Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 206
Filtrar
1.
Environ Res ; 252(Pt 1): 118865, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38583661

RESUMEN

Benzo(a)pyrene [B(a)P] is an environmental endocrine disruptor with reproductive toxicity. The corpus luteum (CL) of the ovary plays an important role in embryo implantation and pregnancy maintenance. Our previous studies have shown that B(a)P exposure affects embryo implantation and endometrial decidualization in mouse, but its effects and mechanisms on CL function remain unclear. In this study, we explore the mechanism of ovarian toxicity of B(a)P using a pregnant mouse model and an in vitro model of human ovarian granulosa cells (GCs) KGN. Pregnant mice were gavaged with corn oil or 0.2 mg/kg.bw B(a)P from pregnant day 1 (D1) to D7, while KGN cells were treated with DMSO, 1.0IU/mL hCG, or 1.0IU/mL hCG plus benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE), a B(a)P metabolite. Our findings revealed that B(a)P exposure damaged embryo implantation and reduced estrogen and progesterone levels in early pregnant mice. Additionally, in vitro, BPDE impaired luteinization in KGN cells. We observed that B(a)P/BPDE promoted oxidative stress (OS) and inflammation, leading to apoptosis rather than pyroptosis in ovaries and luteinized KGN cells. This apoptotic response was mediated by the activation of inflammatory Caspase1 through the cleavage of BID. Furthermore, B(a)P/BPDE inhibited TRAF2 expression and suppressed NFκB signaling pathway activation. The administration of VX-765 to inhibit the Caspase1 activation, over-expression of TRAF2 using TRAF2-pcDNA3.1 (+) plasmid, and BetA-induced activation of NFκB signaling pathway successfully alleviated BPDE-induced apoptosis and cellular dysfunction in luteinized KGN cells. These findings were further confirmed in the KGN cell treated with H2O2 and NAC. In conclusion, this study elucidated that B(a)P/BPDE induces apoptosis rather than pyroptosis in GCs via TRAF2-NFκB-Caspase1 during early pregnancy, and highlighting OS as the primary contributor to B(a)P/BPDE-induced ovarian toxicity. Our results unveil a novel role of TRAF2-NFκB-Caspase1 in B(a)P-induced apoptosis and broaden the understanding of mechanisms underlying unexplained luteal phase deficiency.

2.
Diabetol Metab Syndr ; 16(1): 57, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38429774

RESUMEN

PURPOSE: To evaluate the effect of intrahepatic cholestasis of pregnancy (ICP) with gestational diabetes mellitus (GDM) on perinatal outcomes and establish a prediction model of adverse perinatal outcomes in women with ICP. METHODS: This multicenter retrospective cohort study included the clinical data of 2,178 pregnant women with ICP, including 1,788 women with ICP and 390 co-occurrence ICP and GDM. The data of all subjects were collected from hospital electronic medical records. Univariate and multivariate logistic regression analysis were used to compare the incidence of perinatal outcomes between ICP with GDM group and ICP alone group. RESULTS: Baseline characteristics of the population revealed that maternal age (p < 0.001), pregestational weight (p = 0.01), pre-pregnancy BMI (p < 0.001), gestational weight gain (p < 0.001), assisted reproductive technology (ART) (p < 0.001), and total bile acid concentration (p = 0.024) may be risk factors for ICP with GDM. Furthermore, ICP with GDM demonstrated a higher association with both polyhydramnios (OR 2.66) and preterm labor (OR 1.67) compared to ICP alone. Further subgroup analysis based on the severity of ICP showed that elevated total bile acid concentrations were closely associated with an increased risk of preterm labour, meconium-stained amniotic fluid, and low birth weight in both ICP alone and ICP with GDM groups. ICP with GDM further worsened these outcomes, especially in women with severe ICP. The nomogram prediction model effectively predicted the occurrence of preterm labour in the ICP population. CONCLUSIONS: ICP with GDM may result in more adverse pregnancy outcomes, which are associated with bile acid concentrations.

3.
Int J Biol Macromol ; 263(Pt 1): 130220, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38368983

RESUMEN

Human trophoblastic lineage development is intertwined with placental development and pregnancy outcomes, but the regulatory mechanisms underpinning this process remain inadequately understood. In this study, based on single-nuclei RNA sequencing (snRNA-seq) analysis of the human early maternal-fetal interface, we compared the gene expression pattern of trophoblast at different developmental stages. Our findings reveal a predominant upregulation of TBX3 during the transition from villous cytotrophoblast (VCT) to syncytiotrophoblast (SCT), but downregulation of TBX3 as VCT progresses into extravillous trophoblast cells (EVT). Immunofluorescence analysis verified the primary expression of TBX3 in SCT, partial expression in MKi67-positive VCT, and absence in HLA-G-positive EVT, consistent with our snRNA-seq results. Using immortalized trophoblastic cell lines (BeWo and HTR8/SVneo) and human primary trophoblast stem cells (hTSCs), we observed that TBX3 knockdown impedes SCT formation through RAS-MAPK signaling, while TBX3 overexpression disrupts the cytoskeleton structure of EVT and hinders EVT differentiation by suppressing FAK signaling. In conclusion, our study suggests that the spatiotemporal expression of TBX3 plays a critical role in regulating trophoblastic lineage development via distinct signaling pathways. This underscores TBX3 as a key determinant during hemochorial placental development.


Asunto(s)
Placenta , Placentación , Humanos , Embarazo , Femenino , Placenta/metabolismo , Placentación/genética , Primer Trimestre del Embarazo , Trofoblastos/metabolismo , ARN Nuclear Pequeño/metabolismo , Movimiento Celular , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo
4.
Mol Neurobiol ; 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38191694

RESUMEN

Evidence suggests that herpes virus infection is associated with an increased risk of Alzheimer's disease (AD), and innate and adaptive immunity plays an important role in the association. Although there have been many studies, the mechanism of the association is still unclear. This study aims to reveal the underlying molecular and immune regulatory network through multi-omics data and provide support for the study of the mechanism of infection and AD in the future. Here, we found that the herpes virus infection significantly increased the risk of AD. Genes associated with the occurrence and development of AD and genetically regulated by herpes virus infection are mainly enrichment in immune-related pathways. The 22 key regulatory genes identified by machine learning are mainly immune genes. They are also significantly related to the infiltration changes of 3 immune cell in AD. Furthermore, many of these genes have previously been reported to be linked, or potentially linked, to the pathological mechanisms of both herpes virus infection and AD. In conclusion, this study contributes to the study of the mechanisms related to herpes virus infection and AD, and indicates that the regulation of innate and adaptive immunity may be an effective strategy for preventing and treating herpes virus infection and AD. Additionally, the identified key regulatory genes, whether previously studied or newly discovered, may serve as valuable targets for prevention and treatment strategies.

5.
Artículo en Inglés | MEDLINE | ID: mdl-38062739

RESUMEN

Aim: Acetaminophen (APAP) is clinically recommended as analgesic and antipyretic among pregnant women. However, accumulating laboratory evidence shows that the use of APAP during pregnancy may alter fetal development. Since fetal stage is a susceptible window for early oogenesis, we aim to assess the potential effects of maternal administration of APAP on fetal oocytes. Results: Pregnant mice at 14.5 dpc (days post-coitus) were orally administered with APAP (50 and 150mg/kg.bw/day) for 3 days; meanwhile, 14.5 dpc ovaries were collected and cultured with APAP or its metabolite N-acetyl-p-benzoquinone imine (NAPQI; 5 and 15 µM) for 3 days. It showed that APAP caused meiotic aberrations in fetal oocytes through its metabolite NAPQI, including meiotic prophase I (MPI) progression delay and homologous recombination defects. Co-treatment with nicotinamide (NAM) or nicotinamide riboside chloride (NRC), nicotinamide adenine dinucleotide (NAD+) supplements, efficiently restored the MPI arrest, whereas the addition of the inhibitor of sirtuin 7 (SIRT7) invalidated the effect of the NAD+ supplement. In addition, RNA sequencing revealed distorted transcriptomes of fetal ovaries treated with NAPQI. Furthermore, the fecundity of female offspring was affected, exhibiting delayed primordial folliculogenesis and puberty onset, reduced levels of ovarian hormones, and impaired developmental competence of MII oocytes. Innovation: These findings provide the first known demonstration that NAPQI, converted from maternal administration of APAP, disturbs meiotic process of fetal oocytes and further impairs female fecundity in adulthood. The concomitant oral dosing with NAM further supports the benefits of NAD+ supplements on oogenesis. Conclusion: Short-term administration of APAP to pregnant mouse caused meiotic aberrations in fetal oocytes by its metabolite NAPQI, whereas co-treatment with NAD+ supplement efficiently relieves the adverse effects by interacting with SIRT7.

6.
J Hypertens ; 42(1): 143-152, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37737865

RESUMEN

BACKGROUND AND AIMS: Intrahepatic cholestasis of pregnancy (ICP) is a special liver disease during pregnancy, characterized by abnormal bile acid metabolism. However, there is no consensus on how to group women with ICP based on the time of diagnosis worldwide. This study aimed to adopt a new grouping model of women with ICP, and the time from diagnosis to delivery was defined as the monitoring period. METHODS: This retrospective real-world data study was conducted across multiple centers and included 3172 women with ICP. The study first evaluated the significant difference in medication and nonmedication during different monitoring times. The least absolute shrinkage and selection operator (LASSO) model was then used to screen nine risk factors based on the predictors. The model's discrimination, clinical usefulness, and calibration were assessed using the area under the receiver operating characteristic (ROC) curve, decision curve, and calibration analysis. RESULTS: The incidence of preeclampsia risk in ICP patients without drug intervention increased with the extension of the monitoring period. However, the risk of preeclampsia decreased in ICP patients treated with ursodeoxycholic acid. A predictive nomogram and risk score model was developed based on nine risk factors. The area under the ROC curve of the nomogram was 0.765 [95% confidence interval (CI): 0.724-0.807] and 0.812 (95% CI: 0.736-0.889) for the validation cohort. CONCLUSIONS: This study found that a longer ICP monitoring period could lead to adverse pregnancy outcomes in the absence of drug intervention, especially preeclampsia. A predictive nomogram and risk score model was developed to better manage ICP patients, maintain pregnancy to term delivery, and minimize the risk of severe adverse maternal and fetal outcomes.


Asunto(s)
Preeclampsia , Complicaciones del Embarazo , Embarazo , Femenino , Humanos , Preeclampsia/diagnóstico , Preeclampsia/epidemiología , Preeclampsia/etiología , Estudios Retrospectivos , Nomogramas , Complicaciones del Embarazo/epidemiología , Factores de Riesgo
7.
Cell Death Discov ; 9(1): 372, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37816723

RESUMEN

As an essential component of the maternal-fetal interface, the placental syncytiotrophoblast layer contributes to a successful pregnancy by secreting hormones necessary for pregnancy, transporting nutrients, mediating gas exchange, balancing immune tolerance, and resisting pathogen infection. Notably, the deficiency in mononuclear trophoblast cells fusing into multinucleated syncytiotrophoblast has been linked to adverse pregnancy outcomes, such as preeclampsia, fetal growth restriction, preterm birth, and stillbirth. Despite the availability of many models for the study of trophoblast fusion, there exists a notable disparity from the ideal model, limiting the deeper exploration into the placental development. Here, we reviewed the existing models employed for the investigation of human trophoblast fusion from several aspects, including the development history, latest progress, advantages, disadvantages, scope of application, and challenges. The literature searched covers the monolayer cell lines, primary human trophoblast, placental explants, human trophoblast stem cells, human pluripotent stem cells, three-dimensional cell spheres, organoids, and placenta-on-a-chip from 1938 to 2023. These diverse models have significantly enhanced our comprehension of placental development regulation and the underlying mechanisms of placental-related disorders. Through this review, our objective is to provide readers with a thorough understanding of the existing trophoblast fusion models, making it easier to select most suitable models to address specific experimental requirements or scientific inquiries. Establishment and application of the existing human placental trophoblast fusion models.

8.
Diabetes Res Clin Pract ; 204: 110920, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37742804

RESUMEN

AIMS: To determine whether different gestational diabetes mellitus (GDM) subtypes are associated with distinct perinatal outcomes in twin pregnancies. MATERIALS: This retrospective cohort study enrolled women with twin pregnancies who gave birth at a tertiary hospital between January 2017 and December 2022. GDM was diagnosed by the IADPSG diagnostic criteria. Three subtypes of GDM were defined as only abnormal fasting glucose (OAFG) values, only abnormal post-load glucose (OAPG) values and abnormal combined fasting and post-load glucose (ACFPG) values. Logistic regression or generalized estimation equation models were used to test the correlation of subtypes of GDM and perinatal outcomes. RESULTS: GDM with OAPG had a slightly higher risk for preterm delivery (PTD) at <37 gestational weeks (aOR 1.22, 95 %CI 1.01-1.47) and neonatalintensivecareunit (NICU) admission (aOR 1.31, 95 %CI 1.09-1.57). GDM with ACFPG were associated with PTD at <37 gestational weeks (aOR 1.42, 95 %CI 1.06-1.89) and PTD at <34 gestational weeks (aOR 1.65, 95 % CI 1.14-2.39). GDM with OAFG had a lower risk of being small-for-gestational age (SGA) (aOR 0.48, 95 % CI 0.26-0.92). CONCLUSIONS: Different subtypes of GDM are associated with distinct perinatal outcomes. Only abnormal fasting glucose levels may be responsible for reduced the risk of SGA neonates.


Asunto(s)
Diabetes Gestacional , Enfermedades del Recién Nacido , Nacimiento Prematuro , Embarazo , Recién Nacido , Femenino , Humanos , Diabetes Gestacional/diagnóstico , Diabetes Gestacional/epidemiología , Embarazo Gemelar , Estudios Retrospectivos , Nacimiento Prematuro/epidemiología , Nacimiento Prematuro/etiología , Glucosa , Resultado del Embarazo
9.
Reproduction ; 166(5): 323-336, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37651270

RESUMEN

In brief: Obese PCOS mice display metabolic and endocrine disorders that manifest as abnormal metabolism of glucose and dysfunctions in the reproductive system. This study demonstrates that emodin alleviates most of these conditions possibly via the HMGB1/TLR4/NF-kB pathway. Abstract: PCOS is a reproductive disorder with an unclear etiology. It affects 5-10% of women worldwide and is largely associated with impaired glucose metabolism and obesity. HMGB1 is a nuclear protein associated with impaired glucose metabolism and PCOS. We sought to investigate the potential therapeutic effects of emodin on glucose metabolism and ovarian functions in PCOS mice via the HMGB1 molecular pathway. A high-fat diet (HFD) and dehydroepiandrosterone (DHEA)- induced PCOS mouse model comprising four experimental groups was established: control, PCOS, PCOS plus emodin, and PCOS plus vehicle groups. Emodin administration attenuated obesity, elevated fasting glucose levels, impaired glucose tolerance, and insulin resistance, and improved the polycystic ovarian morphology of PCOS mice. Additionally, it lowered elevated serum HMGB1, LH, and testosterone levels in PCOS mice. Elevated ovarian protein and mRNA levels of HMGB1 and TLR4 in PCOS mice were also lowered following emodin treatment. Furthermore, emodin lowered high NF-ĸB/65 protein levels in the ovaries of PCOS mice. Immunohistochemical staining of the ovaries revealed strong HMGB1, TLR4, and AR expressions in PCOS mice, which were lowered by emodin treatment. Moreover, emodin significantly increased GLUT4, IRS2, and INSR levels that were lowered by PCOS. Overall, our study showed that emodin alleviated the impaired glucose metabolism and improved ovarian function in PCOS mice, possibly via the HMGB1/TLR4/NF-ĸB signaling pathway. Thus, emodin could be considered a potential therapeutic agent in the management of PCOS.


Asunto(s)
Emodina , Proteína HMGB1 , Síndrome del Ovario Poliquístico , Animales , Femenino , Humanos , Ratones , Emodina/farmacología , Emodina/uso terapéutico , Glucosa/metabolismo , Proteína HMGB1/genética , FN-kappa B , Obesidad/complicaciones , Síndrome del Ovario Poliquístico/metabolismo , Receptor Toll-Like 4/genética
10.
Biol Reprod ; 109(3): 330-339, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37427976

RESUMEN

Preterm premature rupture of membranes (pPROM) is a major cause of preterm birth and neonatal mortality. Reactive oxygen species (ROS) have been identified as a critical factor in the development of pPROM. Mitochondria are known to be the primary source of ROS and play a vital role in maintaining cellular function. The Nuclear erythroid 2-related factor 2 (NRF2) has been demonstrated to play a crucial role in regulating mitochondrial function. However, research exploring the impact of NRF2-regulated mitochondria on pPROM is limited. Therefore, we collected fetal membrane tissues from pPROM and spontaneous preterm labor (sPTL) puerpera, measured the expression level of NRF2, and evaluated the degree of mitochondrial damage in both groups. In addition, we isolated human amniotic epithelial cells (hAECs) from the fetal membranes and used small interfering RNA (siRNA) to suppress NRF2 expression, enabling us to evaluate the impact of NRF2 on mitochondrial damage and ROS production. Our findings indicated that the expression level of NRF2 in pPROM fetal membranes was significantly lower than in sPTL fetal membranes, accompanied by increased mitochondrial damage. Furthermore, after the inhibition of NRF2 in hAECs, the degree of mitochondrial damage was significantly exacerbated, along with a marked increase in both cellular and mitochondrial ROS levels. The regulation of the mitochondrial metabolic process via NRF2 in fetal membranes has the potential to influence ROS production.


Asunto(s)
Rotura Prematura de Membranas Fetales , Nacimiento Prematuro , Femenino , Humanos , Recién Nacido , Membranas Extraembrionarias/metabolismo , Rotura Prematura de Membranas Fetales/metabolismo , Mitocondrias/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Nacimiento Prematuro/metabolismo , Especies Reactivas de Oxígeno/metabolismo
11.
iScience ; 26(7): 106980, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37332676

RESUMEN

Herein, we report choline chloride-based deep eutectic solvents (DESs) promoted conversion of N-acetyl-d-glucosamine (GlcNAc) into nitrogen-containing compounds, i.e., 3-acetamido-5-(1',2'-dihydroxyethyl) furan (Chromogen III) and 3-acetamido-5-acetylfuran (3A5AF). The binary deep eutectic solvent choline chloride-glycerin (ChCl-Gly), was found to promote the dehydration of GlcNAc to form Chromogen III, which reaches a maximum yield of 31.1%. On the other hand, the ternary deep eutectic solvent, choline chloride-glycerol-B(OH)3 (ChCl-Gly-B(OH)3), promoted the further dehydration of GlcNAc into 3A5AF with a maximum yield of 39.2%. In addition, the reaction intermediate, 2-acetamido-2,3-dideoxy-d-erythro-hex-2-enofuranose (Chromogen I), was detected by in situ nuclear magnetic resonance (NMR) techniques when promoted by ChCl-Gly-B(OH)3. The experimental results of the 1H NMR chemical shift titration showed ChCl-Gly interactions with α-OH-3 and α-OH-4 of GlcNAc, which is responsible for promoting the dehydration reaction. Meanwhile, the strong interaction between Cl- and GlcNAc was demonstrated by 35Cl NMR.

12.
Biol Direct ; 18(1): 30, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37312207

RESUMEN

BACKGROUND: Two-dimensional ultrathin Ti3C2 nanosheets are increasingly being used in biomedical applications owing to their special physicochemical properties. But, the biological effects of its exposure on the reproductive system is still unclear. This study evaluated the reproductive toxicity of Ti3C2 nanosheets in the testes. RESULTS: Ti3C2 nanosheets at doses of 2.5 mg/kg bw and 5 mg/kg bw in mice caused defects in spermatogenic function, and we also clarified an underlying molecular mechanism of it in vivo and in vitro model. Ti3C2 nanosheets induced an increase of reactive oxygen species (ROS) in testicular and GC-1 cells, which in turn led to the imbalance in oxidative and antioxidant systems (also known as oxidative stress). Additionally, oxidative stress often induces cellular DNA strand damages via the oxidative DNA damages, which triggered cell cycle arrest in the G1/G0 phase, leading to cell proliferation inhibition and irreversible apoptosis. ATM/p53 signaling manifest key role in DNA damage repair (DDR), and we demonstrate that ATM/p53 signaling was activated, and mediated the toxic damage process caused by Ti3C2 nanosheet exposure. CONCLUSION: Ti3C2 nanosheet-induced disruption of proliferation and apoptosis of spermatogonia perturbed normal spermatogenic function that was mediated by ATM/p53 signaling pathway. Our findings shed more light on the mechanisms of male reproductive toxicity induced by Ti3C2 nanosheets.


Asunto(s)
Titanio , Proteína p53 Supresora de Tumor , Masculino , Animales , Ratones , Titanio/toxicidad , Espermatogénesis , Transducción de Señal
13.
Biol Reprod ; 109(1): 83-96, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37115805

RESUMEN

The aim of this study was to determine the impact of glycyrrhizin, an inhibitor of high mobility group box 1, on glucose metabolic disorders and ovarian dysfunction in mice with polycystic ovary syndrome. We generated a polycystic ovary syndrome mouse model by using dehydroepiandrosterone plus high-fat diet. Glycyrrhizin (100 mg/kg) was intraperitoneally injected into the polycystic ovary syndrome mice and the effects on body weight, glucose tolerance, insulin sensitivity, estrous cycle, hormone profiles, ovarian pathology, glucolipid metabolism, and some molecular mechanisms were investigated. Increased number of cystic follicles, hormonal disorders, impaired glucose tolerance, and decreased insulin sensitivity in the polycystic ovary syndrome mice were reverted by glycyrrhizin. The increased high mobility group box 1 levels in the serum and ovarian tissues of the polycystic ovary syndrome mice were also reduced by glycyrrhizin. Furthermore, increased expressions of toll-like receptor 9, myeloid differentiation factor 88, and nuclear factor kappa B as well as reduced expressions of insulin receptor, phosphorylated protein kinase B, and glucose transporter type 4 were restored by glycyrrhizin in the polycystic ovary syndrome mice. Glycyrrhizin could suppress the polycystic ovary syndrome-induced upregulation of high mobility group box 1, several inflammatory marker genes, and the toll-like receptor 9/myeloid differentiation factor 88/nuclear factor kappa B pathways, while inhibiting the insulin receptor/phosphorylated protein kinase B/glucose transporter type 4 pathways. Hence, glycyrrhizin is a promising therapeutic agent against polycystic ovary syndrome.


Asunto(s)
Resistencia a la Insulina , Síndrome del Ovario Poliquístico , Femenino , Humanos , Ratones , Animales , Síndrome del Ovario Poliquístico/tratamiento farmacológico , Síndrome del Ovario Poliquístico/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor de Insulina/metabolismo , Ácido Glicirrínico/efectos adversos , Receptor Toll-Like 9/metabolismo , Receptor Toll-Like 9/uso terapéutico , FN-kappa B/metabolismo , Transportador de Glucosa de Tipo 4 , Factor 88 de Diferenciación Mieloide/metabolismo , Insulina/metabolismo , Glucosa/efectos adversos
14.
Nucleic Acids Res ; 51(7): 3150-3165, 2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-36869674

RESUMEN

DNA double-strand breaks (DSBs) are functionally linked to genomic instability in spermatocytes and to male infertility. The heavy metal cadmium (Cd) is known to induce DNA damage in spermatocytes by unknown mechanisms. Here, we showed that Cd ions impaired the canonical non-homologous end-joining (NHEJ) repair pathway, but not the homologous recombination (HR) repair pathway, through stimulation of Ser2056 and Thr2609 phosphorylation of DNA-PKcs at DSB sites. Hyper-phosphorylation of DNA-PKcs led to its premature dissociation from DNA ends and the Ku complex, preventing recruitment of processing enzymes and further ligation of DNA ends. Specifically, this cascade was initiated by the loss of PP5 phosphatase activity, which results from the dissociation of PP5 from its activating ions (Mn), that is antagonized by Cd ions through a competitive mechanism. In accordance, in a mouse model Cd-induced genomic instability and consequential male reproductive dysfunction were effectively reversed by a high dosage of Mn ions. Together, our findings corroborate a protein phosphorylation-mediated genomic instability pathway in spermatocytes that is triggered by exchange of heavy metal ions.


Asunto(s)
Cadmio , Inestabilidad Genómica , Infertilidad Masculina , Espermatocitos , Animales , Humanos , Masculino , Ratones , Cadmio/toxicidad , ADN/metabolismo , Reparación del ADN por Unión de Extremidades , Reparación del ADN , Inestabilidad Genómica/efectos de los fármacos , Infertilidad Masculina/genética , Infertilidad Masculina/metabolismo , Iones/metabolismo , Fosforilación , Reparación del ADN por Recombinación , Espermatocitos/efectos de los fármacos
15.
Biochim Biophys Acta Mol Basis Dis ; 1869(5): 166704, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37001703

RESUMEN

Reproductive health is a worldwide challenge, but it is of particular significance to women during their reproductive age. Several female reproductive problems, including polycystic ovary syndrome (PCOS) and endometriosis, affect about 10 % of women and have a negative impact on their health, fertility, and quality of life. Small, chemotactic, and secreted cytokines are CXC chemokines. Both PCOS and endometriosis demonstrate dysregulation of CXC chemokines, which are critical to the development and progression of both diseases. Recent research has shown that both in humans and animals, CXC chemokines tend to cause inflammation. It has also been found that CXC chemokines are necessary for promoting angiogenesis and inflammatory responses. CXC chemokine overexpression is frequently associated with poor survival and prognosis. CXC chemokine levels in PCOS and endometriosis patients impact their circumstances significantly. Hence, CXC chemokines have significant potential as diagnostic and prognostic biomarkers and therapeutic targets. The molecular mechanisms through which CXC chemokines promote inflammation and the development of PCOS and endometriosis are currently unknown. This article will discuss the functions of CXC chemokines in the promotion, development, and therapy of PCOS and endometriosis, as well as future research directions. The current state and future prospects of CXC chemokine -based therapeutic strategies in the management of PCOS and endometriosis are also highlighted.


Asunto(s)
Endometriosis , Síndrome del Ovario Poliquístico , Femenino , Humanos , Quimiocinas CXC/uso terapéutico , Calidad de Vida , Inflamación
16.
Front Endocrinol (Lausanne) ; 14: 1088944, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36742380

RESUMEN

Background: Ovarian cancer (OC) is the most lethal gynecologic malignancy, yet the clinical results for OC patients are still variable. Therefore, we examined how elafin expression affects the patients' prognoses and immunotherapy responses in OC, which may facilitate treatment selection and improve prognosis. Methods: The elafin mRNA expression profile was downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus. Elafin's prognostic potential and its relationship with clinical variables were investigated using Kaplan-Meier survival curves, time-dependent receiver operating characteristic curves as well as univariate and multivariate Cox regression models. As validation, protein expression in the tumor and adjacent tissues of OC patients was investigated by using immunohistochemistry (IHC). Comprehensive analyses were then conducted to explore the correlation between immune infiltration and elafin expression. Results: A higher mRNA expression of elafin was associated with an unfavorable prognosis in TCGA cohort and was validated in GSE31245 and IHC. Moreover, elafin was indicated as an independent risk factor for OC. A significantly higher protein expression of elafin was detected in the adjacent tissues of OC patients with shorter overall survival (OS). The immune-related pathways were mainly enriched in the high-elafin-mRNA-expression group. However, the mRNA expression of elafin was favorably correlated with indicators of the immune filtration and immunotherapy response, which also proved better immunotherapy outcomes. Conclusion: The high elafin expression was associated with an unfavorable OS, while it also indicated better immunotherapy responses. Thus, the detection of elafin is beneficial to diagnosis and treatment selection.


Asunto(s)
Neoplasias de los Genitales Femeninos , Neoplasias Ováricas , Humanos , Femenino , Elafina/genética , Neoplasias Ováricas/diagnóstico , Neoplasias Ováricas/genética , Inmunoterapia , Estimación de Kaplan-Meier
17.
Biochim Biophys Acta Mol Basis Dis ; 1869(4): 166659, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36740105

RESUMEN

Pregnancy complications are more likely to occur in obese women because of defective decidualization. However, the specific mechanism of glycolysis in decidual modulation associated with obesity remains unknown. Therefore, we explored the role of glycolysis in the endometrium of obese pregnant mice during decidualization. C57BL/6J mice were fed a high-fat diet (HFD) to induce obesity. All obesity related parameters were significantly higher in the HFD mice than control. Furthermore, the HFD mice had fewer implantation sites, a smaller decidual area growth, and decreased decidualization marker protein expression than control. The HFD mice also had significantly decreased lactate production and glycolytic enzyme expression. To confirm the functional role of glycolysis during the decidual period in obese pregnant mice, we extracted endometrial stromal cells (ESCs) and treated them with oleic acid (OA) and palmitic acid (PA) to mimic a high-fat environment. Decidualization and glycolysis were significantly restricted in the OA-and PA-treated groups. Moreover, we administered a glycolytic inhibitor, 2-DG, and an agonist, pioglitazone. 2-DG treatment considerably decreased the cells' glycolysis and decidualization. However, pioglitazone treatment improved glycolysis and alleviated defective decidualization. In conclusion, obesity-induced endometrial glycolysis modifications and key glycolytic enzyme downregulation during early pregnancy might cause abnormal decidualization, leading to an unsustainable pregnancy.


Asunto(s)
Decidua , Endometrio , Embarazo , Femenino , Animales , Ratones , Decidua/metabolismo , Pioglitazona/metabolismo , Ratones Endogámicos C57BL , Endometrio/metabolismo , Glucólisis , Obesidad/complicaciones , Obesidad/metabolismo
18.
Ecotoxicol Environ Saf ; 251: 114531, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36641866

RESUMEN

The environmental pollutant Benzo(a)pyrene (BaP) has an adverse effect on the reproductive performance of mammals. We previously showed that BaP treatment during early pregnancy damages endometrial morphology and impairs embryo implantation. Endometrial decidualization at the implantation site (IS) after embryo implantation is crucial for pregnancy maintenance and placental development. The balance between proliferation and differentiation in endometrial stromal cells (ESCs) is a crucial event of decidualization, which is regulated by the cell cycle. Here, we report that abnormal decidualization caused by BaP is associated with cell cycle disturbance of stromal cells. The mice in the treatment group were gavaged with 0.2 mg/kg/day BaP from day 1-8 of pregnancy, while those in control were gavaged with corn oil in parallel. BaP damaged the decidualization of ESCs and reduced the number of polyploid cells. Meanwhile, BaP up-regulated the expression of Ki67 and PCNA, affecting the differentiation of stromal cells. The cell cycle progression analysis during decidualization in vivo and in vitro showed that BaP induced polyploid cells deficiency with enhanced expressions of CyclinA(E)/CDK2, CyclinD/CDK4 and CyclinB/CDK1, which promote the transformation of cells from G1 to S phase and simultaneously activate the G2/M phase. The above results indicated that BaP exposure accelerates cell cycle progression, promotes ESC proliferation, inhibits differentiation, and impedes proper decidualization and polyploidy development. Thus, the imbalance of ESC proliferation and differentiation would be an important mechanism for BaP-induced defective decidualization.


Asunto(s)
Benzo(a)pireno , Decidua , Embarazo , Ratones , Femenino , Animales , Decidua/metabolismo , Benzo(a)pireno/toxicidad , Benzo(a)pireno/metabolismo , Placenta , Diferenciación Celular , Proliferación Celular , Células del Estroma/metabolismo , Poliploidía , Mamíferos
20.
Cell Biol Toxicol ; 39(3): 1077-1098, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-34773530

RESUMEN

Uterine deficiency of Dnmt3b impairs decidualization and consequent embryo implantation defects. Recent advances in molecular technologies have allowed the unprecedented mapping of epigenetic modifications during embryo implantation. DNA methyltransferase 3a (DNMT3A) and DNMT3B are responsible for establishing DNA methylation patterns produced through their de novo-type DNA methylation activity in implantation stage embryos and during germ cell differentiation. It was reported that conditional knockout of Dnmt3a in the uterus does not markedly affect endometrial function during embryo implantation, but the tissue-specific functions of Dnmt3b in the endometrium during embryo implantation remain poorly understood to investigate the role of Dnmt3b during peri-implantation period. Here, we generated Dnmt3b conditional knockout (Dnmt3bd/d) female mice using progesterone receptor-Cre mice and examined the role of Dnmt3b during embryo implantation. Dnmt3bd/d female mice exhibited compromised fertility, which was associated with defective decidualization, but not endometrial receptivity. Furthermore, results showed loss of Dnmt3b did not lead to altered genomic methylation patterns of the decidual endometrium during early pregnancy. Transcriptome sequencing analysis of uteri from day 6 pregnant mice identified phosphoglycerate kinase 1 (Pgk1) as one of the most variable genes in Dnmt3bd/d decidual endometrium. Potential roles of PGK1 in the decidualization process during early pregnancy were confirmed. Lastly, the compromised decidualization upon the downregulation of Dnmt3b could be reversed by overexpression of Pgk1. Collectively, our findings indicate that uterine deficiency of Dnmt3b impairs decidualization and consequent embryo implantation defects.


Asunto(s)
Decidua , Útero , Animales , Femenino , Ratones , Embarazo , Decidua/fisiología , Metilación de ADN/genética , Implantación del Embrión/fisiología , Endometrio/metabolismo , ADN Metiltransferasa 3B
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...