Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small ; 20(21): e2307945, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38098338

RESUMEN

The redox stabilities of different oxygen donor solvents (C═O, P═O and S═O) and lithium salt anions for supercapacitors (SCs) electrolytes have been compared by calculating the frontier molecular orbital energy. Among six lithium difluoro(oxalate)borate (LiDFOB)-based mono-solvent electrolytes, the dilute LiDFOB-1,4-butyrolactone (GBL) electrolyte exhibits the highest operating voltage but suffers from electrolyte breakdown at elevated temperatures. Trimethyl phosphate (TMP) exhibits the highest redox stability and a strongly negative electrostatic potential (ESP), making it suitable for promoting the dissolution of LiDFOB as expected. Therefore, TMP is selected as a co-solvent into LiDFOB-GBL electrolyte to regulate Li+ solvation structure and improve the operability of electrolytes at high temperatures. The electrochemical stable potential window (ESPW) of 0.5 m LiDFOB-G/T(5/5) hybrid electrolyte can reach 5.230 V. The activated carbon (AC)-based symmetric SC using 0.5 m LiDFOB-G/T(5/5) hybrid electrolyte achieves a high energy density of 54.2 Wh kg-1 at 1.35 kW kg-1 and the capacitance retention reaches 89.2% after 10 000 cycles. The operating voltage of SC can be maintained above 2 V when the temperature rises to 60 °C.

2.
J Acoust Soc Am ; 154(4): 2440-2452, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37850838

RESUMEN

Topological elastic wave metamaterials have shown significant advantages in manipulating wave propagation and realizing localized modes. However, topological properties of most mechanical metamaterials are difficult to change because of structural limitations. This work proposes the elastic wave metamaterials with double coupled chains and active control, in which band inversion and topological interface modes can be achieved by flexibly tuning negative capacitance circuits. Finite element simulations and experiments are performed to demonstrate the topological interface modes, which show good agreements with the theoretical results. This research seeks to provide effective strategies for the design and application of topological elastic wave metamaterials.

3.
J Acoust Soc Am ; 151(3): 1449, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35364921

RESUMEN

In this work, solitary wave solutions of particle mechanical metamaterials are studied, in which the mass-in-mass structure with local resonators is considered. The Hertzian contact theory is used to describe adjacent particles in a precompressed granular chain. The governing wave equations are decoupled, and the expressions of bright, dark, and peaked solitary waves are derived, respectively. According to the results, both the wave velocity and prestress can affect the propagation of solitary waves. The amplitudes of bright and peaked solitary waves are smaller when a larger prestress is applied, which are different from the dark solitons. Furthermore, the wave widths become larger as the prestress increases.

4.
J Acoust Soc Am ; 150(2): 891, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34470290

RESUMEN

In this investigation, the bandgaps and nonreciprocal transmission of the nonlinear piezoelectric phononic crystal and elastic wave metamaterial are studied. Analytical solutions for the wave motion equations with the electro-mechanical coupling are obtained. According to the continuous conditions, the stop bands and transmission coefficients of both fundamental wave and second harmonic are derived by the stiffness matrix method. Some particular examples are presented to show the nonreciprocal transmission of the nonlinear elastic waves. Additionally, nonlinear ultrasonic experiments are applied to verify the theoretical analyses and numerical simulations. This work is intended to be helpful in the design and fabrication of devices of the elastic wave diode with piezoelectric materials.

5.
Proc Math Phys Eng Sci ; 477(2245): 20200357, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33642923

RESUMEN

In this investigation, the non-reciprocal transmission in a nonlinear elastic metamaterial with imperfect interfaces is studied. Based on the Bloch theorem and stiffness matrix method, the band gaps and transmission coefficients with imperfect interfaces are obtained for the fundamental and double frequency cases. The interfacial influences on the transmission behaviour are discussed for both the nonlinear phononic crystal and elastic metamaterial. Numerical results for the imperfect interface structure are compared with those for the perfect one. Furthermore, experiments are performed to support the theoretical analysis. The present research is expected to be helpful to design tunable devices with the non-reciprocal transmission and diode behaviour of the elastic metamaterial.

6.
J Acoust Soc Am ; 150(6): 4343, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34972279

RESUMEN

Cloaking invisibility is a novel technique that prevents the object from being detected in the background field. The development of new artificial materials and structures promotes the emergence of new achievements in cloaking research. In this work, a broadband square cloaking configuration of elastic wave metamaterial plate is designed and fabricated by the external active control system. The approximate parameters of the flexural wave cloak can be obtained by the coordinate transformation and achieved by alternating layers of the Acrylonitrile Butadiene Styrene (ABS), polydimethylsiloxane (PDMS), and piezoelectric (PZT) patches. With the introduction of active control systems, the square cloak has a wide effective frequency range. The simulation and experimental results show that the square cloak of flexural waves exhibits a good invisible performance in the frequency region of 500-2200 Hz. Compared to the structure without active control systems, the frequency region 2200-2750 Hz is extended for the active cloak. The design and fabrication of the broadband cloak is wished to be helpful during the practical engineering.

7.
Asian J Androl ; 23(1): 91-96, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32567578

RESUMEN

Slow freezing is the most commonly used technique for the cryopreservation of spermatozoa in clinical practice. However, it has been shown to have a negative impact on sperm function and structure. Vitrification as a successful alternative method has been proved to have better protective effects on human embryos, but vitrification of spermatozoa is still subject to low recovery rates. In this study, a modified vitrification method for native spermatozoa was developed. A total of 28 semen samples were included; each sample was divided into three equal parts and assigned to fresh, slow freezing, and vitrification groups. Sperm vitality, motility, morphology, DNA integrity, and acrosome reaction were assessed for each of the groups. The results showed that vitrification achieves better results for several sperm protection parameters than slow freezing; vitrification achieves a higher recovery rate (P < 0.05), motility (P <0.05), morphology (P <0.05), and curve line velocity (P <0.05) than slow freezing. Furthermore, DNA fragmentation was decreased (P <0.05) and better acrosome protection (P <0.05) was exhibited in the spermatozoa after vitrification. Principal component analysis of all sperm parameters revealed that the vitrification cluster was closer to the fresh cluster, indicating that spermatozoa are better preserved through vitrification. In conclusion, while both slow freezing and vitrification have negative effects on sperm function and structure, the vitrification protocol described here had a relatively better recovery rate (65.8%) and showed improved preservation of several sperm quality parameters compared with slow freezing.


Asunto(s)
Criopreservación/métodos , Espermatozoides , Vitrificación , Reacción Acrosómica , Adulto , Humanos , Masculino , Manejo de Especímenes/métodos , Motilidad Espermática , Adulto Joven
8.
J Acoust Soc Am ; 148(6): 3722, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33379886

RESUMEN

In this paper, a piezoelectric cloaking mechanism is proposed, which makes the enclosed piezomagnetic cylinder invisible to elastic shear horizontal (SH) waves. Based on the scattering cancellation technique, the piezoelectric cloaking mechanism and dynamic stress concentration factor (DSCF) is obtained by the plane wave expansion method. A nonlinear ray trajectory equation for SH waves is derived based on the nonlinear transformation. Furthermore, piezoelectric effects on both cloaking mechanism and dynamic stress concentration are analyzed. The numerical results show that the scattering cancellation can be attributed to the cloak density, and the piezoelectric property can enhance the object's invisibility. The piezoelectric cloaking design can be applied to reduce the DSCF in some frequency regions, which means that it can change the stress distribution. It means that piezoelectric scattering cancellation can enhance both the cloaking results and structural strength of the mechanical metamaterials. This study is expected to have significance for the development and design of elastic wave metamaterials.

9.
Sci Rep ; 10(1): 9376, 2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-32523057

RESUMEN

The topology concept in the condensed physics and acoustics is introduced into the elastic wave metamaterial plate, which can show the topological property of the flexural wave. The elastic wave metamaterial plate consists of the hexagonal array which is connected by the piezoelectric shunting circuits. The Dirac point is found by adjusting the size of the unit cell and numerical simulations are illustrated to show the topological immunity. Then the closing and breaking of the Dirac point can be generated by the negative capacitance circuits. These investigations denote that the topological immunity can be achieved for flexural wave in mechanical metamaterial plate. The experiments with the active control action are finally carried out to support the numerical design.

10.
Environ Int ; 137: 105263, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32087481

RESUMEN

Microplastics are emerging contaminants and their presence in water and soil ecosystems has recently drawn considerable attention because they pose a great threat to entire ecosystems. Recent researches have focused on the detection, occurrence, characterization, and toxicology of microplastics in marine and freshwater ecosystems; however, our understanding of the ecological effects of microplastics in soil ecosystems is still limited compared with that in aquatic ecosystems. Here, we have compiled literature, studying the sources, migration of microplastics in soil, negative impacts on soil health and function, trophic transfer in food chains, and the corresponding adverse effects on soil organisms in order to address the potential ecological and human health risks caused by microplastics in soil. This review aims to address gaps in knowledge, shed light on the ecological effects of microplastics in soil, and propose future studies on microplastic pollution and the resultant soil ecotoxicity. Furthermore, this review is focused on limiting microplastics in soil and establishing management and remediation measures to mitigate the risks posed by microplastic pollution.


Asunto(s)
Microplásticos , Contaminantes del Suelo , Ecosistema , Monitoreo del Ambiente , Humanos , Plásticos
11.
Sci Rep ; 9(1): 16226, 2019 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-31700066

RESUMEN

Propagation of elastic waves along a direction has special interests in practical applications. These concerns generate the design of an elastic wave metamaterial with electrically switchable properties, which is studied in this work. The structure contains a T-shaped waveguide in a plate with the 3D printing technology; and the active control system is used to tune the propagation direction of the flexural wave. The piezoelectric patches which are connected by the negative capacitance circuits are applied to behave as the active control system. The finite element simulation is performed to give the theoretical prediction of the switchable waveguide and the tunable equivalent parameters are achieved by the electrical circuits. The active control experiments are finally carried out to support the numerical design.

13.
Bone Res ; 6: 11, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29644114

RESUMEN

Osteosarcoma is the most common primary bone sarcoma that mostly occurs in young adults. The causes of osteosarcoma are heterogeneous and still not fully understood. Identification of novel, important oncogenic factors in osteosarcoma and development of better, effective therapeutic approaches are in urgent need for better treatment of osteosarcoma patients. In this study, we uncovered that the oncogene MYC is significantly upregulated in metastastic osteosarcoma samples. In addition, high MYC expression is associated with poor survival of osteosarcoma patients. Analysis of MYC targets in osteosarcoma revealed that most of the osteosarcoma super enhancer genes are bound by MYC. Treatment of osteosarcoma cells with super enhancer inhibitors THZ1 and JQ1 effectively suppresses the proliferation, migration, and invasion of osteosarcoma cells. Mechanistically, THZ1 treatment suppresses a large group of super enhancer containing MYC target genes including CDK6 and TGFB2. These findings revealed that the MYC-driven super enhancer signaling is crucial for the osteosarcoma tumorigenesis and targeting the MYC/super enhancer axis represents as a promising therapeutic strategy for treatment of osteosarcoma patients.

14.
Cancer Cell Int ; 17: 103, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29162985

RESUMEN

BACKGROUND: Renal cell carcinoma (RCC) is the most common kidney cancer, accounting for approximately 80-90% of all primary kidney cancer. Treatment for patients with advanced RCC remains unsatisfactory. Rare cancer stem cells (CSCs) are proposed to be responsible for failure of current treatment. METHODS: OncoLnc was used as a tool for interactively exploring survival correlations. Gene manipulation and expression analysis were carried out using siRNA, RT-PCR and Western blotting. Wound healing and invasion assays were used for phenotypical characterization. Aldefluor assay and FACS sorting Sphere culture were used to determine the "stemness" of CSCs. Co-Immunoprecipitation (Co-IP) was used to examine the interaction between OCT4 and CBFA2T2. Student's t-test and Chi square test was used to analyze statistical significance. RESULTS: CBFA2T2 expression can significantly predict the survival of RCC patients. Knocking-down of CBFA2T2 can inhibit cell migration and invasion in RCC cells in vitro, and reduce ALDHhigh CSCs populations. CBFA2T2 expression is necessary for sphere-forming ability and cancer stem cells marker expression in RCC cell lines. CONCLUSIONS: Our data suggest that CBFA2T2 expression correlates with aggressive characteristics of RCC and CBFA2T2 is required for maintenance of "stemness" through regulation of stem cells factors, thereby highlighting CBFA2T2 as a potential therapeutic target for RCC treatment.

15.
Chaos ; 25(6): 063108, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26117102

RESUMEN

The nonlinear dynamical equations are established for the double layered viscoelastic nanoplates (DLNP) subjected to in-plane excitation based on the nonlocal theory and von Kármán large deformation theory. The extended high dimensional homoclinic Melnikov method is employed to study the homoclinic phenomena and chaotic motions for the parametrically excited DLNP system. The criteria for the homoclinic transverse intersection for both the asynchronous and synchronous buckling cases are proposed. Lyapunov exponents and phase portraits are obtained to verify the Melnikov-type analysis. The influences of structural parameters on the transverse homoclinic orbits and homoclinic bifurcation sets are discussed for the two buckling cases. Some novel phenomena are observed in the investigation. It should be noticed that the nonlocal effect on the homoclinic behaviors and chaotic motions is quite remarkable. Hence, the small scale effect should be taken into account for homoclinic and chaotic analysis for nanostructures. It is significant that the nonlocal effect on the homoclinic phenomena for the asynchronous buckling case is quite different from that for the synchronous buckling case. Moreover, due to the van der Walls interaction between the layers, the nonlocal effect on the homoclinic behaviors and chaotic motions for high order mode is rather tiny under the asynchronous buckling condition.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...