which is dose dependent.


Asunto(s)
Oxitetraciclina , Contaminantes Químicos del Agua , Adsorción , Cromo , Hierro , Sulfuros , Agua , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...