Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
ACS Catal ; 14(10): 7707-7716, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38779184

RESUMEN

Nonthermal plasma (NTP) offers the potential for converting CH4 with CO2 into liquid products under mild conditions, but controlling liquid selectivity and manipulating intermediate species remain significant challenges. Here, we demonstrate the effectiveness of the Cu/UiO-66-NH2 catalyst in promising the conversion of CH4 and CO2 into oxygenates within a dielectric barrier discharge NTP reactor under ambient conditions. The 10% Cu/UiO-66-NH2 catalyst achieved an impressive 53.4% overall liquid selectivity, with C2+ oxygenates accounting for ∼60.8% of the total liquid products. In situ plasma-coupled Fourier-transform infrared spectroscopy (FTIR) suggests that Cu facilitates the cleavage of surface adsorbed COOH species (*COOH), generating *CO and enabling its migration to the surface of Cu particles. This surface-bound *CO then undergoes C-C coupling and hydrogenation, leading to ethanol production. Further analysis using CO diffuse reflection FTIR and 1H nuclear magnetic resonance spectroscopy indicates that in situ generated surface *CO is more effective than gas-phase CO (g) in promoting C-C coupling and C2+ liquid formation. This work provides valuable mechanistic insights into C-C coupling and C2+ liquid production during plasma-catalytic CO2 oxidation of CH4 under ambient conditions. These findings hold broader implications for the rational design of more efficient catalysts for this reaction, paving the way for advancements in sustainable fuel and chemical production.

2.
Int J Mol Sci ; 24(22)2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-38003382

RESUMEN

As an important timber genus with high economic and ecological values, Populus is a model for dissecting the genetic architecture of growth traits in perennial forest trees. However, the genetic mechanisms of longitudinal growth traits in poplar remain incompletely understood. In this study, we conducted longitudinal genetic analysis of height and diameter at breast height (DBH) in eleven-year poplar clones using ultra-deep sequencing datasets. We compared four S-shaped growth models, including asymptotic, Gompertz, logistic, and Richard, on eleven-year height and DBH records in terms of five metrics. We constructed the best-fitting growth model (Richard) and determined poplar ontogenetic stages by virtue of growth curve fitting and likelihood ratio testing. This study provides some scientific clues for temporal variation of longitudinal growth traits in Populus species.


Asunto(s)
Populus , Populus/genética , Polimorfismo de Nucleótido Simple , Fenotipo
3.
Int J Mol Sci ; 24(16)2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37628843

RESUMEN

Xylogenesis is a complex and sequential biosynthetic process controlled by polygenes. Deciphering the genetic architecture of this complex quantitative trait could provide valuable information for increasing wood biomass and improving its properties. Here, we performed genomic resequencing of 64 24-year-old trees (64 hybrids of section Aigeiros and their parents) grown in the same field and conducted full-sib family-based association analyses of two growth and six woody traits using GEMMA as a choice of association model selection. We identified 1342 significantly associated single nucleotide polymorphisms (SNPs), 673 located in the region upstream and downstream of 565 protein-encoding genes. The transcriptional regulation network of secondary cell wall (SCW) biosynthesis was further constructed based on the published data of poplar miRNA, transcriptome, and degradome. These provided a certain scientific basis for the in-depth understanding of the mechanism of poplar timber formation and the molecular-assisted breeding in the future.


Asunto(s)
Populus , Madera , Madera/genética , Biomasa , Barajamiento de ADN , Redes Reguladoras de Genes , Genómica , Populus/genética
7.
Cancer Sci ; 114(7): 2951-2960, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37158138

RESUMEN

D-1553 is a small molecule inhibitor selectively targeting KRASG12C and currently in phase II clinical trials. Here, we report the preclinical data demonstrating antitumor activity of D-1553. Potency and specificity of D-1553 in inhibiting GDP-bound KRASG12C mutation were determined by thermal shift assay and KRASG12C -coupled nucleotide exchange assay. In vitro and in vivo antitumor activity of D-1553 alone or in combination with other therapies were evaluated in KRASG12C mutated cancer cells and xenograft models. D-1553 showed selective and potent activity against mutated GDP-bound KRASG12C protein. D-1553 selectively inhibited ERK phosphorylation in NCI-H358 cells harboring KRASG12C mutation. Compared to the KRAS WT and KRASG12D cell lines, D-1553 selectively inhibited cell viability in multiple KRASG12C cell lines, and the potency was slightly superior to sotorasib and adagrasib. In a panel of xenograft tumor models, D-1553, given orally, showed partial or complete tumor regression. The combination of D-1553 with chemotherapy, MEK inhibitor, or SHP2 inhibitor showed stronger potency on tumor growth inhibition or regression compared to D-1553 alone. These findings support the clinical evaluation of D-1553 as an efficacious drug candidate, both as a single agent or in combination, for patients with solid tumors harboring KRASG12C mutation.


Asunto(s)
Neoplasias Pulmonares , Proteínas Proto-Oncogénicas p21(ras) , Animales , Humanos , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Línea Celular Tumoral , Modelos Animales de Enfermedad , Neoplasias Pulmonares/patología
8.
JACS Au ; 3(3): 785-800, 2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-37006774

RESUMEN

The removal of tar and CO2 in syngas from biomass gasification is crucial for the upgrading and utilization of syngas. CO2 reforming of tar (CRT) is a potential solution which simultaneously converts the undesirable tar and CO2 to syngas. In this study, a hybrid dielectric barrier discharge (DBD) plasma-catalytic system was developed for the CO2 reforming of toluene, a model tar compound, at a low temperature (∼200 °C) and ambient pressure. Periclase-phase (Mg, Al)O x nanosheet-supported NiFe alloy catalysts with various Ni/Fe ratios were synthesized from ultrathin Ni-Fe-Mg-Al hydrotalcite precursors and employed in the plasma-catalytic CRT reaction. The result demonstrated that the plasma-catalytic system is promising in promoting the low-temperature CRT reaction by generating synergy between DBD plasma and the catalyst. Among the various catalysts, Ni4Fe1-R exhibited superior activity and stability because of its highest specific surface area, which not only provided sufficient active sites for the adsorption of reactants and intermediates but also enhanced the electric field in the plasma. Furthermore, the stronger lattice distortion of Ni4Fe1-R provided more isolated O2- for CO2 adsorption, and having the most intensive interaction between Ni and Fe in Ni4Fe1-R restrained the catalyst deactivation induced by the segregation of Fe from the alloy to form FeO x . Finally, in situ Fourier transform infrared spectroscopy combined with comprehensive catalyst characterization was used to elucidate the reaction mechanism of the plasma-catalytic CRT reaction and gain new insights into the plasma-catalyst interfacial effect.

9.
J Thorac Oncol ; 18(7): 940-951, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36948246

RESUMEN

INTRODUCTION: D-1553 (garsorasib) is a potent and selective oral KRASG12C inhibitor. We report results from a phase I dose-escalation and dose-expansion study of D-1553 in patients with KRAS G12C-mutated NSCLC in multiple sites in the People's Republic of China. METHODS: Patients with KRAS G12C-mutated NSCLC have administrated D-1553 600 mg orally once daily, 800 mg once daily, 1200 mg once daily, 400 mg twice a day, or 600 mg twice a day in dose escalation. In dose-expansion, all patients received 600 mg twice a day. The safety, pharmacokinetics, and efficacy of D-1553 were evaluated. RESULTS: Among a total of 79 treated patients, 75 patients (94.9%) reported treatment-related adverse events with 30 patients experiencing grade 3 or 4 events (38.0%). Most of the adverse events were manageable and the patients tolerated the study treatment well. Among 74 patients assessable for efficacy analysis, 30 patients had a partial response and 38 had stable disease with a confirmed objective response rate (ORR) and disease control rate (DCR) of 40.5% and 91.9%, respectively. The median progression-free survival was 8.2 months, and the median duration of response was 7.1 months. Among 62 patients assessable for response at the recommended phase 2 dose, partial response occurred in 24 patients (ORR, 38.7%) and stable disease in 32 patients (DCR, 90.3%). The median progression-free survival and duration of response were 7.6 months and 6.9 months, respectively. In patients with brain metastasis, ORR and DCR were 17% and 100%, respectively. CONCLUSIONS: D-1553 represents a promising therapeutic option for patients with KRAS G12C-mutated NSCLC with a well-tolerated safety profile and encouraging antitumor activity.


Asunto(s)
Neoplasias Encefálicas , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/inducido químicamente , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Encefálicas/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/uso terapéutico , Mutación
10.
Drug Des Devel Ther ; 17: 839-849, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36969707

RESUMEN

Purpose: This study was designed to investigate the effects of different doses of butorphanol on postoperative shivering and quality of recovery in elderly patients. Patients and Methods: A total of 147 elderly patients (aged 60 or older) scheduled for elective transurethral resection of the prostate were enrolled in the current study. Patients were randomly and evenly assigned into four groups: Group C (0.9% normal saline), Group B1 (butorphanol 0.01 mg/kg), Group B2 (butorphanol 0.02 mg/kg) and Group B3 (butorphanol 0.03 mg/kg). All drugs were diluted to 5mL and injected intravenously slowly 5 min before induction of anesthesia. The primary outcome measure was the incidence of postoperative shivering in the post-anesthesia care unit. Quality of Recovery-40 (QoR-40) scores were assessed on postoperative day (POD) 1, 2 and 3. Perioperative core and skin temperature, extubation time and adverse events were also recorded. Results: Patients among the four groups had comparable baseline characteristics. Compared with Group C, the incidence of shivering was significantly lower in Group B2 and B3 (P = 0.006 and P = 0.005, respectively). The QoR-40 scores on POD1 were significantly higher in all butorphanol groups than that in Group C (P < 0.0083). In Group B2 and B3, patients experienced lower pain intensity (P < 0.001). In addition, the incidence of catheter-related bladder discomfort (CRBD) was lower in all butorphanol groups than in Group C (P < 0.0083). Conclusion: Butorphanol 0.02 or 0.03 mg/kg could effectively prevent the occurrence of postoperative shivering in elderly patients scheduled for transurethral resection of the prostate, provided effective postoperative recovery and postoperative analgesia.


Asunto(s)
Anestesia , Resección Transuretral de la Próstata , Masculino , Anciano , Humanos , Butorfanol , Tiritona , Periodo Posoperatorio , Método Doble Ciego , Dolor Postoperatorio/tratamiento farmacológico
11.
JACS Au ; 2(8): 1800-1810, 2022 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-36032530

RESUMEN

Plasma-catalytic CO2 hydrogenation is a complex chemical process combining plasma-assisted gas-phase and surface reactions. Herein, we investigated CO2 hydrogenation over Pd/ZnO and ZnO in a tubular dielectric barrier discharge (DBD) reactor at ambient pressure. Compared to the CO2 hydrogenation using Plasma Only or Plasma + ZnO, placing Pd/ZnO in the DBD almost doubled the conversion of CO2 (36.7%) and CO yield (35.5%). The reaction pathways in the plasma-enhanced catalytic hydrogenation of CO2 were investigated by in situ Fourier transform infrared (FTIR) spectroscopy using a novel integrated in situ DBD/FTIR gas cell reactor, combined with online mass spectrometry (MS) analysis, kinetic analysis, and emission spectroscopic measurements. In plasma CO2 hydrogenation over Pd/ZnO, the hydrogenation of adsorbed surface CO2 on Pd/ZnO is the dominant reaction route for the enhanced CO2 conversion, which can be ascribed to the generation of a ZnO x overlay as a result of the strong metal-support interactions (SMSI) at the Pd-ZnO interface and the presence of abundant H species at the surface of Pd/ZnO; however, this important surface reaction can be limited in the Plasma + ZnO system due to a lack of active H species present on the ZnO surface and the absence of the SMSI. Instead, CO2 splitting to CO, both in the plasma gas phase and on the surface of ZnO, is believed to make an important contribution to the conversion of CO2 in the Plasma + ZnO system.

12.
J Am Chem Soc ; 144(27): 12020-12031, 2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35731953

RESUMEN

Plasma catalysis is a promising technology for decentralized small-scale ammonia (NH3) synthesis under mild conditions using renewable energy, and it shows great potential as an alternative to the conventional Haber-Bosch process. To date, this emerging process still suffers from a low NH3 yield due to a lack of knowledge in the design of highly efficient catalysts and the in situ plasma-induced reverse reaction (i.e., NH3 decomposition). Here, we demonstrate that a bespoke design of supported Ni catalysts using mesoporous MCM-41 could enable efficient plasma-catalytic NH3 production at 35 °C and 1 bar with >5% NH3 yield at 60 kJ/L. Specifically, the Ni active sites were deliberately deposited on the external surface of MCM-41 to enhance plasma-catalyst interactions and thus NH3 production. The desorbed NH3 could then diffuse into the ordered mesopores of MCM-41 to be shielded from decomposition due to the absence of plasma discharge in the mesopores of MCM-41, that is, "shielding protection", thus driving the reaction forward effectively. This promising strategy sheds light on the importance of a rational design of catalysts specifically for improving plasma-catalytic processes.

13.
Drug Des Devel Ther ; 16: 1171-1181, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35496368

RESUMEN

Purpose: Lidocaine has been gradually used in general anesthesia. This study was designed to investigate the effect of systemic lidocaine on postoperative quality of recovery (QoR) in patients undergoing supratentorial tumor resection, and to explore its brain-injury alleviation effect in neurosurgical anesthesia. Patients and Methods: Sixty adult patients undergoing elective supratentorial tumor resection. Patients were randomly assigned either to receive lidocaine (Group L: 1.5 mg/kg bolus completed 10 min before anesthesia induction followed by an infusion at 2.0 mg/kg/h) or to receive normal saline (Group C: received volume-matched normal saline at the same infusion rate). Primary outcome measures were Quality of Recovery-40 (QoR-40) scores on postoperative day (POD) 1 and 2. Plasma concentrations of S100B protein (S100B), neuron specific enolase (NSE), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) before anesthesia induction and at the end of surgery were assessed. Visual Analogue Scale (VAS) scores were assessed at 1, 2, 6, 12, 24 and 48 h after surgery. Perioperative parameters and adverse events were also recorded. Results: Patients between two groups had comparable baseline characteristics. Global QoR-40 scores on POD 1 and POD 2 were significantly higher (P <0.001) in group L (165.5±3.8 vs 173.7±4.7) than those in group C (155.6±4.0 vs 163.2±4.5); and scores of physical comfort, emotional state, and pain in group L were superior to those in group C (P <0.05). In group L, patients possessed lower plasma concentration of pro-inflammatory factors (IL-6, TNF-α) and brain injury-related factors (S100B, NSE) (P <0.05), consumed less remifentanil and propofol, and experienced lower pain intensity. Multiple linear regression analysis demonstrated age and pain were correlated with postperative recovery quality. Conclusion: Systemic lidocaine improved early recovery quality after supratentorial tumor resection with general anesthesia, and had certain brain-injury alleviation effects. These benefits may be attributed to the inflammation-alleviating and analgesic properties of lidocaine.


Asunto(s)
Lidocaína , Neoplasias Supratentoriales , Adulto , Anestésicos Locales , Humanos , Interleucina-6 , Lidocaína/uso terapéutico , Dolor , Solución Salina , Neoplasias Supratentoriales/tratamiento farmacológico , Neoplasias Supratentoriales/cirugía , Factor de Necrosis Tumoral alfa
14.
Oncologist ; 27(3): 163-e213, 2022 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-35274722

RESUMEN

BACKGROUND: D-0316 is a third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) developed for patients with locally advanced or metastatic non-small cell lung cancer (NSCLC) with EGFR T790M mutation that progressed after prior treatment with the first- or second-generation EGFR-TKI. METHODS: This phase I, open-label, multicenter clinical trial evaluated daily oral D-0316 administration in dose-escalation (25 to 150 mg; 17 patients) and dose-expansion (50, 100 mg; 67 patients) cohorts for safety, tolerability, anti-tumor activity, and pharmacokinetics. RESULTS: D-0316 was well tolerated at daily doses of 25 to 150 mg and the maximum tolerated dose (MTD) was not reached. The most common treatment-related adverse events (AEs) were platelet count decreased, electrocardiogram QT corrected interval prolonged, anemia, rash, low white blood cell count, hypertriglyceridemia, high cholesterol, headache, pruritus, cough, and aspartate transaminase (AST) or alanine transaminase (ALT) increased. Most of AEs were grade 1 or 2. In the 50 and 100 mg group, the overall response rate (ORR) was 33.3% and 45.5%, the disease control rate (DCR) was 86.7% and 93.9%, and the median PFS was 8.3 and 9.6 months, respectively. D-0316 exposure increased in proportion to dose from 25 to 150 mg. The recommended phase II dose (RP2D) was 100 mg. CONCLUSION: D-0316 is safe, tolerable, and effective for patients with locally advanced/metastatic NSCLC with the EGFR T790M mutation who previously received EGFR-TKI. CLINICALTRIALS.GOV IDENTIFIER: NCT03452150.


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Antineoplásicos/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Receptores ErbB , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Mutación , Inhibidores de Proteínas Quinasas/efectos adversos
15.
Bioorg Med Chem Lett ; 61: 128625, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35158044

RESUMEN

The discovery of potent, bioavailable small molecule inhibitors of p53-HDM2 PPI led us to investigate subsequent modifications to address a CYP3A4 time-dependent inhibition liability. On the basis of the crystal structure of HDM2 in complex with 2, further functionalization of the solvent exposed area of the molecule that binds to Phe19 pocket were investigated as a strategy to modulate the molecule liphophilicity. Introduction of 2-oxo-nicotinic amide at Phe19 proved a viable strategy in obtaining inhibitors exempt from CYP3A4 time-dependent inhibition liability.


Asunto(s)
Citocromo P-450 CYP3A/metabolismo , Fenilalanina/farmacología , Proteínas Proto-Oncogénicas c-mdm2/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/farmacología , Proteína p53 Supresora de Tumor/antagonistas & inhibidores , Relación Dosis-Respuesta a Droga , Humanos , Estructura Molecular , Fenilalanina/química , Unión Proteica/efectos de los fármacos , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad , Proteína p53 Supresora de Tumor/metabolismo
16.
J Hazard Mater ; 404(Pt A): 123965, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33017710

RESUMEN

We have developed a hybrid machine learning (ML) model for the prediction and optimization of a gliding arc plasma tar reforming process using naphthalene as a model tar compound from biomass gasification. A linear combination of three well-known algorithms, including artificial neural network (ANN), support vector regression (SVR) and decision tree (DT) has been established to deal with the multi-scale and complex plasma tar reforming process. The optimization of the hyper-parameters of each algorithm in the hybrid model has been achieved by using the genetic algorithm (GA), which shows a fairly good agreement between the experimental data and the predicted results from the ML model. The steam-to-carbon (S/C) ratio is found to be the most critical parameter for the conversion with a relative importance of 38%, while the discharge power is the most influential parameter in determining the energy efficiency with a relative importance of 58%. The coupling effects of different processing parameters on the key performance of the plasma reforming process have been evaluated. The optimal processing parameters are identified achieving the maximum tar conversion (67.2%), carbon balance (81.7%) and energy efficiency (7.8 g/kWh) simultaneously when the global desirability index I2 reaches the highest value of 0.65.

17.
ACS Sustain Chem Eng ; 8(47): 17397-17407, 2020 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-33282570

RESUMEN

CO2 is a promising renewable, cheap, and abundant C1 feedstock for producing valuable chemicals, such as CO and methanol. In conventional reactors, because of thermodynamic constraints, converting CO2 to methanol requires high temperature and pressure, typically 250 °C and 20 bar. Nonthermal plasma is a better option, as it can convert CO2 at near-ambient temperature and pressure. Adding a catalyst to such plasma setups can enhance conversion and selectivity. However, we know little about the effects of catalysts in such systems. Here, we study CO2 hydrogenation in a dielectric barrier discharge plasma-catalysis setup under ambient conditions using MgO, γ-Al2O3, and a series of Co x O y /MgO catalysts. While all three catalyst types enhanced CO2 conversion, Co x O y /MgO gave the best results, converting up to 35% of CO2 and reaching the highest methanol yield (10%). Control experiments showed that the basic MgO support is more active than the acidic γ-Al2O3, and that MgO-supported cobalt oxide catalysts improve the selectivity toward methanol. The methanol yield can be tuned by changing the metal loading. Overall, our study shows the utility of plasma catalysis for CO2 conversion under mild conditions, with the potential to reduce the energy footprint of CO2-recycling processes.

18.
ACS Catal ; 10(7): 4420-4432, 2020 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-32296596

RESUMEN

In this work, we propose a hybrid and unique process combining solar irradiation and post-plasma catalysis (PPC) for the effective oxidation of toluene over a highly active and stable MnO2/GFF (bifunctional graphene fin foam) catalyst. The bifunctional GFF, serving as both the catalyst support and light absorber, is decorated with MnO2 nanofins, forming a hierarchical fin-on-fin structure. The results show that the MnO2/GFF catalyst can effectively capture and convert renewable solar energy into heat (absorption of >95%), leading to a temperature rise (55.6 °C) of the catalyst bed under solar irradiation (1 sun, light intensity 1000 W m-2). The catalyst weight (9.8 mg) used in this work was significantly lower (10-100 times lower) than that used in previous studies (usually 100-1000 mg). Introducing solar energy into the typical PPC process via solar thermal conversion significantly enhances the conversion of toluene and CO2 selectivity by 36-63%, reaching ∼93% for toluene conversion and ∼83% for CO2 selectivity at a specific input energy of ∼350 J L-1, thus remarkably reducing the energy consumption of the plasma-catalytic gas cleaning process. The energy efficiency for toluene conversion in the solar-enhanced post-plasma catalytic (SEPPC) process reaches up to 12.7 g kWh-1, ∼57% higher than that using the PPC process without solar irradiation (8.1 g kWh-1), whereas the energy consumption of the SEPPC process is reduced by 35-52%. Moreover, the MnO2/GFF catalyst exhibits an excellent self-cleaning capability induced by solar irradiation, demonstrating a superior long-term catalytic stability of 72 h at 1 sun, significantly better than that reported in previous works. The prominent synergistic effect of solar irradiation and PPC with a synergistic capacity of ∼42% can be mainly attributed to the solar-induced thermal effect on the catalyst bed, boosting ozone decomposition (an almost triple enhancement from ∼0.18 gO3 g-1 h-1 for PPC to ∼0.52 gO3 g-1 h-1 for SEPPC) to generate more oxidative species (e.g., O radicals) and enhancing the catalytic oxidation on the catalyst surfaces, as well as the self-cleaning capacity of the catalyst at elevated temperatures driven by solar irradiation. This work opens a rational route to use abundant, renewable solar power to achieve high-performance and energy-efficient removal of volatile organic compounds.

19.
Environ Manage ; 64(6): 772-782, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31748948

RESUMEN

During the last decade, China's agro-food production has increased rapidly and been accompanied by the challenge of increasing greenhouse gas (GHG) emissions and other environmental pollutants from fertilizers, pesticides, and intensive energy use. Understanding the energy use and environmental impacts of crop production will help identify environmentally damaging hotspots of agro-production, allowing environmental impacts to be assessed and crop management strategies optimized. Conventional farming has been widely employed in wolfberry (Lycium barbarum) cultivation in China, which is an important cash tree crop not only for the rural economy but also from an ecological standpoint. Energy use and global warming potential (GWP) were investigated in a wolfberry production system in the Yellow River irrigated Jingtai region of Gansu. In total, 52 household farms were randomly selected to conduct the investigation using questionnaires. Total energy input and output were 321,800.73 and 166,888.80 MJ ha-1, respectively, in the production system. The highest share of energy inputs was found to be electricity consumption for lifting irrigation water, accounting for 68.52%, followed by chemical fertilizer application (11.37%). Energy use efficiency was 0.52 when considering both fruit and pruned wood. Nonrenewable energy use (88.52%) was far larger than the renewable energy input. The share of GWP of different inputs were 64.52% electricity, 27.72% nitrogen (N) fertilizer, 5.07% phosphate, 2.32% diesel, and 0.37% potassium, respectively. The highest share was related to electricity consumption for irrigation, followed by N fertilizer use. Total GWP in the wolfberry planting system was 26,018.64 kg CO2 eq ha-1 and the share of CO2, N2O, and CH4 were 99.47%, 0.48%, and negligible respectively with CO2 being dominant. Pathways for reducing energy use and GHG emission mitigation include: conversion to low carbon farming to establish a sustainable and cleaner production system with options of raising water use efficiency by adopting a seasonal gradient water pricing system and advanced irrigation techniques; reducing synthetic fertilizer use; and policy support: smallholder farmland transfer (concentration) for scale production, credit (small- and low-interest credit) and tax breaks.


Asunto(s)
Calentamiento Global , Lycium , Agricultura , Carbono , China , Fertilizantes , Efecto Invernadero , Metano , Óxido Nitroso
20.
J Cell Biochem ; 120(11): 18937-18945, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31237019

RESUMEN

OBJECTIVES: Current methods for diagnosing lung cancer (LC) have varying degrees of risks and complications. MicroRNA (miRNA) is a small molecule noncoding RNA with gene regulation functions. Many studies have shown that miRNA can be used for the diagnosis of LC, but there are differences in diagnostic accuracy. Therefore, we aim to systematically review and meta-analyze published articles to comprehensively evaluate the diagnostic value of miRNA for LC. MATERIALS AND METHODS: We searched the PubMed, Embase, and Cochrane databases, and calculated the area under the curve (AUC) by plotting the summary receiver operator characteristic curve using the sensitivity and specificity of each included study. The AUC was calculated and the likelihood ratio was plotted to assess the diagnostic accuracy of miRNA. We used QUADAS-2 in Review Manager 5.3 to evaluate the quality of all the articles. The other analyses were performed using the STATA 12.0 software. RESULTS: We included a total of 29 articles, 98 studies, and the qualities of all the articles were satisfactory. The overall pooled parameters calculated from all studies were as follows: sensitivity = 0.77, specificity = 0.83, positive likelihood ratio (PLR) = 4.6, negative likelihood ratio (NLR) = 0.28, and AUC = 0.87 for miRNA diagnosis. It had significant advantages over other biomarkers. Subgroup analysis showed that when combined four or more miRNA for the diagnosis of LC, the parameters were as follows: sensitivity = 0.90, specificity = 0.93, PLR = 13.2, NLR = 0.11, and AUC = 0.97. CONCLUSION: Four or more miRNA combination could be used for the diagnosis of LC. Besides this, we also found that miRNA showed a greater advantage in distinguishing LC from benign lung diseases than distinguishing between LC and normal people. Our findings provided a new way of thinking about the clinical diagnosis of LC from a nonmorphological aspect.


Asunto(s)
Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/metabolismo , MicroARNs/metabolismo , ARN Neoplásico/metabolismo , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...