Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
1.
Opt Express ; 32(8): 14435-14441, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38859388

RESUMEN

We report on a passively mode-locked Tm,Ho:SrF2 laser employing a SESAM as saturable absorber (SA), delivering nearly Fourier-transform-limited 246 fs pulses at 2084nm without any additional intra- or extra-cavity dispersion compensation elements. This represents, to the best of our knowledge, the shortest pulses generated from the mode-locked fluoride bulk lasers in the 2-µm spectral range. Such compact femtosecond laser can be a potential seed source for large-sized fluoride bulk amplifier systems with exact gain match, enabling the generation of ultrashort intense pulses around 2 µm.

2.
Front Pharmacol ; 15: 1303693, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38738181

RESUMEN

Traditional Chinese Medicine (TCM) has been used for thousands of years to treat human diseases. Recently, many databases have been devoted to studying TCM pharmacology. Most of these databases include information about the active ingredients of TCM herbs and their disease indications. These databases enable researchers to interrogate the mechanisms of action of TCM systematically. However, there is a need for comparative studies of these databases, as they are derived from various resources with different data processing methods. In this review, we provide a comprehensive analysis of the existing TCM databases. We found that the information complements each other by comparing herbs, ingredients, and herb-ingredient pairs in these databases. Therefore, data harmonization is vital to use all the available information fully. Moreover, different TCM databases may contain various annotation types for herbs or ingredients, notably for the chemical structure of ingredients, making it challenging to integrate data from them. We also highlight the latest TCM databases on symptoms or gene expressions, suggesting that using multi-omics data and advanced bioinformatics approaches may provide new insights for drug discovery in TCM. In summary, such a comparative study would help improve the understanding of data complexity that may ultimately motivate more efficient and more standardized strategies towards the digitalization of TCM.

3.
Opt Lett ; 49(8): 2145-2148, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38621097

RESUMEN

A novel, to the best of our knowledge, Tm,Ho:GdScO3 crystal grown using the Czochralski method was investigated for its polarized spectroscopic properties and laser performance in both tunable continuous-wave (CW) and mode-locked regimes. The crystal's multisite structure (Gd3+/Sc3+ site) and Tm3+/Ho3+ dopants contributed to spectral broadening, enabling a tunable laser operation from 1914 to 2125 nm (with a broad range of 215 nm). Additionally, a pulse duration of 72 fs was achieved for E || b polarization. These results demonstrate the potential of the Tm,Ho:GdScO3 perovskite crystal as a promising gain material for ultrafast lasers operating around 2 µm.

4.
Chem Biodivers ; 21(4): e202400002, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38411310

RESUMEN

Seven new polyketides including three chromone derivatives (1-3) and four linear ones incorporating a tetrahydrofuran ring (4-7), along with three known compounds (8-10), were obtained from the fermentation of an endophytic fungus (Chaetomium sp. UJN-EF006) isolated from the leaves of Vaccinium bracteatum. The structures of these fungal metabolites have been elucidated by spectroscopic means including MS, NMR and electronic circular dichroism. A preliminary anti-inflammatory screening with the lipopolysaccharide (LPS) induced RAW264.7 cell model revealed moderate NO production inhibitory activity for compounds 1 and 4. In addition, the expression of three LPS-induced inflammatory factors IL-6, iNOS and COX-2 was also blocked by 1 and 4.


Asunto(s)
Chaetomium , Policétidos , Vaccinium myrtillus , Chaetomium/química , Policétidos/química , Lipopolisacáridos/farmacología , Estructura Molecular
5.
Nat Commun ; 15(1): 1158, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38326354

RESUMEN

Exploring non-genetic evolution of cell states during cancer treatments has become attainable by recent advances in lineage-tracing methods. However, transcriptional changes that drive cells into resistant fates may be subtle, necessitating high resolution analysis. Here, we present ReSisTrace that uses shared transcriptomic features of sister cells to predict the states priming treatment resistance. Applying ReSisTrace in ovarian cancer cells perturbed with olaparib, carboplatin or natural killer (NK) cells reveals pre-resistant phenotypes defined by proteostatic and mRNA surveillance features, reflecting traits enriched in the upcoming subclonal selection. Furthermore, we show that DNA repair deficiency renders cells susceptible to both DNA damaging agents and NK killing in a context-dependent manner. Finally, we leverage the obtained pre-resistance profiles to predict and validate small molecules driving cells to sensitive states prior to treatment. In summary, ReSisTrace resolves pre-existing transcriptional features of treatment vulnerability, facilitating both molecular patient stratification and discovery of synergistic pre-sensitizing therapies.


Asunto(s)
Células Asesinas Naturales , Neoplasias Ováricas , Humanos , Femenino , Neoplasias Ováricas/genética , Carboplatino , Fenotipo , Línea Celular Tumoral
6.
J Asian Nat Prod Res ; 26(6): 690-698, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38192122

RESUMEN

Two neolignan glycosides including a new one (1), along with seven iridoid glycosides (3 - 9) and nine flavonoid glycosides (10 - 18), were isolated from the leaves of Vaccinium bracteatum. Their structures were established mainly on the basis of 1D/2D NMR and ESIMS analyses, as well as comparison to known compounds in the literature. The structure of 1 with absolute stereochemistry was also confirmed by chemical degradation and ECD calculation. Selective compounds showed antiradical activity against ABTS and/or DPPH. Moreover, several isolates also suppressed the production of ROS in RAW264.7 cells and exerted neuroprotective effect toward PC12 cells.


Asunto(s)
Flavonoides , Glicósidos , Lignanos , Hojas de la Planta , Hojas de la Planta/química , Flavonoides/química , Flavonoides/farmacología , Flavonoides/aislamiento & purificación , Animales , Ratones , Células PC12 , Glicósidos/química , Glicósidos/farmacología , Glicósidos/aislamiento & purificación , Estructura Molecular , Lignanos/química , Lignanos/farmacología , Lignanos/aislamiento & purificación , Ratas , Células RAW 264.7 , Vaccinium/química , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/aislamiento & purificación , Iridoides/química , Iridoides/farmacología , Iridoides/aislamiento & purificación , Glicósidos Iridoides/química , Glicósidos Iridoides/farmacología , Glicósidos Iridoides/aislamiento & purificación , Especies Reactivas de Oxígeno , Picratos/farmacología
7.
Theranostics ; 14(2): 662-680, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38169511

RESUMEN

Rationale: Cancer local recurrence increases the mortality of patients, and might be caused by field cancerization, a pre-malignant alteration of normal epithelial cells. It has been suggested that cancer-derived small extracellular vesicles (CDEs) may contribute to field cancerization, but the underlying mechanisms remain poorly understood. In this study, we aim to identify the key regulatory factors within recipient cells under the instigation of CDEs. Methods: In vitro experiments were performed to demonstrate that CDEs promote the expression of CREPT in normal epithelial cells. TMT-based quantitative mass spectrometry was employed to investigate the proteomic differences between normal cells and tumor cells. Loss-of-function approaches by CRISPR-Cas9 system were used to assess the role of CREPT in CDEs-induced field cancerization. RNA-seq was performed to explore the genes regulated by CREPT during field cancerization. Results: CDEs promote field cancerization by inducing the expression of CREPT in non-malignant epithelial cells through activating the ERK signaling pathway. Intriguingly, CDEs failed to induce field cancerization when CREPT was deleted, highlighting the importance of CREPT. Transcriptomic analyses revealed that CDEs elicited inflammatory responses, primarily through activation of the TNF signaling pathway. CREPT, in turn, regulates the transduction of downstream signals of TNF by modulating the expression of TNFR2 and PI3K, thereby promoting inflammation-to-cancer transition. Conclusion: CREPT not only serves as a biomarker for field cancerization, but also emerges as a target for preventing the cancer local recurrence.


Asunto(s)
Vesículas Extracelulares , Neoplasias , Humanos , Línea Celular Tumoral , Proteómica , Proteínas de Ciclo Celular/metabolismo , Proliferación Celular/genética , Proteínas de Neoplasias/genética , Vesículas Extracelulares/metabolismo , Neoplasias/genética
8.
Opt Lett ; 48(23): 6267-6270, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38039243

RESUMEN

We study the polarization-dependent laser performance of a novel, to the best of our knowledge, "mixed" Tm,Ho:CaYGdAlO4 crystal in the continuous-wave (CW) and mode-locked regimes. Both in terms of the CW tunability range (261 nm) and the minimum pulse duration (50 fs at 2078 nm, spectral width of 95 nm) in the mode-locked regime, σ-polarization is superior. With extended inhomogeneous spectral broadening due to structural and compositional disorder, Tm,Ho:CaYGdAlO4 is promising for few-optical-cycle pulse generation around 2 µm.

9.
Chem Biodivers ; 20(10): e202301203, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37679302

RESUMEN

Chemical fractionation of the AcOEt partition, generated from the EtOH extract of the fruits of Schisandra chinensis, afforded a series of sesquiterpenyl constituents including two new cadinanes, a new eudesmane, two new widdranes (a handling artefact and a new natural product), a new bisabolane and two new natural cuparane enantiomers, along with 15 known structurally related analogs. Structures of the new compounds were unambiguously characterized by interpretation of detailed spectroscopic data including ESI-MS and 1D/2D NMR, with their absolute configurations being established by electronic circular dichroism (ECD) calculation and induced ECD experiment. The inhibitory effects of all the isolates against α-glucosidase and lipopolysaccharide (LPS) induced nitric oxide (NO) production in murine RAW264.7 macrophages, as well as their antibacterial and cytotoxic potential, were evaluated, with selective compounds showing moderate α-glucosidase and NO inhibitory activity. Notably, canangaterpene III exhibited the most significant NO inhibitory effect with an IC50 value of 31.50±1.49 µM.

10.
Arterioscler Thromb Vasc Biol ; 43(8): e323-e338, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37317851

RESUMEN

BACKGROUND: Vascular growth followed by vessel specification is crucial for the establishment of a hierarchical blood vascular network. We have shown that TIE2 is required for vein development while little is known about its homologue TIE1 (tyrosine kinase with immunoglobulin-like and EGF [epithelial growth factor]-like domains 1) in this process. METHODS: We analyzed functions of TIE1 as well as its synergy with TIE2 in the regulation of vein formation by employing genetic mouse models targeting Tie1, Tek, and Nr2f2, together with in vitro cultured endothelial cells to decipher the underlying mechanism. RESULTS: Cardinal vein growth appeared normal in TIE1-deficient mice, whereas TIE2 deficiency altered the identity of cardinal vein endothelial cells with the aberrant expression of DLL4 (delta-like canonical Notch ligand 4). Interestingly, the growth of cutaneous veins, which was initiated at approximately embryonic day 13.5, was retarded in mice lack of TIE1. TIE1 deficiency disrupted the venous integrity, displaying increased sprouting angiogenesis and vascular bleeding. Abnormal venous sprouts with defective arteriovenous alignment were also observed in the mesenteries of Tie1-deleted mice. Mechanistically, TIE1 deficiency resulted in the decreased expression of venous regulators including TIE2 and COUP-TFII (chicken ovalbumin upstream promoter transcription factor, encoded by Nr2f2, nuclear receptor subfamily 2 group F member 2) while angiogenic regulators were upregulated. The alteration of TIE2 level by TIE1 insufficiency was further confirmed by the siRNA-mediated knockdown of Tie1 in cultured endothelial cells. Interestingly, TIE2 insufficiency also reduced the expression of TIE1. Combining the endothelial deletion of Tie1 with 1 null allele of Tek resulted in a progressive increase of vein-associated angiogenesis leading to the formation of vascular tufts in retinas, whereas the loss of Tie1 alone produced a relatively mild venous defect. Furthermore, the induced deletion of endothelial Nr2f2 decreased both TIE1 and TIE2. CONCLUSIONS: Findings from this study imply that TIE1 and TIE2, together with COUP-TFII, act in a synergistic manner to restrict sprouting angiogenesis during the development of venous system.


Asunto(s)
Receptor TIE-1 , Receptor TIE-2 , Ratones , Animales , Receptor TIE-1/genética , Receptor TIE-1/metabolismo , Receptor TIE-2/genética , Receptor TIE-2/metabolismo , Células Endoteliales/metabolismo , Transducción de Señal , Venas
11.
Foods ; 12(1)2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36613392

RESUMEN

The health benefits of Vaccinium bracteatum are well recorded in ancient Chinese medical books and were also demonstrated by modern researches. However, the relationship between its beneficial functions and specific chemical constituents has not been fully characterized. This study investigated the bioactive small-molecule constituents in the leaves of V. bracteatum, which afforded 32 compounds including ten new ones (1-9) and ten pairs of enantiomers (9-18). Their structures with absolute configurations were elucidated by spectroscopic methods, especially nuclear magnetic resonance (NMR) and electronic circular dichroism (ECD) analyses, with 1-4 bearing a novel revolving-door shaped scaffold. While half-compounds exhibited decent antioxidant activity by scavenging 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals, all except 19 and 20 exerted significant capturing activity against diammonium 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) radicals. In addition, the new iridoids 1, 5, 6, and 7 exerted apparent neuroprotective activity toward PC12 cells, with 1 being comparable to the positive control, and selective compounds also displayed anti-diabetic and anti-inflammatory properties by inhibiting α-glucosidase and NO production, respectively. The current work revealed that the bioactive small-molecule constituents could be closely related to the functional food property of the title species.

12.
Cell Signal ; 106: 110592, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36641081

RESUMEN

Natural compounds that interfere with tumor cell growth have potential to be used as therapeutic agents to treat cancers. Lachnochromonin (p71) is a small molecule isolated from Lachnum virgineum. Here, we reported the effect of p71 on human tumor cells, especially on breast cancer MCF-7 cells. We found that p71 significantly suppresses cell growth and induces apoptosis. The luciferase results demonstrated that p71 specifically attenuates the activation of JAK/STAT3 signaling. Biochemical analysis revealed that p71 blocks the phosphorylation of STAT3 tyrosine 705 and serine 727, resulting in down-regulation of c-Myc and Cyclin D1 expression level. Importantly, p71 inhibited cell growth, colony-formation, and migration through affecting STAT3 activity. These results implied that p71 may be used as a therapeutic agent against breast cancer.


Asunto(s)
Apoptosis , Neoplasias de la Mama , Humanos , Femenino , Línea Celular Tumoral , Transducción de Señal , Proliferación Celular , Fosforilación , Neoplasias de la Mama/patología , Factor de Transcripción STAT3/metabolismo
13.
Sci Rep ; 12(1): 21116, 2022 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-36477604

RESUMEN

The drug development process consumes 9-12 years and approximately one billion US dollars in costs. Due to the high finances and time costs required by the traditional drug discovery paradigm, repurposing old drugs to treat cancer and rare diseases is becoming popular. Computational approaches are mainly data-driven and involve a systematic analysis of different data types leading to the formulation of repurposing hypotheses. This study presents a novel scoring algorithm based on chemical and genomic data to repurpose drugs for 669 diseases from 22 groups, including various cancers, musculoskeletal, infections, cardiovascular, and skin diseases. The data types used to design the scoring algorithm are chemical structures, drug-target interactions (DTI), pathways, and disease-gene associations. The repurposed scoring algorithm is strengthened by integrating the most comprehensive manually curated datasets for each data type. At DrugRepo score ≥ 0.4, we repurposed 516 approved drugs across 545 diseases. Moreover, hundreds of novel predicted compounds can be matched with ongoing studies at clinical trials. Our analysis is supported by a web tool available at: http://drugrepo.org/ .


Asunto(s)
Genómica
14.
Cancers (Basel) ; 14(19)2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36230720

RESUMEN

Histone deacetylases 1 (HDAC1), an enzyme that functions to remove acetyl molecules from ε-NH3 groups of lysine in histones, eliminates the histone acetylation at the promoter regions of tumor suppressor genes to block their expression during tumorigenesis. However, it remains unclear why HDAC1 fails to impair oncogene expression. Here we report that HDAC1 is unable to occupy at the promoters of oncogenes but maintains its occupancy with the tumor suppressors due to its interaction with CREPT (cell cycle-related and expression-elevated protein in tumor, also named RPRD1B), an oncoprotein highly expressed in tumors. We observed that CREPT competed with HDAC1 for binding to oncogene (such as CCND1, CLDN1, VEGFA, PPARD and BMP4) promoters but not the tumor suppressor gene (such as p21 and p27) promoters by a chromatin immunoprecipitation (ChIP) qPCR experiment. Using immunoprecipitation experiments, we deciphered that CREPT specifically occupied at the oncogene promoter via TCF4, a transcription factor activated by Wnt signaling. In addition, we performed a real-time quantitative PCR (qRT-PCR) analysis on cells that stably over-expressed CREPT and/or HDAC1, and we propose that HDAC1 inhibits CREPT to activate oncogene expression under Wnt signaling activation. Our findings revealed that HDAC1 functions differentially on tumor suppressors and oncogenes due to its interaction with the oncoprotein CREPT.

15.
Micromachines (Basel) ; 13(8)2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-36014177

RESUMEN

A method for surface-enhanced Raman spectroscopy (SERS) sensing of polycyclic aromatic hydrocarbons (PAHs) is reported. Fe3O4@PDA@Ag@GO is developed as the SERS substrate prepared by classical electrostatic attraction method based on the enrichment of organic compounds by graphene oxide (GO) and polydopamine (PDA) and the good separation and enrichment function of Fe3O4. The morphology and structure of the SERS substrate were represented by transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDS), X-ray diffraction (XRD) and the UV-visible absorption spectrum (UV-vis spectra). The effect of different temperatures on SERS during synthesis was investigated, and it was found that the best effect was achieved when the synthesis temperature was 90 °C. The effect of each component of Fe3O4@PDA@Ag@GO nanocomposites on SERS was explored, and it was found that Ag NPs are of great significance to enhance the Raman signal based on the electromagnetic enhancement mechanism; apart from enriching the polycyclic aromatic hydrocarbons (PAHs) through π-π interaction, GO also generates strong chemical enhancement to the Raman signal, and PDA can prevent Ag from shedding and agglomeration. The existence of Fe3O4 is favored for the fast separation of substrate from the solutions, which greatly simplifies the detection procedure and facilitates the cycle use of the substrate. The experimental procedure is simplified, and the substrate is reused easily. Three kinds of PAHs (phenanthrene, pyrene and benzanthene) are employed as probe molecules to verify the performance of the composite SERS substrate. The results show that the limit of detection (LOD) of phenanthrene pyrene and benzanthene detected by Fe3O4@PDA@Ag@GO composite substrate are 10-8 g/L (5.6 × 10-11 mol/L), 10-7 g/L (4.9 × 10-10 mol/L) and 10-7 g/L (4.4 × 10-10 mol/L), respectively, which is much lower than that of ordinary Raman, and it is promising for its application in the enrichment detection of trace PAHs in the environment.

16.
FEBS Lett ; 596(20): 2668-2677, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35918178

RESUMEN

Exosomes released by mesenchymal stem cells (MSCs) are thought to function as extensions of the MSCs. However, it remains unclear whether exosomes derived from human umbilical cord MSCs (HUMSCs) possess immunoregulatory functions in rheumatoid arthritis. We report that when mice with collagen-induced arthritis were injected with exosomes derived from HUMSC (HUMSC-Exo), their paws became less swollen, and they had lower serum pro-inflammatory cytokine and anti-collagen IgG levels, and decreased synovial hyperplasia. The HUMSC-Exo appeared to restore the balance between Th17 and Treg cells, and this effect was accompanied by reduced IL-17 and enhanced TGF-ß and IL-10 levels. These findings suggest that HUMSC-Exo function as important regulator of the balance between Th1/Th17 and Treg cells during immune and inflammatory responses.


Asunto(s)
Artritis Experimental , Exosomas , Células Madre Mesenquimatosas , Animales , Humanos , Ratones , Artritis Experimental/terapia , Citocinas , Inmunoglobulina G , Interleucina-10/genética , Interleucina-17 , Linfocitos T Reguladores , Factor de Crecimiento Transformador beta , Cordón Umbilical , Células Th17
17.
Stem Cells Int ; 2022: 1617229, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35694239

RESUMEN

Mesenchymal stem cells (MSCs) have been documented to be effective for the therapy of inflammation-related diseases but raised concerns on possible tumorigenic effects. Since most of the tumors are induced or promoted by chronic inflammation, one could expect that MSCs might be beneficial for the cancer therapy because of their potent roles on inhibiting inflammation. This study is aimed at performing a safety evaluation and evaluating the role of human umbilical cord mesenchymal stem cells (HUC-MSCs) on tumorigenesis. We found that HUC-MSCs cultured within 20 generations had no significant changes in proliferation, cell cycle, cellular senescence, apoptosis, and expression of mesenchymal stem cell markers. HUC-MSCs were unable to form any tumor in immunodeficiency or normal mice with or without inflammatory stimulation. Intriguingly, we observed that HUC-MSCs inhibited tumorigenesis in B16-derived or AOM/DSS-induced colon cancer models. We reasoned that the effect of HUC-MSCs on tumorigenesis might be through regulating the inflammatory response. Indeed, HUC-MSCs dramatically ameliorated the disease symptoms and pathological changes of DSS-induced colitis mice. We deciphered the mechanism that HUC-MSCs inhibited tumorigenesis through reducing the proportion of macrophages, which were decreased in the mice suffered from AOM/DSS-induced colon cancer. Correspondingly, the expression levels of TNF-α and IL-6, which were secreted by macrophages, were significantly decreased in the plasma of colon cancer and colitis mice after injection of HUC-MSCs. This study revealed the role of inhibiting macrophages and shed light on the therapeutic application of HUC-MSCs in inflammation-induced tumorigenesis.

18.
Arch Pharm Res ; 45(5): 328-339, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35478401

RESUMEN

One new clerodane-type furanoditerpenoid tinosinoid A (1) and nine new nor-clerodane analogs tinosinoids B-J (2-10) have been isolated from the stems of Tinospora sinensis. The structures of the new compounds with absolute configurations have been elucidated by spectroscopic means, including MS, NMR and ECD techniques, as well as chemical correlation. Compound 1 is a rare sulfur-containing clerodane diterpenoid incorporating a 2-mercaptoethanol unit via a thioether bond, while compounds 4/5 and 9 represent two pairs of unusual equilibrium regioisomers through an interesting intramolecular transesterification. Our bioassays established that 1 and 8 displayed moderate antiproliferative effects against two human tumor cell lines, and 9 and 10 showed significant α-glucosidase inhibitory activities. A kinetics study revealed that compound 10 was a noncompetitive α-glucosidase inhibitor, and its possible binding mode to the enzyme was further probed by molecular docking experiments.


Asunto(s)
Diterpenos de Tipo Clerodano , Tinospora , Diterpenos de Tipo Clerodano/química , Diterpenos de Tipo Clerodano/farmacología , Inhibidores de Glicósido Hidrolasas/farmacología , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Tinospora/química
19.
Opt Express ; 30(4): 5826-5834, 2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-35209536

RESUMEN

Lutetium aluminum garnet single-crystal fiber (SCF, ∼ Φ 0.9 mm - 165 mm) doped with 0.5 at.% Ho3+ has been grown by the micro-pulling-down (µ-PD) technique. The room-temperature absorption and emission spectra exhibit similar features to the bulk crystal. Laser performances of the SCFs with two different pump configurations, i.e., pump guiding and free-space propagation, are studied by employing a 1.9-µm laser diode and a high-brightness fiber laser, respectively. Laser slope efficiencies obtained with both pump configurations can be higher than 50%, and a maximum output power of 6.01 W is achieved at ∼ 2.09 µm with the former pump. The comparable efficiency to the high-brightness pump is an indication of that high laser performance can also be expected through pump-guiding in the SCF even with a low pump beam quality.

20.
Cancers (Basel) ; 14(4)2022 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-35205661

RESUMEN

There are three prognostic stratification tools used for endometrial cancer: ESMO-ESGO-ESTRO 2016, ProMisE, and ESGO-ESTRO-ESP 2020. However, these methods are not sufficiently accurate to address prognosis. The aim of this study was to investigate whether the integration of molecular classification and other biomarkers could be used to improve the prognosis stratification in early-stage endometrial cancer. Relapse-free and overall survival of each classifier were analyzed, and the c-index was employed to assess accuracy. Other biomarkers were explored to improve the precision of risk classifiers. We analyzed 293 patients. A comparison between the three classifiers showed an improved accuracy in ESGO-ESTRO-ESP 2020 when RFS was evaluated (c-index = 0.78), although we did not find broad differences between intermediate prognostic groups. Prognosis of these patients was better stratified with the incorporation of CTNNB1 status to the 2020 classifier (c-index 0.81), with statistically significant and clinically relevant differences in 5-year RFS: 93.9% for low risk, 79.1% for intermediate merged group/CTNNB1 wild type, and 42.7% for high risk (including patients with CTNNB1 mutation). The incorporation of molecular classification in risk stratification resulted in better discriminatory capability, which could be improved even further with the addition of CTNNB1 mutational evaluation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...