Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 190
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38767671

RESUMEN

Activation of the renin-angiotensin system (RAS) triggers oxidative stress and an inflammatory response in the hypothalamic paraventricular nucleus (PVN), in turn increasing the sympathetic hyperactivity that is a major cause of hypertension. Pyridostigmine has cardioprotective effects by suppressing the RAS of myocardial tissue. However, whether pyridostigmine attenuates hypertension by inhibiting the RAS of the PVN remains unclear. We thus investigated the effect and mechanism of pyridostigmine on two-kidney one-clip (2K1C)-induced hypertension. 2K1C rats received pyridostigmine, or not, for 8 weeks. Cardiovascular function, hemodynamic parameters, and autonomic activity were measured. The PVN levels of pro-/anti-inflammatory cytokines, oxidative stress, and RAS signaling molecules were evaluated. Our results showed that hypertension was accompanied by cardiovascular dysfunction and an autonomic imbalance characterized by enhanced sympathetic but diminished vagal activity. The PVN levels of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), reactive oxygen species (ROS), NOX-2, and malondialdehyde (MDA) increased; those of IL-10 and superoxide dismutase (SOD) decreased. Moreover, the RAS signaling pathway was activated, as evidenced by increased levels of the angiotensin-converting enzyme (ACE), angiotensin II (Ang II), and the Ang II type 1 receptor (AT1R) and a decreased AT2R level. Pyridostigmine lowered blood pressure and improved cardiovascular function, associated with restoration of the autonomic balance. Meanwhile, pyridostigmine decreased PVN IL-6, TNF-α, ROS, NOX-2, and MDA levels and increased IL-10 and SOD levels. Additionally, pyridostigmine suppressed PVN ACE, Ang II, and AT1R levels and increased AT2R expression. Pyridostigmine attenuated hypertension by inhibiting PVN oxidative stress and inflammation induced by the RAS.

2.
Asian J Surg ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760222

RESUMEN

OBJECTIVES: Intraoperative frozen section (FS) analysis is pivotal in guiding surgical interventions for early-stage lung adenocarcinoma. However, the challenge arises when distinguishing between Minimally Invasive Adenocarcinoma (MIA) and Invasive Adenocarcinoma (IAC) poses diagnostic difficulties. This study investigates the prognosis and clinicopathological characteristics of patients encountering this diagnostic challenge. METHODS: We conducted a retrospective analysis of 7082 intraoperative FSs from early-stage lung adenocarcinoma cases. The cases with pulmonary nodules within 3 cm and diagnosed as indeterminate FSs were included. We analyzed baseline data, computed tomography (CT) findings, and pathological characteristics. Prognostic data were obtained from patients with confirmed IAC diagnoses through final pathological examination. RESULTS: Out of 7082 FSs, 551 cases presented challenges in distinguishing between MIA and IAC. Upon final pathological examination, 233 cases were identified as IAC, while 314 were classified as MIA. The median invasive pathological size in the IAC group was larger than that in the MIA group (0.6 cm vs 0.3 cm). 131 cases (56.2 %) with IAC underwent lobectomy, while 102 cases (43.8 %) underwent sub-lobar resection. Among the MIA cases, 220 cases (69.8 %) underwent sub-lobar resection, while 95 cases (30.2 %) underwent lobectomy. No recurrence and disease specific death was observed during the follow-up period, regardless of surgical strategy. CONCLUSIONS: Indeterminate intraoperative FSs, posing diagnostic challenges in distinguishing between MIA and IAC. Sub-lobar resection presented the same long term survival benefit compared with the lobectomy for indeterminate lung adenocarcinoma within 3 cm during intraoperative FSs.

3.
New Phytol ; 242(5): 1996-2010, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38571393

RESUMEN

The conquest of land by plants was concomitant with, and possibly enabled by, the evolution of three-dimensional (3D) growth. The moss Physcomitrium patens provides a model system for elucidating molecular mechanisms in the initiation of 3D growth. Here, we investigate whether the phytohormone ethylene, which is believed to have been a signal before land plant emergence, plays a role in 3D growth regulation in P. patens. We report ethylene controls 3D gametophore formation, based on results from exogenously applied ethylene and genetic manipulation of PpEIN2, which is a central component in the ethylene signaling pathway. Overexpression (OE) of PpEIN2 activates ethylene responses and leads to earlier formation of gametophores with fewer gametophores produced thereafter, phenocopying ethylene-treated wild-type. Conversely, Ppein2 knockout mutants, which are ethylene insensitive, show initially delayed gametophore formation with more gametophores produced later. Furthermore, pharmacological and biochemical analyses reveal auxin levels are decreased in the OE lines but increased in the knockout mutants. Our results suggest that evolutionarily, ethylene and auxin molecular networks were recruited to build the plant body plan in ancestral land plants. This might have played a role in enabling ancient plants to acclimate to the continental surfaces of the planet.


Asunto(s)
Bryopsida , Etilenos , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos , Proteínas de Plantas , Etilenos/metabolismo , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacología , Bryopsida/crecimiento & desarrollo , Bryopsida/genética , Bryopsida/efectos de los fármacos , Bryopsida/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Células Germinativas de las Plantas/metabolismo , Células Germinativas de las Plantas/crecimiento & desarrollo , Células Germinativas de las Plantas/efectos de los fármacos , Mutación/genética
4.
Lipids Health Dis ; 23(1): 117, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649999

RESUMEN

Metabolic dysfunction-associated steatotic liver disease (MASLD) has garnered considerable attention globally. Changing lifestyles, over-nutrition, and physical inactivity have promoted its development. MASLD is typically accompanied by obesity and is strongly linked to metabolic syndromes. Given that MASLD prevalence is on the rise, there is an urgent need to elucidate its pathogenesis. Hepatic lipid accumulation generally triggers lipotoxicity and induces MASLD or progress to metabolic dysfunction-associated steatohepatitis (MASH) by mediating endoplasmic reticulum stress, oxidative stress, organelle dysfunction, and ferroptosis. Recently, significant attention has been directed towards exploring the role of gut microbial dysbiosis in the development of MASLD, offering a novel therapeutic target for MASLD. Considering that there are no recognized pharmacological therapies due to the diversity of mechanisms involved in MASLD and the difficulty associated with undertaking clinical trials, potential targets in MASLD remain elusive. Thus, this article aimed to summarize and evaluate the prominent roles of lipotoxicity, ferroptosis, and gut microbes in the development of MASLD and the mechanisms underlying their effects. Furthermore, existing advances and challenges in the treatment of MASLD were outlined.


Asunto(s)
Estrés del Retículo Endoplásmico , Ferroptosis , Microbioma Gastrointestinal , Humanos , Estrés Oxidativo , Disbiosis/complicaciones , Disbiosis/microbiología , Animales , Hígado Graso/metabolismo , Metabolismo de los Lípidos , Obesidad/metabolismo , Obesidad/complicaciones , Obesidad/patología , Hígado/metabolismo , Hígado/patología , Síndrome Metabólico/metabolismo
5.
Org Lett ; 26(16): 3355-3360, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38604973

RESUMEN

A two-step protocol for the conversion of alkyl-substituted alkynes to 1,3-enynes is reported. In this α-methenylation process, an iron-catalyzed propargylic C-H functionalization delivers tetramethylpiperidine-derived homopropargylic amines which undergo facile Cope elimination upon N-oxidation to afford the enyne products. A range of aryl alkyl and dialkyl acetylenes were found to be suitable substrates for this process, which constitutes an alkyne analogue for the Eschenmoser methenylation of carbonyl derivatives. In addition, a new bench-stable precatalyst for iron-catalyzed propargylic C-H functionalization is reported.

6.
J Hepatol ; 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38460791

RESUMEN

BACKGROUND & AIMS: NOTCH signaling in liver sinusoidal endothelial cells (LSECs) regulates liver fibrosis, a pathological feature of chronic liver diseases. POFUT1 is an essential regulator of NOTCH signaling. Here, we investigated the role of LSEC-expressed POFUT1 in liver fibrosis. METHODS: Endothelial-specific Pofut1 knockout mice were generated and experimental liver fibrosis was induced by chronic carbon tetrachloride exposure or common bile duct ligation. Liver samples were assessed by ELISA, histology, electron microscopy, immunostaining and RNA in situ hybridization. LSECs and hepatic stellate cells (HSCs) were isolated for gene expression analysis by RNA sequencing, qPCR, and western blotting. Signaling crosstalk between LSECs and HSCs was investigated by treating HSCs with supernatant from LSEC cultures. Liver single-cell RNA sequencing datasets from patients with cirrhosis and healthy individuals were analyzed to evaluate the clinical relevance of gene expression changes observed in mouse studies. RESULTS: POFUT1 loss promoted injury-induced LSEC capillarization and HSC activation, leading to aggravated liver fibrosis. RNA sequencing analysis revealed that POFUT1 deficiency upregulated fibrinogen expression in LSECs. Consistently, fibrinogen was elevated in LSECs of patients with cirrhosis. HSCs treated with supernatant from LSECs of Pofut1 null mice showed exacerbated activation compared to those treated with supernatant from control LSECs, and this effect was attenuated by knockdown of fibrinogen or by pharmacological inhibition of fibrinogen receptor signaling, altogether suggesting that LSEC-derived fibrinogen induced the activation of HSCs. Mechanistically, POFUT1 loss augmented fibrinogen expression by enhancing NOTCH/HES1/STAT3 signaling. CONCLUSIONS: Endothelial POFUT1 prevents injury-induced liver fibrosis by repressing the expression of fibrinogen, which functions as a profibrotic paracrine signal to activate HSCs. Therapies targeting the POFUT1/fibrinogen axis offer a promising strategy for the prevention and treatment of fibrotic liver diseases. IMPACT AND IMPLICATIONS: Paracrine signals produced by liver vasculature play a major role in the development of liver fibrosis, which is a pathological hallmark of most liver diseases. Identifying those paracrine signals is clinically relevant in that they may serve as therapeutic targets. In this study, we discovered that genetic deletion of Pofut1 aggravated experimental liver fibrosis in mouse models. Moreover, fibrinogen was identified as a downstream target repressed by Pofut1 in liver endothelial cells and functioned as a novel paracrine signal that drove liver fibrosis. In addition, fibrinogen was found to be relevant to cirrhosis and may serve as a potential therapeutic target for this devastating human disease.

7.
Cancer Immunol Immunother ; 73(4): 73, 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38430256

RESUMEN

BACKGROUND: Cervical cancer is a common malignant tumor in the female. Interleukin (IL)-17A is a proinflammatory factor and exerts a vital function in inflammatory diseases and cancers. M2 macrophage has been confirmed to promote tumor development. Nevertheless, it is not yet known whether IL-17A facilitates cervical cancer development by inducing M2 macrophage polarization. Therefore, this study was conducted to investigate the regulatory effect of IL-17A on M2 macrophage polarization and the underlying mechanism in cervical cancer development. METHODS: RT-qPCR was utilized for testing IL-17A expression in cancer tissues and cells. Flow cytometry was applied to evaluate the M1 or M2 macrophage polarization. Cell proliferative, migratory, and invasive capabilities were measured through colony formation and transwell assays. ChIP and luciferase reporter assays were applied to determine the interaction between IL-17A and octamer-binding transcription factor 4 (OCT4). RESULTS: IL-17A expression and concentration were high in metastatic tissues and cells of cervical cancer. IL-17A was found to facilitate M2 macrophage polarization in cervical cancer. Furthermore, IL-17A facilitated the macrophage-mediated promotion of cervical cancer cell proliferative, migratory, and invasive capabilities. Mechanistic assays manifested that Oct4 binds to and transcriptionally activated IL-17A in cervical cancer cells. Furthermore, Oct4 promoted cervical cancer cell malignant phenotype and M2 macrophage polarization by activating the p38 pathway that, in turn, upregulated IL-17A. Additionally, in vivo experiments confirmed that Oct4 knockdown reduced tumor growth and metastasis. CONCLUSION: Oct4 triggers IL-17A to facilitate the polarization of M2 macrophages, which promotes cervical cancer cell metastasis.


Asunto(s)
Factor 3 de Transcripción de Unión a Octámeros , Neoplasias del Cuello Uterino , Femenino , Humanos , Interleucina-17/metabolismo , Macrófagos/metabolismo , Neoplasias del Cuello Uterino/metabolismo , Neoplasias del Cuello Uterino/patología , Factor 3 de Transcripción de Unión a Octámeros/metabolismo
8.
Glob Chang Biol ; 30(3): e17213, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38436125

RESUMEN

Paddy fields serve as significant reservoirs of soil organic carbon (SOC) and their potential for terrestrial carbon (C) sequestration is closely associated with changes in SOC pools. However, there has been a dearth of comprehensive studies quantifying changes in SOC pools following extended periods of rice cultivation across a broad geographical scale. Using 104 rice paddy sampling sites that have been in continuous cultivation since the 1980s across China, we studied the changes in topsoil (0-20 cm) labile organic C (LOC I), semi-labile organic C (LOC II), recalcitrant organic C (ROC), and total SOC. We found a substantial increase in both the content (48%) and density (39%) of total SOC within China's paddy fields between the 1980s to the 2010s. Intriguingly, the rate of increase in content and density of ROC exceeded that of LOC (I and II). Using a structural equation model, we revealed that changes in the content and density of total SOC were mainly driven by corresponding shifts in ROC, which are influenced both directly and indirectly by climatic and soil physicochemical factors; in particular temperature, precipitation, phosphorous (P) and clay content. We also showed that the δ13 CLOC were greater than δ13 CROC , independent of the rice cropping region, and that there was a significant positive correlation between δ13 CSOC and δ13 Cstraw . The δ13 CLOC and δ13 CSOC showed significantly negative correlation with soil total Si, suggesting that soil Si plays a part in the allocation of C into different SOC pools, and its turnover or stabilization. Our study underscores that the global C sequestration of the paddy fields mainly stems from the substantial increase in ROC pool.


Asunto(s)
Oryza , Suelo , Carbono , China , Geografía
9.
EMBO Mol Med ; 16(4): 885-903, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38448544

RESUMEN

Cancer is a heterogeneous disease. Although both tumor metabolism and tumor immune microenvironment are recognized as driving factors in tumorigenesis, the relationship between them is still not well-known, and potential combined targeting approaches remain to be identified. Here, we demonstrated a negative correlation between the expression of NAMPT, an NAD+ metabolism enzyme, and PD-L1 expression in various cancer cell lines. A clinical study showed that a NAMPTHigh PD-L1Low expression pattern predicts poor prognosis in patients with various cancers. In addition, pharmacological inhibition of NAMPT results in the transcription upregulation of PD-L1 by SIRT-mediated acetylation change of NF-κB p65, and blocking PD-L1 would induce NAMPT expression through a HIF-1-dependent glycolysis pathway. Based on these findings, we designed and synthesized a dual NAMPT/PD-L1 targeting compound, LZFPN-90, which inhibits cell growth in a NAMPT-dependent manner and blocks the cell cycle, subsequently inducing apoptosis. Under co-culture conditions, LZFPN-90 treatment contributes to the proliferation and activation of T cells and blocks the growth of cancer cells. Using mice bearing genetically manipulated tumors, we confirmed that LZFPN-90 exerted target-dependent antitumor activities, affecting metabolic processes and the immune system. In conclusion, our results demonstrate the relevance of NAD+-related metabolic processes in antitumor immunity and suggest that co-targeting NAD+ metabolism and PD-L1 represents a promising therapeutic approach.


Asunto(s)
Antígeno B7-H1 , Neoplasias , Humanos , Animales , Ratones , NAD , Neoplasias/patología , Proliferación Celular , Apoptosis , Línea Celular Tumoral , Microambiente Tumoral
10.
Huan Jing Ke Xue ; 45(3): 1512-1524, 2024 Mar 08.
Artículo en Chino | MEDLINE | ID: mdl-38471866

RESUMEN

It is important to explore the relationship between land use types and water quality to improve the surface water environment. Based on monthly water quality monitoring data from 16 nationally controlled surface water quality monitoring stations in Tianjin and land use data in 2021, GIS spatial analysis and mathematical and statistical methods were used to study the influence of land use types on surface water quality in buffer zones at different scales. The results showed that:① the land use types in the study area were mainly construction land, farmland, and water areas, which had significant effects on river water quality. Except for water temperature (WT) and pH, the farmland, construction land, and water areas were negatively correlated with each water quality indicator; forest land and grassland were positively correlated with dissolved oxygen (DO) and total nitrogen (TN) and negatively correlated with other water quality indicators. ② The water quality indicators showed obvious spatial differences in different seasons. The pH, DO and TN concentrations were higher in the dry season, whereas the permanganate index, ammonia nitrogen (NH4+-N), and total phosphorus (TP) concentrations were higher in the rainy season. ③ The results of the RDA analysis showed that the 800 m buffer zone land use had the greatest explanatory power for water quality changes in the dry season (50.4%), whereas the 3 000 m buffer zone land use could explain the water quality changes in the rainy season to the greatest extent (49.6%); from the average explanation rate of the dry and rainy seasons, the 3 000 m buffer zone was the best impact scale (50.0%) on water quality indicators in Tianjin. ④ The partial least squares regression (PLSR) analysis showed that the most important variables affecting surface water quality changes were construction land, farmland, and water areas. The predictive ability of the PLSR model of most water quality indicators was stronger in the dry season than that in the rainy season. In the dry season, all water quality indicators, except WT and pH, were most influenced by farmland. In the rainy season, construction land had the greatest influence on WT and NH4+-N concentrations, and the most important influencing factor for the remaining water quality indicators was still farmland. This study showed that the rational planning of land use types within 3 000 m of rivers or lakes was beneficial to improving the water quality of surface water.

11.
J Hazard Mater ; 469: 133881, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38422740

RESUMEN

Bromine (Br) is widely distributed through the lithosphere and hydrosphere, and its chemistry in the environment is affected by natural processes and anthropogenic activities. While the chemistry of Br in the atmosphere has been comprehensively explored, there has never been an overview of the chemistry of Br in soil and aquatic systems. This review synthesizes current knowledge on the sources, geochemistry, health and environmental threats, remediation approaches, and regulatory guidelines pertaining to Br pollution in terrestrial and aquatic environments. Volcanic eruptions, geothermal streams, and seawater are the major natural sources of Br. In soils and sediments, Br undergoes natural cycling between organic and inorganic forms, with bromination reactions occurring both abiotically and through microbial activity. For organisms, Br is a non-essential element; it is passively taken up by plant roots in the form of the Br- anion. Elevated Br- levels can limit plant growth on coastal soils of arid and semi-arid environments. Br is used in the chemical industry to manufacture pesticides, flame retardants, pharmaceuticals, and other products. Anthropogenic sources of organobromine contaminants in the environment are primarily wastewater treatment, fumigants, and flame retardants. When aqueous Br- reacts with oxidants in water treatment plants, it can generate brominated disinfection by-products (DBPs), and exposure to DBPs is linked to adverse human health effects including increased cancer risk. Br- can be removed from aquatic systems using adsorbents, and amelioration of soils containing excess Br- can be achieved by leaching, adding various amendments, or phytoremediation. Developing cost-effective methods for Br- removal from wastewater would help address the problem of toxic brominated DBPs. Other anthropogenic organobromines, such as polybrominated diphenyl ether (PBDE) flame retardants, are persistent, toxic, and bioaccumulative, posing a challenge in environmental remediation. Future research directives for managing Br pollution sustainably in various environmental settings are suggested here.


Asunto(s)
Ecosistema , Retardadores de Llama , Humanos , Bromo , Retardadores de Llama/análisis , Gestión de Riesgos , Suelo/química
12.
J Biotechnol ; 383: 13-26, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38325656

RESUMEN

Triple-negative breast cancer (TNBC) is a highly invasive subtype of breast cancer that seriously affects women's physical and mental health. Chemodynamic therapy (CDT) induces cell death by specifically generating Fenton/Fenton-like reactions within tumor cells. However, the weak acidity of the tumor microenvironment (TME) greatly weakens the effectiveness of CDT. This work constructed a kind of P-CAIDF/PT nanoparticles (NPs), composed of two Pluronic F127 (PF127) based polymers: one was PF127-CAI (P-CAI), composed by connecting PF127 with the carbonic anhydrase IX (CA IX) inhibitor (CAI); the other was PF127-SS-TPE (PT), composed of PF127 and the aggregation-induced emission molecule, tetraphenylethylene (TPE), via the linkage of disulfide bonds. The two polymers were employed to construct the doxorubicin (DOX) and ferrocene (Fc) co-loaded P-CAIDF/PT NPs through the film dispersion method. After being administrated via i.v., P-CAIDF/PT could be accumulated in the TME by the enhanced permeability and retention (EPR) effect and engulfed by tumor cells. P-CAI induced intracellular acidification by inhibiting the overexpressed CA IX, thus promoting CDT by enhancing the Fc-mediated Fenton reaction. The acidification-enhanced CDT combined with the DOX-mediated chemotherapy could improve the therapeutic effect on TNBC. Moreover, P-CAIDF/PT also monitored the intracellular drug release processes through the fluorescence resonance energy transfer (FRET) effect depending on the inherent DOX/TPE pair. In conclusion, the P-CAIDF/PT nanosystem can achieve the combination therapy of acidification-enhanced CDT and chemotherapy as well as therapy monitoring, thus providing new ideas for the design and development of TNBC therapeutic agents.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Femenino , Humanos , Liberación de Fármacos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Permeabilidad , Doxorrubicina/farmacología , Polímeros , Concentración de Iones de Hidrógeno , Microambiente Tumoral
13.
Plants (Basel) ; 13(3)2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38337905

RESUMEN

Hydroponic lettuce was prone to pest and disease problems after transplantation. Manual identification of the current growth status of each hydroponic lettuce not only consumed time and was prone to errors but also failed to meet the requirements of high-quality and efficient lettuce cultivation. In response to this issue, this paper proposed a method called YOLO-EfficientNet for identifying the growth status of hydroponic lettuce. Firstly, the video data of hydroponic lettuce were processed to obtain individual frame images. And 2240 images were selected from these frames as the image dataset A. Secondly, the YOLO-v8n object detection model was trained using image dataset A to detect the position of each hydroponic lettuce in the video data. After selecting the targets based on the predicted bounding boxes, 12,000 individual lettuce images were obtained by cropping, which served as image dataset B. Finally, the EfficientNet-v2s object classification model was trained using image dataset B to identify three growth statuses (Healthy, Diseases, and Pests) of hydroponic lettuce. The results showed that, after training image dataset A using the YOLO-v8n model, the accuracy and recall were consistently around 99%. After training image dataset B using the EfficientNet-v2s model, it achieved excellent scores of 95.78 for Val-acc, 94.68 for Test-acc, 96.02 for Recall, 96.32 for Precision, and 96.18 for F1-score. Thus, the method proposed in this paper had potential in the agricultural application of identifying and classifying the growth status in hydroponic lettuce.

15.
iScience ; 27(1): 108722, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38226173

RESUMEN

Epigenetic regulation of heart development remains incompletely understood. Here we show that LSD1, a histone demethylase, plays a crucial role in regulating cardiomyocyte proliferation during heart development. Cardiomyocyte-specific deletion of Lsd1 in mice inhibited cardiomyocyte proliferation, causing severe growth defect of embryonic and neonatal heart. In vivo RNA-seq and in vitro functional studies identified Cend1 as a target suppressed by LSD1. Lsd1 loss resulted in elevated Cend1 transcription associated with increased active histone mark H3K4me2 at Cend1 promoter. Cend1 knockdown relieved the cell-cycle arrest and proliferation defect caused by LSD1 inhibition in primary rat cardiomyocytes. Moreover, genetic deletion of Cend1 rescued cardiomyocyte proliferation defect and embryonic lethality in Lsd1 null embryos. Consistently, LSD1 promoted the cell cycle of cardiomyocytes derived from human-induced pluripotent stem cells by repressing CEND1. Together, these findings reveal an epigenetic regulatory mechanism involving the LSD1-CEND1 axis that controls cardiomyocyte proliferation essential for murine heart development.

16.
Int J Clin Pharm ; 46(2): 471-479, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38245664

RESUMEN

BACKGROUND: Teprotumumab was approved by the US Food and Drug Administration (FDA) for the treatment of thyroid eye disease in 2020. However, its adverse events (AEs) have not been investigated in real-world settings. AIM: This study aimed to detect and evaluate AEs associated with teprotumumab in the real-world setting by conducting a pharmacovigilance analysis of the FDA Adverse Event Reporting System (FAERS) database. METHOD: Reporting odds ratio (ROR) was used to detect risk signals from the data from January 2020 to March 2023 in the FAERS database. RESULTS: A total of 3,707,269 cases were retrieved, of which 1542 were related to teprotumumab. The FAERS analysis identified 99 teprotumumab-related AE signals in 14 System Organ Classes (SOCs). The most frequent AEs were muscle spasms (n = 287), fatigue (n = 174), blood glucose increase (n = 121), alopecia (n = 120), nausea (n = 118), hyperacusis (n = 117), and headache (n = 117). The AEs with strongest signal strengths were autophony (ROR = 14,475.49), deafness permanent (ROR = 1853.35), gingival recession (ROR = 190.74), deafness neurosensory (ROR = 129.89), nail growth abnormal (ROR = 103.67), onychoclasis (ROR = 73.58), ear discomfort (ROR = 72.88), and deafness bilateral (ROR = 62.46). Eleven positive AE signals were found at the standardized MedDRA queries (SMQs) level, of which the top five SMQs were hyperglycemia/new-onset diabetes mellitus, hearing impairment, gastrointestinal nonspecific symptoms and therapeutic procedures, noninfectious diarrhea, and hypertension. Age significantly increased the risk of hearing impairment. CONCLUSION: This study identified potential new and unexpected AE signals of teprotumumab. Our findings emphasize the importance of pharmacovigilance analysis in the real world to identify and manage AEs effectively, ultimately improving patient safety during teprotumumab treatment.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Pérdida Auditiva , Estados Unidos/epidemiología , Humanos , United States Food and Drug Administration , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/epidemiología , Minería de Datos , Farmacovigilancia , Sistemas de Registro de Reacción Adversa a Medicamentos
17.
JCI Insight ; 9(3)2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38175709

RESUMEN

Abdominal aortic aneurysm (AAA) is a chronic inflammatory disease characterized by the expansion of the aortic wall. One of the most significant features is the infiltration of macrophages in the adventitia, which drives vasculature remodeling. The role of macrophage-derived interferon regulatory factor 5 (IRF5) in macrophage infiltration and AAA formation remains unknown. RNA sequencing of AAA adventitia identified Irf5 as the top significantly increased transcription factor that is predominantly expressed in macrophages. Global and myeloid cell-specific deficiency of Irf5 reduced AAA progression, with a marked reduction in macrophage infiltration. Further cellular investigations indicated that IRF5 promotes macrophage migration by direct regulation of downstream phosphoinositide 3-kinase γ (PI3Kγ, Pik3cg). Pik3cg ablation hindered AAA progression, and myeloid cell-specific salvage of Pik3cg restored AAA progression and macrophage infiltration derived from Irf5 deficiency. Finally, we found that IRF5 and PI3Kγ expression in the adventitia is significantly increased in patients with AAA. These findings reveal that the IRF5-dependent regulation of PI3Kγ is essential for AAA formation.


Asunto(s)
Adventicia , Aneurisma de la Aorta Abdominal , Humanos , Adventicia/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Aneurisma de la Aorta Abdominal/metabolismo , Macrófagos/metabolismo , Factores Reguladores del Interferón/genética , Factores Reguladores del Interferón/metabolismo
18.
Sci Total Environ ; 912: 169206, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38092199

RESUMEN

Coastal wetland sediment is important reservoir for silicon (Si), and plays an essential role in controlling its biogeochemical cycling. However, little is known about Si fractionations and the associated factors driving their transformations in coastal wetland sediments. In this study, we applied an optimized sequential Si extraction method to separate six sub-fractions of non-crystalline Si (Sinoncry) in sediments from two coastal wetlands, including Si in dissolved silicate (Sidis), Si in the adsorbed silicate (Siad), Si bound to organic matter (Siorg), Si occluded in pedogenic oxides and hydroxides (Siocc), Si in biogenic amorphous silica (Siba), and Si in pedogenic amorphous silica (Sipa). The results showed that the highest proportion of Si in the Sinoncry fraction was Siba (up to 6.6 % of total Si (Sitot)), followed by the Sipa (up to 1.8 % of Sitot). The smallest proportion of Si was found in the Sidis and Siad fractions with the sum of both being <0.1 % of the Sitot. We found a lower Siocc content (188 ± 96.1 mg kg-1) when compared to terrestrial soils. The Sidis was at the center of the inter-transformation among Si fractions, regulating the biogeochemical Si cycling of coastal wetland sediments. Redundancy analysis (RDA) combined with Pearson's correlations further showed that the basic biogenic elements (total organic carbon and total nitrogen), pH, and sediment salinity collectively controlled the Si fractionations in coastal wetland sediments. Our research optimizes sediment Si fractionation procedure and provides insights into the role of sedimentary Si fractions in controlling Si dynamics and knowledge for unraveling the biogeochemical Si cycling in coastal ecosystems.

19.
Circulation ; 149(8): 605-626, 2024 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-38018454

RESUMEN

BACKGROUND: A better understanding of the molecular mechanism of aortic valve development and bicuspid aortic valve (BAV) formation would significantly improve and optimize the therapeutic strategy for BAV treatment. Over the past decade, the genes involved in aortic valve development and BAV formation have been increasingly recognized. On the other hand, ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) gene family members have been reported to be able to modulate cardiovascular development and diseases. The present study aimed to further investigate the roles of ADAMTS family members in aortic valve development and BAV formation. METHODS: Morpholino-based ADAMTS family gene-targeted screening for zebrafish heart outflow tract phenotypes combined with DNA sequencing in a 304 cohort BAV patient registry study was initially carried out to identify potentially related genes. Both ADAMTS gene-specific fluorescence in situ hybridization assay and genetic tracing experiments were performed to evaluate the expression pattern in the aortic valve. Accordingly, related genetic mouse models (both knockout and knockin) were generated using the CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeat-associated 9) method to further study the roles of ADAMTS family genes. The lineage-tracing technique was used again to evaluate how the cellular activity of specific progenitor cells was regulated by ADAMTS genes. Bulk RNA sequencing was used to investigate the signaling pathways involved. Inducible pluripotent stem cells derived from both BAV patients and genetic mouse tissue were used to study the molecular mechanism of ADAMTS. Immunohistochemistry was performed to examine the phenotype of cardiac valve anomalies, especially in the extracellular matrix components. RESULTS: ADAMTS genes targeting and phenotype screening in zebrafish and targeted DNA sequencing on a cohort of patients with BAV identified ADAMTS16 (a disintegrin and metalloproteinase with thrombospondin motifs 16) as a BAV-causing gene and found the ADAMTS16 p. H357Q variant in an inherited BAV family. Both in situ hybridization and genetic tracing studies described a unique spatiotemporal pattern of ADAMTS16 expression during aortic valve development. Adamts16+/- and Adamts16+/H355Q mouse models both exhibited a right coronary cusp-noncoronary cusp fusion-type BAV phenotype, with progressive aortic valve thickening associated with raphe formation (fusion of the commissure). Further, ADAMTS16 deficiency in Tie2 lineage cells recapitulated the BAV phenotype. This was confirmed in lineage-tracing mouse models in which Adamts16 deficiency affected endothelial and second heart field cells, not the neural crest cells. Accordingly, the changes were mainly detected in the noncoronary and right coronary leaflets. Bulk RNA sequencing using inducible pluripotent stem cells-derived endothelial cells and genetic mouse embryonic heart tissue unveiled enhanced FAK (focal adhesion kinase) signaling, which was accompanied by elevated fibronectin levels. Both in vitro inducible pluripotent stem cells-derived endothelial cells culture and ex vivo embryonic outflow tract explant studies validated the altered FAK signaling. CONCLUSIONS: Our present study identified a novel BAV-causing ADAMTS16 p. H357Q variant. ADAMTS16 deficiency led to BAV formation.


Asunto(s)
Enfermedad de la Válvula Aórtica Bicúspide , Cardiopatías Congénitas , Enfermedades de las Válvulas Cardíacas , Humanos , Animales , Ratones , Pez Cebra/genética , Enfermedades de las Válvulas Cardíacas/metabolismo , Células Endoteliales/metabolismo , Desintegrinas/genética , Desintegrinas/metabolismo , Hibridación Fluorescente in Situ , Válvula Aórtica/metabolismo , Cardiopatías Congénitas/complicaciones , Matriz Extracelular/metabolismo , Trombospondinas/metabolismo , Metaloproteasas/metabolismo , Proteínas ADAMTS/genética , Proteínas ADAMTS/metabolismo
20.
Cardiology ; 149(2): 155-162, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37899036

RESUMEN

INTRODUCTION: Calcific aortic valve disease (CAVD) is the third most common cardiovascular disease in aging populations. Despite a growing number of biomarkers having been shown to be associated with CAVD, a marker suitable for routine testing in clinical practice is still needed. Plasma cell-free DNA (cfDNA) has been suggested as a biomarker for diagnosis and prognosis in multiple diseases. In this study, we aimed to test whether cfDNA could be used as a biomarker for the diagnosis of CAVD. METHODS: Serum samples were collected from 137 diagnosed CAVD patients and 180 normal controls. The amount of cfDNA was quantified by amplifying a short fragment (ALU 115) and a long fragment (ALU 247) using quantitative real-time PCR. The cfDNA integrity (cfDI) was calculated as the ratio of ALU247 to ALU115. The association between CAVD and cfDI was evaluated using regression analysis. RESULTS: CAVD patients had increased ALU 115 fragments (median, 185.14 (416.42) versus 302.83 (665.41), p < 0.05) but a decreased value of cfDI (mean, 0.50 ± 0.25 vs. 0.41 ± 0.26, p < 0.01) in their serum when compared to controls. This difference was more dramatic in non-rheumatic CAVD patients (p < 0.001) versus rheumatic CAVD patients (no significant difference). Similarly, CAVD patients with bicuspid aortic valve (BAV) (p < 0.01) showed a greater difference than non-BAV CAVD patients (p < 0.05). Linear regression and logistic regression showed that cfDI was independently and significantly associated with the presence of CAVD (95% CI, 0.096 to 0.773, p < 0.05). The ROC assay revealed that cfDI combined with clinical characteristics had a better diagnostic value than cfDI alone (AUC = 0.6191, p < 0.001). CONCLUSION: cfDI may be a potential biomarker for diagnosis of CAVD.


Asunto(s)
Estenosis de la Válvula Aórtica , Válvula Aórtica/patología , Enfermedad de la Válvula Aórtica Bicúspide , Calcinosis , Ácidos Nucleicos Libres de Células , Humanos , Biomarcadores , Estenosis de la Válvula Aórtica/diagnóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...