Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.199
Filtrar
1.
J Environ Sci (China) ; 147: 165-178, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003037

RESUMEN

In this study, two wheat-derived cadmium (Cd)-immobilizing endophytic Pseudomonas paralactis M14 and Priestia megaterium R27 were evaluated for their effects on wheat tissue Cd uptake under hydroponic conditions. Then, the impacts of the biochar (BC), M14+R27 (MR), and BC+MR treatments on wheat Cd uptake and the mechanisms involved were investigated at the jointing, heading, and mature stages of wheat plants under field-plot conditions. A hydroponic experiment showed that the MR treatment significantly decreased the above-ground tissue Cd content compared with the M14 or R27 treatment. The BC+MR treatment reduced the grain Cd content by 51.5%-67.7% and Cd translocation factor at the mature stage of wheat plants and increased the organic matter-bound Cd content by 31%-75% in the rhizosphere soils compared with the BC or MR treatment. Compared with the BC or MR treatment, the relative abundances of the biomarkers associated with Gemmatimonas, Altererythrobacter, Gammaproteobacteria, Xanthomonadaceae, Phenylobacterium, and Nocardioides in the BC+MR-treated rhizosphere microbiome decreased and negatively correlated with the organic matter-bound Cd contents. In the BC+MR-treated root interior microbiome, the relative abundance of the biomarker belonging to Exiguobacterium increased and negatively correlated with the Cd translocation factor, while the relative abundance of the biomarker belonging to Pseudonocardiaceae decreased and positively correlated with the Cd translocation factor. Our findings suggested that the BC+MR treatment reduced Cd availability and Cd transfer through affecting the abundances of these specific biomarkers in the rhizosphere soil and root interior microbiomes, leading to decreased wheat grain Cd uptake in the contaminated soil.


Asunto(s)
Cadmio , Carbón Orgánico , Microbiología del Suelo , Contaminantes del Suelo , Triticum , Triticum/metabolismo , Triticum/microbiología , Cadmio/metabolismo , Contaminantes del Suelo/metabolismo , Endófitos/fisiología , Rizosfera , Suelo/química , Biodegradación Ambiental , Microbiota/efectos de los fármacos
2.
Sci Rep ; 14(1): 18104, 2024 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103483

RESUMEN

The study of drug-target interaction plays an important role in the process of drug development. The subject of DTI forecasting has advanced significantly in the last several years, yielding numerous significant research findings and methodologies. Heterogeneous data sources provide richer information and comprehensive perspectives for drug-target interaction prediction, so many existing methods rely on heterogeneous networks, and graph embedding technology becomes an important technology to extract information from heterogeneous networks. These approaches, however, are less concerned with potential noisy information in heterogeneous networks and more focused on the extent of information extraction in those networks. Based on this, a potential DTI predictive network model called FBRWPC is proposed in this paper. It uses a fine-grained similarity selection program to first integrate similarity on similar networks and then a bidirectional random walk graph embedding learning method with restart to obtain an updated drug target interaction matrix. Through the use of similarity selection and fine-grained selection similarity integration, the framework can effectively filter out the noise present in heterogeneous networks and enhance the model's prediction performance. The experimental findings demonstrate that, even after being split up into four distinct types of data sets, FBRWPC can still retain great prediction performance, a sign of the model's resilience and good generalization.


Asunto(s)
Algoritmos , Humanos , Desarrollo de Medicamentos/métodos , Preparaciones Farmacéuticas
3.
Org Lett ; 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39172514

RESUMEN

A novel photoredox/nickel dual catalytic intermolecular alkylarylation of vinylarenes with tertiary and secondary alkyltrifluoroborates and aryl bromides is described, which affords 1,1-diarylalkane frameworks that are found in various natural products as well as functionalized molecules in good to excellent yield and regioselectivity through a radical relay process. Notably, this redox-neutral reaction could proceed efficiently with good tolerance of various substrates, including a great diversity of commercially available (hetero)aryl bromides, alkyltrifluoroborates, and vinylarenes.

4.
Sci Total Environ ; 950: 175316, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39117193

RESUMEN

2,4,6-Trichloroanisole (2,4,6-TCA), a compound with a characteristic earthy odor, is a common source of odorous pollutants in drinking water and wine. However, research on its biological toxicity is limited. In this study, we used zebrafish as an indicator model to investigate the effects of 2,4,6-TCA exposure on morphological development, oxidative stress, apoptosis, heart rate, blood flow, and motility. We found that exposure to 2,4,6-TCA resulted in significant spinal, tail, and cardiac deformities in zebrafish larvae and promoted a pronounced oxidative stress response and extensive cell apoptosis, notably in the digestive tract, head, spine, and heart, ultimately leading to significant reductions in zebrafish heart rate, blood flow, and motility. Moreover, these effects became more pronounced with an increase in the concentration of 2,4,6-TCA to which the zebrafish were exposed. Furthermore, qPCR analysis revealed that exposure to 2,4,6-TCA promoted significant changes in the expression levels of genes associated with oxidative stress, apoptosis, cardiac development, and the nervous system, particularly key genes (p53, apaf1, casp9, and casp3) in the mitochondrial apoptotic pathway, which were significantly upregulated. Similarly, we detected significant upregulation of ache gene expression. These findings indicated that exposure to 2,4,6-TCA resulted in the accumulation of reactive oxygen species in zebrafish, induced strong oxidative stress responses, and triggered lipid peroxidation and extensive cell apoptosis. Cellular apoptosis, which mitochondrial signaling pathways may mediate, has been found to lead to malformations in zebrafish embryos, resulting in significant reductions in cardiac function and motility. To our knowledge, this is the first systematic assessment of the toxicity of 2,4,6-TCA, and our findings provide an important reference for risk assessment and early warning of 2,4,6-TCA exposure.

5.
Adv Sci (Weinh) ; : e2401869, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38959395

RESUMEN

Ionic conductive hydrogels (ICHs) have recently gained prominence in biosensing, indicating their potential to redefine future biomedical applications. However, the integration of these hydrogels into sensor technologies and their long-term efficacy in practical applications pose substantial challenges, including a synergy of features, such as mechanical adaptability, conductive sensitivity, self-adhesion, self-regeneration, and microbial resistance. To address these challenges, this study introduces a novel hydrogel system using an imidazolium salt with a ureido backbone (UL) as the primary monomer. Fabricated via a straightforward one-pot copolymerization process that includes betaine sulfonate methacrylate (SBMA) and acrylamide (AM), the hydrogel demonstrates multifunctional properties. The innovation of this hydrogel is attributed to its robust mechanical attributes, outstanding strain responsiveness, effective water retention, and advanced self-regenerative and healing capabilities, which collectively lead to its superior performance in various applications. Moreover, this hydrogel  exhibited broad-spectrum antibacterial activity. Its potential for biomechanical monitoring, especially in tandem with contact and noncontact electrocardiogram (ECG) devices, represents a noteworthy advancement in precise real-time cardiac monitoring in clinical environments. In addition, the conductive properties of the hydrogel make it an ideal substrate for electrophoretic patches aimed at treating infected wounds and consequently enhancing the healing process.

6.
Front Public Health ; 12: 1433252, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39015390

RESUMEN

Objectives: The application of artificial intelligence (AI) in healthcare is an important public health issue. However, few studies have investigated the perceptions and attitudes of healthcare professionals toward its applications in nursing. This study aimed to explore the knowledge, attitudes, and concerns of healthcare professionals, AI-related professionals, and others in China toward AI in nursing. Methods: We conducted an online cross-sectional study on nursing students, nurses, other healthcare professionals, AI-related professionals, and others in China between March and April 2024. They were invited to complete a questionnaire containing 21 questions with four sections. The survey followed the principle of voluntary participation and was conducted anonymously. The participants could withdraw from the survey at any time during the study. Results: This study obtained 1,243 valid questionnaires. The participants came from 25 provinces and municipalities in seven regions of China. Regarding knowledge of AI in nursing, 57% of the participants knew only a little about AI, 4.7% did not know anything about AI, 64.7% knew only a little about AI in nursing, and 13.4% did not know anything about AI in nursing. For attitudes toward AI in nursing, participants were positive about AI in nursing, with more than 50% agreeing and strongly agreeing with each question on attitudes toward AI in nursing. Differences in the numbers of participants with various categories of professionals regarding knowledge and attitudes toward AI in nursing were statistically significant (p < 0.05). Regarding concerns and ethical issues about AI in nursing, every participant expressed concerns about AI in nursing, and 95.7% of participants believed that it is necessary to strengthen medical ethics toward AI in nursing. Conclusion: Nursing students and healthcare professionals lacked knowledge about AI or its application in nursing, but they had a positive attitude toward AI. It is necessary to strengthen medical ethics toward AI in nursing. The study's findings could help develop new strategies benefiting healthcare.


Asunto(s)
Inteligencia Artificial , Actitud del Personal de Salud , Conocimientos, Actitudes y Práctica en Salud , Humanos , Estudios Transversales , China , Femenino , Masculino , Adulto , Encuestas y Cuestionarios , Persona de Mediana Edad , Adulto Joven , Personal de Salud/psicología , Personal de Salud/estadística & datos numéricos
7.
J Agric Food Chem ; 72(29): 16530-16540, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39001851

RESUMEN

Brassica napus is currently the principal field crop for producing materials for primary, secondary and tertiary industries. B. napus shoots at stem elongation stage are rich in anthocyanins, vitamin C and mineral elements such as selenium, calcium and zinc, and represent a new type of green vegetable. However, the high crude fiber (CF) content of B. napus shoots affects their taste, and few studies have focused on the quality traits of these vegetables. In this study, we investigated five traits related to the CF components, including neutral detergent fiber (NDF), acid detergent fiber (ADF), acid detergent lignin (ADL), hemicellulose (Hem) and cellulose (Cel), of B. napus shoots. Whole-genome resequencing at a depth of ∼20× was utilized to genotype an association panel of 202 diverse accessions, which resulted in the identification of 6,093,649 single nucleotide polymorphisms (SNPs) and 996,252 indels, respectively. A genome-wide association study (GWAS) was performed for the five CF-related traits based on the phenotypic data observed in four environments. A total of 1,285 significant SNPs were detected at the threshold of -log10 (p) = 5.16, and 97 significant association regions were obtained. In addition, seven candidate genes located on chromosomes A2 (one gene), A8 (three genes), A9 (two genes) and C9 (one gene) related to CF traits were identified, and ten lines containing low CF contents were selected as excellent germplasm resources for breeding. Our results contributed new insights into the genetic basis of CF traits and suggested germplasm resources for the quality improvement of B. napus shoots.


Asunto(s)
Brassica napus , Estudio de Asociación del Genoma Completo , Tallos de la Planta , Polimorfismo de Nucleótido Simple , Brassica napus/genética , Brassica napus/crecimiento & desarrollo , Brassica napus/metabolismo , Brassica napus/química , Tallos de la Planta/genética , Tallos de la Planta/química , Tallos de la Planta/crecimiento & desarrollo , Tallos de la Planta/metabolismo , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/genética , Brotes de la Planta/química , Brotes de la Planta/metabolismo , Genotipo , Fibras de la Dieta/metabolismo , Fibras de la Dieta/análisis , Fenotipo , Celulosa/metabolismo , Lignina/metabolismo , Polisacáridos/metabolismo , Polisacáridos/química , Sitios de Carácter Cuantitativo
8.
Stem Cell Res ; 79: 103490, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39002250

RESUMEN

Epilepsy is a chronic neurological disease. Here we describe the generation of induced pluripotent stem cells (iPSCs) from a patient diagnosed as epilepsy caused by ATP1A2 gene mutation. Induced pluripotent stem cells (iPSCs) were developed using non-integrating episomal vectors containing OCT4, SOX2, KLF4, BCL-XL and C-MYC. The established iPSC line (SDCHi007-A) displayed pluripotent cell morphology, high expression levels of pluripotency markers, differentiation potential in vitro, normal karyotype, and remaining the original ATP1A2 gene mutation.


Asunto(s)
Epilepsia , Células Madre Pluripotentes Inducidas , Factor 4 Similar a Kruppel , Mutación , ATPasa Intercambiadora de Sodio-Potasio , Células Madre Pluripotentes Inducidas/metabolismo , Humanos , Epilepsia/genética , Epilepsia/patología , ATPasa Intercambiadora de Sodio-Potasio/genética , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Diferenciación Celular , Línea Celular , Masculino
9.
J Mol Histol ; 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38969952

RESUMEN

Conventional treatments exhibit various side effects on chronic stress anemia. Extramedullary stress erythropoiesis is a compensatory mechanism, which may effectively counteract anemia. Angelica sinensis polysaccharides (ASP) are the main active ingredient found in Angelica sinensis and exhibit antioxidant and hematopoietic effects. However, the effects of ASP on extramedullary stress erythropoiesis remain to be unclear. Here, we demonstrated the protective effects of ASP on chemotherapeutic drug 5-fluorouracil (5-FU)-induced decline in peripheral blood parameters such as RBC counts, HGB, HCT, and MCH, and the decline of BFU-E colony enumeration in the bone marrow. Meanwhile, ASP promoted extramedullary erythropoiesis, increasing cellular proliferation in the splenic red pulp and cyclin D1 protein expression, abrogating phase G0/G1 arrest of c-kit+ cells in mouse spleen. RT-qPCR and immunohistochemistry further revealed that ASP increased macrophage chemokine Ccl2 genetic expression and the number of F4/80+ macrophages in the spleen. The colony-forming assay showed that ASP significantly increased splenic BFU-E. Furthermore, we found that ASP facilitated glycolytic genes including Hk2, Pgk1, Pkm, Pdk1, and Ldha via PI3K/Akt/HIF2α signaling in the spleen. Subsequently, ASP declined pro-proinflammatory factor IL-1ß, whereas upregulating erythroid proliferation-associated genes Gdf15, Bmp4, Wnt2b, and Wnt8a. Moreover, ASP facilitated EPO/STAT5 signaling in splenic macrophages, thus enhancing erythroid lineage Gata2 genetic expression. Our study indicated that ASP may improve glycolysis, promoting the activity of splenic macrophages, subsequently promoting erythroid progenitor cell expansion. Additionally, ASP facilitates erythroid differentiation via macrophage-mediated EpoR/STAT5 signaling; suggesting it might be a promising strategy for stress anemia treatment.

10.
Arch Microbiol ; 206(8): 365, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39085720

RESUMEN

Trichoderma harzianum T4 is a soil fungus that plays an important role in the biological control of plant diseases. The aim of this study was to functionally characterize the ß-1,6-glucanase gene Neg1 in T. harzianum T4 and to investigate the effect of its overexpression on biocontrol traits, especially antagonism against pathogenic fungi. We found that overexpression of Neg1 did not affect growth of T. harzianum but enhanced sporulation of T. harzianum T4 cultures. Generally, spores are closely related to the defense ability of defense fungi and can assist their proliferation and improve their colonization ability. Secondly, overexpression of Neg1 also increased the secretion level of various hydrolytic enzymes and enhanced the antagonistic ability against phytopathogenic fungi of Fusarium spp. The results suggest that Neg1 is a key gene for improving the biocontrol effect of T. harzianum T4, which contributes to a better understanding of the mechanism of action of T. harzianum T4 as a fungal biocontrol agent.


Asunto(s)
Antibiosis , Fusarium , Enfermedades de las Plantas , Esporas Fúngicas , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Fusarium/genética , Fusarium/fisiología , Esporas Fúngicas/crecimiento & desarrollo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Hypocreales/genética , Hypocreales/metabolismo , Control Biológico de Vectores , Agentes de Control Biológico/metabolismo , Trichoderma/genética , Trichoderma/fisiología , Trichoderma/metabolismo
12.
J Drug Target ; : 1-21, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39041142

RESUMEN

Melanoma poses a challenge in oncology because of its aggressive nature and limited treatment modalities. The tumour microenvironment (TME) in melanoma contains unique properties such as an immunosuppressive and high-density environment, unusual vasculature, and a high number of stromal and immunosuppressive cells. In recent years, numerous experiments have focused on boosting the immune system to effectively remove malignant cells. Adjuvants, consisting of phytochemicals, toll-like receptor (TLR) agonists, and cytokines, have shown encouraging results in triggering antitumor immunity and augmenting the therapeutic effectiveness of anticancer therapy. These adjuvants can stimulate the maturation of dendritic cells (DCs) and infiltration of cytotoxic CD8+ T lymphocytes (CTLs). Furthermore, nanocarriers can help to deliver immunomodulators and antigens directly to the tumour stroma, thereby improving their efficacy against malignant cells. The remodelling of melanoma TME utilising phytochemicals, agonists, and other adjuvants can be combined with current modalities for improving therapy outcomes. This review article explores the potential of adjuvants, drugs, and their nanoformulations in enhancing the anticancer potency of macrophages, CTLs, and natural killer (NK) cells. Additionally, the capacity of these agents to repress the function of immunosuppressive components of melanoma TME, such as immunosuppressive subsets of macrophages, stromal and myeloid cells will be discussed.

13.
Appl Environ Microbiol ; 90(8): e0059624, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39023265

RESUMEN

Pseudomonas protegens can serve as an agricultural biocontrol agent. P. protegens often encounters hyperosmotic stress during industrial production and field application. The ability of P. protegens to withstand hyperosmotic stress is important for its application as a biocontrol agent. AlgU is a global regulator responsible for stress response and biocontrol ability. However, the specific regulatory role of AlgU in the hyperosmotic adaptation of P. protegens is poorly understood. In this study, we found that the AlgU mutation disrupted the hyperosmotic tolerance of P. protegens. Many genes and metabolites related to cell envelope formation were significantly downregulated in ΔalgU compared with that in the wild-type (WT) strain under hyperosmotic conditions, and we found that the algU mutation caused membrane integrity to be compromised and increased membrane permeability. Further experiments revealed that the cell envelope integrity protein TolA, which is regulated by AlgU, contributes to cell membrane stability and osmotic tolerance in P. protegens. In addition, several genes related to oxidative stress response were significantly downregulated in ΔalgU, and higher levels of intracellular reactive oxygen species were found in ΔalgU. Furthermore, we found that the synthesis of N-acetyl glutaminyl glutamine amide is directly regulated by AlgU and contributes to the hyperosmotic adaptation of P. protegens. This study revealed the mechanisms of AlgU's participation in osmotic tolerance in P. protegens, and it provides potential molecular targets for research on the hyperosmotic adaptation of P. protegens.IMPORTANCEIn this study, we found that the extracytoplasmic function sigma factor AlgU is essential for the survival of P. protegens under hyperosmotic conditions. We provided evidence supporting the roles of AlgU in influencing cell membrane stability, intracellular reactive oxygen species (ROS) accumulation, and dipeptide N-acetylglutaminylglutamine amide (NAGGN) synthesis in P. protegens under hyperosmotic conditions. Our findings revealed the mechanisms of AlgU's participation in hyperosmotic stress tolerance in P. protegens, and they provide potential molecular targets for research on the hyperosmotic adaptation of P. protegens, which is of value in improving the biocontrol ability of P. protegens.


Asunto(s)
Proteínas Bacterianas , Membrana Celular , Presión Osmótica , Pseudomonas , Especies Reactivas de Oxígeno , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Especies Reactivas de Oxígeno/metabolismo , Pseudomonas/metabolismo , Pseudomonas/genética , Pseudomonas/fisiología , Membrana Celular/metabolismo , Regulación Bacteriana de la Expresión Génica
14.
Exp Ther Med ; 28(1): 299, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38868613

RESUMEN

Sturge-Weber syndrome (SWS) type III, a rare neurocutaneous disorder, presents diagnostic challenges due to its variable clinical manifestations. The present study focuses on enhancing the understanding of this syndrome by conducting a detailed analysis of two pediatric cases and providing a comprehensive review of the existing literature. The cases, managed at the Children's Hospital Affiliated to Shandong University (Jinan, China), highlight the diverse clinical presentations and successful management strategies for SWS type III. In the first case, a 4-year-old male patient exhibited paroxysmal hemiplegia, epileptic seizures and cerebral angiographic findings indicative of left pia mater and venous malformation. The second case involved a 2.5-year-old male patient presenting with recurrent seizures and angiographic findings on the right side. Both cases underscore the importance of considering epileptic seizures, acquired and transient hemiplegia and cognitive impairments in the diagnosis of SWS type III. The present study provides insights into the effective use of both pharmacological and surgical interventions, drawing from the positive outcomes observed in these cases. The findings emphasize the need for heightened awareness and a meticulous approach in diagnosing and treating SWS type III, contributing to the better management and prognosis of this condition.

15.
Biomater Res ; 28: 0046, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38894889

RESUMEN

The occurrence of rheumatoid arthritis (RA) is highly correlated with progressive and irreversible damage of articular cartilage and continuous inflammatory response. Here, inspired by the unique structure of synovial lipid-hyaluronic acid (HA) complex, we developed supramolecular HA-nanomedicine hydrogels for RA treatment by mediating macrophage-synovial fibroblast cross-talk through locally sustained release of celastrol (CEL). Molecular dynamics simulation confirmed that HA conjugated with hydrophobic segments could interspersed into the CEL-loaded [poly(ε-caprolactone-co-1,4,8-trioxa[4.6]spiro-9-undecanone)-poly(ethylene glycol)-poly(ε-caprolaone-co-1,4,8-trioxa[4.6]spiro-9-undecanone] (PECT) nanoparticles to form the supramolecular nanomedicine hydrogel HA-poly(ε-caprolactone-co-1,4,8-trioxa[4.6]spiro-9-un-decanone)/PECT@CEL (HP@CEL), enabling fast hydrogel formation after injection and providing a 3-dimensional environment similar with synovial region. More importantly, the controlled release of CEL from HP@CEL inhibited the macrophage polarization toward the proinflammatory M1 phenotype and further suppressed the proliferation of synovial fibroblasts by regulating the Toll-like receptor pathway. In collagen-induced arthritis model in mice, HP@CEL hydrogel treatment substantial attenuated clinical symptoms and bone erosion and improved the extracellular matrix deposition and bone regeneration in ankle joint. Altogether, such a bioinspired injectable polymer-nanomedicine hydrogel represents an effective and promising strategy for suppressing RA progression through augmenting the cross-talk of macrophages and synovial fibroblast for regulation of chronic inflammation.

16.
Heliyon ; 10(11): e31948, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38841441

RESUMEN

Purpose: This study aims to identify the key factors influencing health-related quality of life (HRQoL) of pediatric acute myeloid leukemia (AML) patients following their initial diagnosis and examine their impact on the five-year survival prognosis. Methods: A chart review and follow-up were conducted for children with AML who participated in a prospective cohort study between 2017 and 2020. We identified factors influencing HRQoL through Pediatric Quality of Life Inventory™ (PedsQL™ 4.0), PedsQL™ Cancer Module 3.0 (CM 3.0) and PedsQL™ Family Impact Module 2.0 (FIM 2.0), as well as assessed the impact of impaired HRQoL on the overall outcomes of patients. Results: Sixty-four subjects enrolled in the study had complete HRQoL outcome data, and 61 of them completed the 5-year follow-up. In CM 3.0, age was positively associated with parental proxy reports (p = 0.040), whereas divorced families were negatively associated with child self-reports (p = 0.045). A positive medical history correlates with FIM 2.0 (p = 0.025). Residence (p = 0.046), the occupation of caregivers (p = 0.014), disease severity (p = 0.024), and the only child (p = 0.029) exhibited statistically significant associations with the impairment of HRQoL. Impaired HRQoL scores shown by the PedsQL™4.0 parent proxy report (p = 0.013) and FIM 2.0 (p = 0.011) were associated with a reduced 5-year survival rate. Conclusions: This study demonstrated that early impairment of HRQoL in pediatric acute myeloid leukemia patients has predictive value for long-term prognosis. Once validated, these findings may provide some guidance to clinicians treating children with AML.

17.
Risk Manag Healthc Policy ; 17: 1669-1685, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38919406

RESUMEN

Purpose: The aim of this study was to investigate the risk factors of postmenopausal special uterine leiomyoma pathological types or leiomyosarcoma and to develop a nomogram for clinical risk assessment, ultimately to reduce unnecessary surgical interventions and corresponding economic expenses. Methods: A total of 707 patients with complete information were enrolled from 1 August 2012 to 1 August 2022. Univariate and multivariate logistic regression models were used to analyse the association between variables and special uterine leiomyoma pathological types or leiomyosarcoma in postmenopausal patients. A nomogram for special uterine leiomyoma pathological types or leiomyosarcoma in postmenopausal patients was developed and validated by bootstrap resampling. The calibration curve was used to assess the accuracy of the model and receiver operating characteristic (ROC) curve and decision curve analysis (DCA) were compared with the clinical experience model. Results: The increasing trend after menopause, the diameter of the largest uterine fibroid, serum carcinoembryonic antigen 125 concentration, Serum neutrophil to lymphocyte ratio, and Serum phosphorus ion concentration were independent risk factors for special uterine leiomyoma pathological types or leiomyosarcoma in postmenopausal patients. We developed a user-friendly nomogram which showed good diagnostic performance (AUC=0.724). The model was consistent and the calibration curve of our cohort was close to the ideal diagonal line. DCA indicated that the model has potential value for clinical application. Furthermore, our model was superior to the previous clinical experience model in terms of ROC and DCA. Conclusion: We have developed a prediction nomogram for special uterine leiomyoma pathological types or leiomyosarcoma in postmenopausal patients. This nomogram could serve as an important warning signal and evaluation method for special uterine leiomyoma pathological types or leiomyosarcoma in postmenopausal patients.

18.
bioRxiv ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38895242

RESUMEN

Chimpanzees (Pan troglodytes) are humans' closest living relatives, making them the most directly relevant comparison point for understanding human brain evolution. Zeroing in on the differences in brain connectivity between humans and chimpanzees can provide key insights into the specific evolutionary changes that might have occured along the human lineage. However, conducting comparisons of brain connectivity between humans and chimpanzees remains challenging, as cross-species brain atlases established within the same framework are currently lacking. Without the availability of cross-species brain atlases, the region-wise connectivity patterns between humans and chimpanzees cannot be directly compared. To address this gap, we built the first Chimpanzee Brainnetome Atlas (ChimpBNA) by following a well-established connectivity-based parcellation framework. Leveraging this new resource, we found substantial divergence in connectivity patterns across most association cortices, notably in the lateral temporal and dorsolateral prefrontal cortex between the two species. Intriguingly, these patterns significantly deviate from the patterns of cortical expansion observed in humans compared to chimpanzees. Additionally, we identified regions displaying connectional asymmetries that differed between species, likely resulting from evolutionary divergence. Genes associated with these divergent connectivities were found to be enriched in cell types crucial for cortical projection circuits and synapse formation. These genes exhibited more pronounced differences in expression patterns in regions with higher connectivity divergence, suggesting a potential foundation for brain connectivity evolution. Therefore, our study not only provides a fine-scale brain atlas of chimpanzees but also highlights the connectivity divergence between humans and chimpanzees in a more rigorous and comparative manner and suggests potential genetic correlates for the observed divergence in brain connectivity patterns between the two species. This can help us better understand the origins and development of uniquely human cognitive capabilities.

19.
Environ Pollut ; 357: 124408, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38906403

RESUMEN

Diazinon is an organophosphorus pesticide widely used in agriculture and household pest control, and its use also poses several environmental and health hazards. In this study, we investigated the spatial and temporal distribution of diazinon in Baiyangdian, evaluated its potential ecological risk and toxicity to aquatic organisms based on RQ (Risk quotient) and TU (Toxic unit) analysis, and assessed the potential effects of diazinon accumulation on probiotics and pathogens based on statistical analysis of high-throughput sequencing data. The results showed that diazinon in Baiyangdian posed a low to moderate chronic risk to sediment-dwelling organisms and a low toxicity effect on aquatic invertebrates, which was mainly concentrated in October and human-intensive areas. Meanwhile, increases in sediment electrical conductivity (EC), amorphous iron oxides content and phenol oxidase activity favored diazinon accumulation in sediments, whereas the opposite was the case for sediment organic carbon, ß-1,4-glucosidase, phosphatase, catalase and pH, suggesting that environmental indicators play a key role in the behavior and distribution of diazinon. In addition, diazinon in heavily contaminated areas seem to inhibit the rare probiotics (Bifidobacterium adolescentis and Serratia sp.), while promoted dominant pathogens (e.g., Burkholderia cenocepacia), which can lead to increased disease risk to humans and ecosystems, disruption of ecological balance and potential health problems. However, probiotic Streptomyces xiamenensis resist to diazinon would be a potential degrader for diazinon remove. In conclusion, this study unveiled the effects of diazinon pollution on wetland ecosystems, emphasizing ecological impacts and potential health concerns. In addition, the discovery of diazinon resistant probiotics provided new insights into wetland ecological restoration.


Asunto(s)
Diazinón , Monitoreo del Ambiente , Sedimentos Geológicos , Lagos , Probióticos , Contaminantes Químicos del Agua , Diazinón/toxicidad , Sedimentos Geológicos/química , Contaminantes Químicos del Agua/análisis , Lagos/química , Medición de Riesgo , Insecticidas/toxicidad , China , Animales , Organismos Acuáticos
20.
J Nanobiotechnology ; 22(1): 375, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926721

RESUMEN

As an emerging cancer treatment strategy, reactive oxygen species-based tumor catalytic therapies face enormous challenges due to hypoxia and the overexpression of glutathione (GSH) in the tumor microenvironment. Herein, a self-assembled copper-based nanoplatform, TCCHA, was designed for enzyme-like catalysis-enhanced chemodynamic/photodynamic/antiangiogenic tritherapy against hepatocellular carcinoma. TCCHA was fabricated from Cu2+, 3,3'-dithiobis (propionohydrazide), and photosensitizer chlorine e6 via a facile one-pot self-assembly strategy, after which an aldehyde hyaluronic acid was coated, followed by loading of the antivascular drug AL3818. The obtained TCCHA nanoparticles exhibited pH/GSH dual-responsive drug release behaviors and multienzymatic activities, including Fenton, glutathione peroxidase-, and catalase-like activities. TCCHA, a redox homeostasis disruptor, promotes ⋅OH generation and GSH depletion, thus increasing the efficacy of chemodynamic therapy. TCCHA, which has catalase-like activity, can also reinforce the efficacy of photodynamic therapy by amplifying O2 production. In vivo, TCCHA efficiently inhibited tumor angiogenesis and suppressed tumor growth without apparent systemic toxicity. Overall, this study presents a facile strategy for the preparation of multienzyme-like nanoparticles, and TCCHA nanoparticles display great potential for enzyme catalysis-enhanced chemodynamic/photodynamic/antiangiogenic triple therapy against cancer.


Asunto(s)
Carcinoma Hepatocelular , Cobre , Neoplasias Hepáticas , Fotoquimioterapia , Fármacos Fotosensibilizantes , Cobre/química , Cobre/farmacología , Animales , Carcinoma Hepatocelular/tratamiento farmacológico , Fotoquimioterapia/métodos , Neoplasias Hepáticas/tratamiento farmacológico , Ratones , Humanos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Ratones Endogámicos BALB C , Línea Celular Tumoral , Especies Reactivas de Oxígeno/metabolismo , Inhibidores de la Angiogénesis/farmacología , Inhibidores de la Angiogénesis/química , Porfirinas/química , Porfirinas/farmacología , Clorofilidas , Glutatión/metabolismo , Nanopartículas/química , Catálisis , Nanopartículas del Metal/química , Liberación de Fármacos , Ratones Desnudos , Antineoplásicos/farmacología , Antineoplásicos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA