Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
1.
Glob Chang Biol ; 30(5): e17297, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38738805

RESUMEN

Current biogeochemical models produce carbon-climate feedback projections with large uncertainties, often attributed to their structural differences when simulating soil organic carbon (SOC) dynamics worldwide. However, choices of model parameter values that quantify the strength and represent properties of different soil carbon cycle processes could also contribute to model simulation uncertainties. Here, we demonstrate the critical role of using common observational data in reducing model uncertainty in estimates of global SOC storage. Two structurally different models featuring distinctive carbon pools, decomposition kinetics, and carbon transfer pathways simulate opposite global SOC distributions with their customary parameter values yet converge to similar results after being informed by the same global SOC database using a data assimilation approach. The converged spatial SOC simulations result from similar simulations in key model components such as carbon transfer efficiency, baseline decomposition rate, and environmental effects on carbon fluxes by these two models after data assimilation. Moreover, data assimilation results suggest equally effective simulations of SOC using models following either first-order or Michaelis-Menten kinetics at the global scale. Nevertheless, a wider range of data with high-quality control and assurance are needed to further constrain SOC dynamics simulations and reduce unconstrained parameters. New sets of data, such as microbial genomics-function relationships, may also suggest novel structures to account for in future model development. Overall, our results highlight the importance of observational data in informing model development and constraining model predictions.


Asunto(s)
Ciclo del Carbono , Carbono , Suelo , Suelo/química , Carbono/análisis , Modelos Teóricos , Simulación por Computador
2.
Science ; 384(6692): 233-239, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38603490

RESUMEN

Global estimates of the size, distribution, and vulnerability of soil inorganic carbon (SIC) remain largely unquantified. By compiling 223,593 field-based measurements and developing machine-learning models, we report that global soils store 2305 ± 636 (±1 SD) billion tonnes of carbon as SIC over the top 2-meter depth. Under future scenarios, soil acidification associated with nitrogen additions to terrestrial ecosystems will reduce global SIC (0.3 meters) up to 23 billion tonnes of carbon over the next 30 years, with India and China being the most affected. Our synthesis of present-day land-water carbon inventories and inland-water carbonate chemistry reveals that at least 1.13 ± 0.33 billion tonnes of inorganic carbon is lost to inland-waters through soils annually, resulting in large but overlooked impacts on atmospheric and hydrospheric carbon dynamics.

5.
J Chromatogr A ; 1718: 464727, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38359689

RESUMEN

In this study, we employed a melamine sponge (MS) as the skeleton material and utilized carbonized ZIF-8 (CZIF-8) and chitosan (CS) as the raw materials to prepare CZIF-8/CS-MS, a novel material featuring a three-dimensional interconnected porous network. The resulting CZIF-8/CS-MS material possesses a unique porous structure, significant specific surface area and abundant active sites. These characteristics make CZIF-8/CS-MS a promising absorbent for selective purification of plant growth regulators (PGRs) including 1-naphthlcetic acid (NAA), naphthoxyacetic acid (NOA), 4-chlorophenoxyacetic acid (4-CPA), 2,4-dichlorophenoxyacetic acid (2,4-D). After optimizing the extraction conditions, excellent linearity (r > 0.9994) was observed within a wide linear range of 1-100 ng/mL using ultra high performance liquid chromatography-tandem quadrupole mass spectrometry. The detection limits (LODs) and limits of quantification (LOQs) were found to be in the range of 0.013-0.154 ng/mL and 0.044-0.515 ng/mL, respectively. Additionally, the relative recovery of Schisandra chinensis fruit samples was determined to be 89.7-99.4 %, with a relative standard deviation (RSDs) of ≤ 8.4 % (n = 3). Compared to other methods, this approach offers a multitude of benefits, which include but are not limited to exceptional sensitivity, reduced sample volume requirements, low LODs, a comparable linear range, and high reproducibility. The findings of this study pave the way for exploring novel functionalized sponge columns, which leverage the integration of nano-sorbent materials and coating agents, for the purpose of analyzing PGRs within intricate matrix samples.


Asunto(s)
Quitosano , Schisandra , Triazinas , Reguladores del Crecimiento de las Plantas/análisis , Reproducibilidad de los Resultados , Espectrometría de Masas en Tándem/métodos , Cromatografía Líquida de Alta Presión/métodos , Extracción en Fase Sólida/métodos
6.
Sci Data ; 11(1): 17, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167392

RESUMEN

Numerous drivers such as farming practices, erosion, land-use change, and soil biogeochemical background, determine the global spatial distribution of phosphorus (P) in agricultural soils. Here, we revised an approach published earlier (called here GPASOIL-v0), in which several global datasets describing these drivers were combined with a process model for soil P dynamics to reconstruct the past and current distribution of P in cropland and grassland soils. The objective of the present update, called GPASOIL-v1, is to incorporate recent advances in process understanding about soil inorganic P dynamics, in datasets to describe the different drivers, and in regional soil P measurements for benchmarking. We trace the impact of the update on the reconstructed soil P. After the update we estimate a global averaged inorganic labile P of 187 kgP ha-1 for cropland and 91 kgP ha-1 for grassland in 2018 for the top 0-0.3 m soil layer, but these values are sensitive to the mineralization rates chosen for the organic P pools. Uncertainty in the driver estimates lead to coefficients of variation of 0.22 and 0.54 for cropland and grassland, respectively. This work makes the methods for simulating the agricultural soil P maps more transparent and reproducible than previous estimates, and increases the confidence in the new estimates, while the evaluation against regional dataset still suggests rooms for further improvement.

7.
Trends Microbiol ; 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38262802

RESUMEN

Biological N2 fixation sustains the global inventory of nitrogenous nutrients essential for the productivity of terrestrial and marine ecosystems. Like most metabolic processes, rates of biological N2 fixation vary strongly with temperature, making it sensitive to climate change, but a global projection across land and ocean is lacking. Here we use compilations of field and laboratory measurements to reveal a relationship between N2 fixation rates and temperature that is similar in both domains despite large taxonomic and environmental differences. Rates of N2 fixation increase gradually to a thermal optimum around ~25°C, and decline more rapidly toward a thermal maximum, which is lower in the ocean than on land. In both realms, the observed temperature sensitivities imply that climate warming this century could decrease N2 fixation rates by ~50% in the tropics while increasing rates by ~50% in higher latitudes. We propose a conceptual framework for understanding the physiological and ecological mechanisms that underpin and modulate the observed temperature dependence of global N2 fixation rates, facilitating cross-fertilization of marine and terrestrial research to assess its response to climate change.

8.
Sci Adv ; 9(32): eadf3166, 2023 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-37556542

RESUMEN

The impact of atmospheric vapor pressure deficit (VPD) on plant photosynthesis has long been acknowledged, but large interactions with air temperature (T) and soil moisture (SM) still hinder a complete understanding of the influence of VPD on vegetation production across various climate zones. Here, we found a diverging response of productivity to VPD in the Northern Hemisphere by excluding interactive effects of VPD with T and SM. The interactions between VPD and T/SM not only offset the potential positive impact of warming on vegetation productivity but also amplifies the negative effect of soil drying. Notably, for high-latitude ecosystems, there occurs a pronounced shift in vegetation productivity's response to VPD during the growing season when VPD surpasses a threshold of 3.5 to 4.0 hectopascals. These results yield previously unknown insights into the role of VPD in terrestrial ecosystems and enhance our comprehension of the terrestrial carbon cycle's response to global warming.


Asunto(s)
Clima , Ecosistema , Presión de Vapor , Estaciones del Año , Suelo
9.
Food Chem ; 424: 136425, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37263091

RESUMEN

Triterpenoid saponins are the main bioactive components contributed to the nutritional value of ginseng, and different process conditions will affect their content and quality. To study the holistic characterization and dynamic changes of triterpenoid saponins in Asian ginseng (ASG) and American ginseng (AMG) during soaking and decoction, a UPLC-Triple TOF-MS/MS-based metabolomics strategy was used to characterize and discover differential saponin markers. In total, 739 triterpenoid saponins (including 225 potential new saponins) were identified from ASG and AMG in untargeted metabolomics. Based on PCA and OPLS-DA, 51 and 48 saponin markers were screened from soaked and decocted ASG and AMG, respectively. Additionally, targeted metabolomics analysis and HCA of 22 ginsenoside markers suggested that decoction of ASG and AMG for 2 h to 4 h could significantly increase the contents of rare ginsenosides (G), such as G-Rg3, G-Rg5, G-F4. This study provides a scientific insight that high boiling combined with simmering enriches ASG and AMG extracts with rich rare ginsenosides that are more beneficial to human health.


Asunto(s)
Ginsenósidos , Panax , Saponinas , Humanos , Espectrometría de Masas en Tándem , Ginsenósidos/análisis , Extractos Vegetales/análisis , Metabolómica , Cromatografía Líquida de Alta Presión
10.
J Ethnopharmacol ; 314: 116596, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37146841

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The dried root of Platycodon grandiflorum (Jacq.) A.DC. (PG) is a traditional herb used in Asian countries and is widely used in formulas for the treatment of diabetes. Platycodin D (PD) is one of the most important components of PG. AIM OF THE STUDY: This study aimed to investigate the improvement effects and regulatory mechanisms of PD on kidney injury in a high-fat diet (HFD) combined with streptozotocin (STZ)-induced diabetic nephropathy (DN). MATERIALS AND METHODS: Model mice were treated with oral gavage of the PD (2.5, 5 mg/kg) for 8 weeks. Determination of serum lipid and renal function-related indexes creatinine (CRE), and blood urea nitrogen (BUN) levels in mice, and histopathological section analysis of kidney. Molecular docking and molecular dynamics were utilized to study the binding ability of PD to target NF-κB and apoptosis signaling pathway-related proteins. Moreover, Western blot was used to test the expressions of NF-κB and apoptosis-related proteins. Vitro experiments were performed to validate the related mechanisms using RAW264.7 cells and HK2 cells cultured by high glucose. RESULTS: In vivo experiments, the administration of PD (2.5 and 5.0 mg/kg) reduced fasting blood glucose (FBG) and homeostasis model assessment of insulin resistance (HOMA-IR) levels in DN mice, while lipid levels and renal function were significantly improved. Furthermore, PD significantly inhibited the development of DN in the model mice by regulating NF-κB and apoptotic signaling pathways, reduced the abnormal elevation of serum inflammatory factors TNF-α and IL-1ß, and repaired renal cell apoptosis. In vitro experiments, NF-κB inhibitor ammonium pyrrolidine dithiocarbamate (PDTC) was used to confirm that PD can alleviate high glucose-induced inflammation in RAW264.7 cells and inhibit the release of inflammatory factors. And in HK2 cell experiments, it was verified that PD can inhibit ROS generation, reduce the loss of JC-1 and suppress HK2 cell injury by regulating NF-κB and apoptotic pathways. CONCLUSIONS: These data suggested that PD has the potential to prevent and treat DN and is a promising natural nephroprotective agent.


Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , Ratones , Animales , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/prevención & control , Nefropatías Diabéticas/metabolismo , FN-kappa B/metabolismo , Estreptozocina/farmacología , Dieta Alta en Grasa , Simulación del Acoplamiento Molecular , Diabetes Mellitus Experimental/metabolismo , Ratones Endogámicos C57BL , Transducción de Señal , Glucosa/farmacología , Apoptosis , Lípidos/farmacología
11.
Sci Adv ; 9(21): eabq4974, 2023 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-37235657

RESUMEN

Photosynthesis and evapotranspiration in Amazonian forests are major contributors to the global carbon and water cycles. However, their diurnal patterns and responses to atmospheric warming and drying at regional scale remain unclear, hindering the understanding of global carbon and water cycles. Here, we used proxies of photosynthesis and evapotranspiration from the International Space Station to reveal a strong depression of dry season afternoon photosynthesis (by 6.7 ± 2.4%) and evapotranspiration (by 6.1 ± 3.1%). Photosynthesis positively responds to vapor pressure deficit (VPD) in the morning, but negatively in the afternoon. Furthermore, we projected that the regionally depressed afternoon photosynthesis will be compensated by their increases in the morning in future dry seasons. These results shed new light on the complex interplay of climate with carbon and water fluxes in Amazonian forests and provide evidence on the emerging environmental constraints of primary productivity that may improve the robustness of future projections.


Asunto(s)
Clima , Bosques , Estaciones del Año , Fotosíntesis , Carbono , Árboles , Agua
12.
Nature ; 618(7967): 981-985, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37225998

RESUMEN

Soils store more carbon than other terrestrial ecosystems1,2. How soil organic carbon (SOC) forms and persists remains uncertain1,3, which makes it challenging to understand how it will respond to climatic change3,4. It has been suggested that soil microorganisms play an important role in SOC formation, preservation and loss5-7. Although microorganisms affect the accumulation and loss of soil organic matter through many pathways4,6,8-11, microbial carbon use efficiency (CUE) is an integrative metric that can capture the balance of these processes12,13. Although CUE has the potential to act as a predictor of variation in SOC storage, the role of CUE in SOC persistence remains unresolved7,14,15. Here we examine the relationship between CUE and the preservation of SOC, and interactions with climate, vegetation and edaphic properties, using a combination of global-scale datasets, a microbial-process explicit model, data assimilation, deep learning and meta-analysis. We find that CUE is at least four times as important as other evaluated factors, such as carbon input, decomposition or vertical transport, in determining SOC storage and its spatial variation across the globe. In addition, CUE shows a positive correlation with SOC content. Our findings point to microbial CUE as a major determinant of global SOC storage. Understanding the microbial processes underlying CUE and their environmental dependence may help the prediction of SOC feedback to a changing climate.


Asunto(s)
Secuestro de Carbono , Carbono , Ecosistema , Microbiología del Suelo , Suelo , Carbono/análisis , Carbono/metabolismo , Cambio Climático , Plantas , Suelo/química , Conjuntos de Datos como Asunto , Aprendizaje Profundo
13.
Glob Chang Biol ; 29(11): 3221-3234, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36762511

RESUMEN

Global change ecology nowadays embraces ever-growing large observational datasets (big-data) and complex mathematical models that track hundreds of ecological processes (big-model). The rapid advancement of the big-data-big-model has reached its bottleneck: high computational requirements prevent further development of models that need to be integrated over long time-scales to simulate the distribution of ecosystems carbon and nutrient pools and fluxes. Here, we introduce a machine-learning acceleration (MLA) tool to tackle this grand challenge. We focus on the most resource-consuming step in terrestrial biosphere models (TBMs): the equilibration of biogeochemical cycles (spin-up), a prerequisite that can take up to 98% of the computational time. Through three members of the ORCHIDEE TBM family part of the IPSL Earth System Model, including versions that describe the complex interactions between nitrogen, phosphorus and carbon that do not have any analytical solution for the spin-up, we show that an unoptimized MLA reduced the computation demand by 77%-80% for global studies via interpolating the equilibrated state of biogeochemical variables for a subset of model pixels. Despite small biases in the MLA-derived equilibrium, the resulting impact on the predicted regional carbon balance over recent decades is minor. We expect a one-order of magnitude lower computation demand by optimizing the choices of machine learning algorithms, their settings, and balancing the trade-off between quality of MLA predictions and need for TBM simulations for training data generation and bias reduction. Our tool is agnostic to gridded models (beyond TBMs), compatible with existing spin-up acceleration procedures, and opens the door to a wide variety of future applications, with complex non-linear models benefit most from the computational efficiency.


Asunto(s)
Ecosistema , Modelos Teóricos , Carbono , Nitrógeno , Ciclo del Carbono
14.
Sci Rep ; 13(1): 793, 2023 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-36646777

RESUMEN

A large body of literature has shown that ginseng had a role in diabetes mellitus management. Ginsenosides are the main active components of ginseng. But what ginsenosides can manage in diabetic are not systematic. The targets of these ginsenosides are still incomplete. Our aim was to identify which ginsenosides can manage diabetes mellitus through network pharmacology and molecular docking. To identify the targets of these ginsenosides. In this work, we retrieved and screened ginsenosides and corresponding diabetes mellitus targets across multiple databases. PPI networks of the genes were constructed using STRING, and the core targets were screened out through topological analysis. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed by using the R language. Finally, molecular docking was performed after bioinformatics analysis for verification. Our research results showed that 28 ginsenosides in ginseng might be against diabetes mellitus by modulating related proteins such as VEGFA, Caspase 3, and TNF-α. Among the 28 ginsenosides, 20(R)-Protopanaxatriol, 20(R)-Protopanaxadiol, and Ginsenoside Rg1 might play a significant role. Kyoto Encyclopedia of Genes and Genomes and Gene Ontology enrichment analysis showed that the management of diabetes mellitus by ginsenosides may be related to the positive regulation of reactive oxygen metabolic processes, associated with the insulin signaling pathway, TNF signaling pathway, and AMPK signaling pathway. Molecular docking results and molecular dynamics simulation showed that most ginsenosides could stably bind to the core target, mainly hydrogen bonding and hydrophobic bond. This study suggests the management of ginseng on diabetes mellitus. We believe that our results can contribute to the systematic study of the mechanism of ginsenosides for the management of diabetes mellitus. At the same time, it can provide a theoretical basis for subsequent studies on the management of ginsenosides in diabetes mellitus.


Asunto(s)
Diabetes Mellitus , Medicamentos Herbarios Chinos , Ginsenósidos , Panax , Farmacología en Red , Ginsenósidos/farmacología , Ginsenósidos/uso terapéutico , Simulación del Acoplamiento Molecular , Diabetes Mellitus/tratamiento farmacológico , Medicina Tradicional China
15.
Food Funct ; 14(1): 74-86, 2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36504256

RESUMEN

In this work, we investigated the ameliorative effects of platycodin D (PD), a major active chemical ingredient isolated from the roots of Platycodon grandiflorum (PG), on high-fat diet (HFD)/streptozotocin (STZ)-induced type 2 diabetes (T2D) mice. PD treatment (2.5 and 5.0 mg kg-1) improved HFD-induced body weight gain. PD administration also decreased the fasting blood glucose (FBG) level and improved glucose and insulin tolerance levels. These data collectively showed that PD could maintain glucose homeostasis. In addition, the diabetic mice with PD treatment also showed fewer pathological changes in liver tissues and improved hepatic functional indexes with respect to the levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and recovery of abnormal liver function caused by T2D. Except for these, PD decreased the decomposition of hepatic glycogen. The results from western blot analysis showed that PD treatment might regulate the hepatic gluconeogenesis pathway with the increased phosphorylation/expression of AMPK and decreased expressions of PCK1 and G6Pase. In the aspect of lipid metabolism, PD decreased the whole-body lipid levels, including total cholesterol (TC), triglycerides (TG), and high-density lipoprotein (HDL), and reduced the hepatic fat accumulation induced by T2D through the AMPK/ACC/CPT-1 fatty acid anabolism pathway. In addition, the results of molecular docking showed that PD may have a potential direct effect on AMPK and other key glycolipid metabolism proteins. To summarize, PD modulation of hepatic glycolipid metabolism abnormalities is promising for T2D therapy in the future.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Hiperglucemia , Animales , Ratones , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Glucemia/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Dieta Alta en Grasa , Glucosa/metabolismo , Hiperglucemia/metabolismo , Hígado/metabolismo , Simulación del Acoplamiento Molecular , Estreptozocina
16.
Glob Chang Biol ; 29(4): 1188-1205, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36408676

RESUMEN

Global warming intensifies the hydrological cycle, which results in changes in precipitation regime (frequency and amount), and will likely have significant impacts on soil respiration (Rs ). Although the responses of Rs to changes in precipitation amount have been extensively studied, there is little consensus on how Rs will be affected by changes in precipitation frequency (PF) across the globe. Here, we synthesized the field observations from 296 published papers to quantify the effects of PF on Rs and its components using meta-analysis. Our results indicated that the effects of PF on Rs decreased with an increase in background mean annual precipitation. When the data were grouped by climate conditions, increased PF showed positive effects on Rs under the arid condition but not under the semi-humid or humid conditions, whereas decreased PF suppressed Rs across all the climate conditions. The positive effects of increased PF mainly resulted from the positive response of heterotrophic respiration under the arid condition while the negative effects of decreased PF were mainly attributed to the reductions in root biomass and respiration. Overall, our global synthesis provided for the first time a comprehensive analysis of the divergent effects of PF on Rs and its components across climate regions. This study also provided a framework for understanding and modeling responses of ecosystem carbon cycling to global precipitation change.


Asunto(s)
Ecosistema , Suelo , Procesos Heterotróficos , Procesos Autotróficos , Respiración , Carbono
17.
Front Pharmacol ; 13: 1040504, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36313368

RESUMEN

Background: Epimedii Folium, as a natural botanical medicine, has been reported to have protective effects on intestinal diseases by modulating multiple signaling pathways. This study aimed to explore the potential targets and molecular mechanisms of Epimedii Folium extract (EFE) against cisplatin-induced intestinal injury through network pharmacology, molecular docking, and animal experiments. Methods: Network pharmacology was used to predict potential candidate targets and related signaling pathways. Molecular docking was used to simulate the interactions between significant potential candidate targets and active components. For experimental validation, mice were intraperitoneally injected with cisplatin 20 mg/kg to establish an intestinal injury model. EFE (100, 200 mg/kg) was administered to mice by gavage for 10 days. The protective effect of EFE on intestinal injury was analyzed through biochemical index detection, histopathological staining, and western blotting. Results: Network pharmacology analysis revealed that PI3K-Akt and apoptosis signaling pathways were thought to play critical roles in EFE treatment of the intestinal injury. Molecular docking results showed that the active constituents of Epimedii Folium, including Icariin, Epimedin A, Epimedin B, and Epimedin C, stably docked with the core AKT1, p53, TNF-α, and NF-κB. In verified experiments, EFE could protect the antioxidant defense system by increasing the levels of glutathione peroxidase (GSH-Px) and catalase (CAT) while reducing the content of malondialdehyde (MDA). EFE could also inhibit the expression of NF-κB and the secretion of inflammatory factors, including TNF-α, IL-1ß, and IL-6, thereby relieving the inflammatory damage. Further mechanism studies confirmed that EFE had an excellent protective effect on cisplatin-induced intestinal injury by regulating PI3K-Akt, caspase, and NF-κB signaling pathways. Conclusion: In summary, EFE could mitigate cisplatin-induced intestinal damage by modulating oxidative stress, inflammation, and apoptosis.

18.
Am J Chin Med ; 50(7): 1927-1944, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36056466

RESUMEN

Saponins from the roots of Platycodon grandiflorum, an edible medicinal plant, have shown a wide range of beneficial effects on various biological processes. In this study, an animal model was established by a single intraperitoneal injection of cisplatin (20[Formula: see text]mg/kg) for evaluating the protective effects of saponins from the roots of P. grandiflorum (PGS, 15[Formula: see text]mg/kg and 30[Formula: see text]mg/kg) in mice. The results indicated that PGS treatment for 10 days restored the destroyed intestinal mucosal oxidative system, and the loosened junctions of small intestinal villi was significantly improved. In addition, a significant mitigation of apoptotic effects deteriorated by cisplatin exposure in small intestinal villi was observed by immunohischemical staining. Also, western blot showed that PGS could effectively prevent endoplasmic reticulum (ER) stress-induced apoptosis caused by cisplatin in mice by restoring the activity of PERK (an ER kinase)-eIF2[Formula: see text]-ATF4 signal transduction pathway. Furthermore, molecular docking results of main saponins in PGS suggested a better binding ability with target proteins. In summary, the present work revealed the underlying protective mechanisms of PGS on intestinal injury induced by cisplatin in mice.


Asunto(s)
Platycodon , Saponinas , Ratones , Animales , Platycodon/química , Saponinas/farmacología , Saponinas/química , Cisplatino/efectos adversos , Estrés del Retículo Endoplásmico , Simulación del Acoplamiento Molecular , Apoptosis , Raíces de Plantas/química
19.
Chin J Nat Med ; 20(8): 614-626, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36031233

RESUMEN

Panax quinquefolium is one of the most common medicinal plants worldwide. Ginsenosides are the major pharmaceutical components in P. quinquefolium. The biosynthesis of ginsenosides in different tissues of P. quinquefolium remained largely unknown. In the current study, an integrative method of transcriptome and metabolome analysis was used to elucidate the ginsenosides biosynthesis pathways in different tissues of P. quinquefolium. Herein, 22 ginsenosides in roots, leaves, and flower buds showed uneven distribution patterns. A comprehensive P. quinquefolium transcriptome was generated through single molecular real-time (SMRT) and second-generation sequencing (NGS) technologies, which revealed the ginsenoside pathway genes and UDP-glycosyltransferases (UGT) family genes explicitly expressed in roots, leaves, and flower buds. The weighted gene co-expression network analysis (WGCNA) of ginsenoside biosynthesis genes, UGT genes and ginsenoside contents indicated that three UGT genes were positively correlated to pseudoginsenoside F11, notoginsenoside R1, notoginsenoside R2 and pseudoginsenoside RT5. These results provide insights into ginsenoside biosynthesis in different tissues ofP. quinquefolium.


Asunto(s)
Ginsenósidos , Panax , Plantas Medicinales , Raíces de Plantas , Transcriptoma
20.
Global Biogeochem Cycles ; 36(3): e2021GB007061, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35865755

RESUMEN

The representation of phosphorus (P) cycling in global land models remains quite simplistic, particularly on soil inorganic phosphorus. For example, sorption and desorption remain unresolved and their dependence on soil physical and chemical properties is ignored. Empirical parameter values are usually based on expert knowledge or data from few sites with debatable global representativeness in most global land models. To overcome these issues, we compiled from data of inorganic soil P fractions and calculated the fraction of added P remaining in soil solution over time of 147 soil samples to optimize three parameters in a model of soil inorganic P dynamics. The calibrated model performed well (r 2 > 0.7 for 122 soil samples). Model parameters vary by several orders of magnitude, and correlate with soil P fractions of different inorganic pools, soil organic carbon and oxalate extractable metal oxide concentrations among the soil samples. The modeled bioavailability of soil P depends on, not only, the desorption rates of labile and sorbed pool, inorganic phosphorus fractions, the slope of P sorbed against solution P concentration, but also on the ability of biological uptake to deplete solution P concentration and the time scale. The model together with the empirical relationships of model parameters on soil properties can be used to quantify bioavailability of soil inorganic P on various timescale especially when coupled within global land models.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...