Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 329
Filtrar
1.
Biomed Mater ; 19(4)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38697149

RESUMEN

To effectively address underlying issues and enhance the healing process of hard-to-treat soft tissue defects, innovative therapeutic approaches are required. One promising strategy involves the incorporation of bioactive substances into biodegradable scaffolds to facilitate synergistic tissue regeneration, particularly in vascular regeneration. In this study, we introduce a composite hydrogel design that mimics the extracellular matrix by covalently combining gelatin and hyaluronic acid (HA), with the encapsulation of deferoxamine nanoparticles (DFO NPs) for potential tissue regeneration applications. Crosslinked hydrogels were fabricated by controlling the ratio of HA in the gelatin-based hydrogels, resulting in improved mechanical properties, enhanced degradation ability, and optimised porosity, compared with hydrogel formed by gelatin alone. The DFO NPs, synthesized using a double emulsion method with poly (D,L-lactide-co-glycolide acid), exhibited a sustained release of DFO over 12 d. Encapsulating the DFO NPs in the hydrogel enabled controlled release over 15 d. The DFO NPs, composite hydrogel, and the DFO NPs loaded hydrogel exhibited excellent cytocompatibility and promoted cell proliferationin vitro. Subcutaneous implantation of the composite hydrogel and the DFO NPs loaded hydrogel demonstrated biodegradability, tissue integration, and no obvious adverse effects, evidenced by histological analysis. Furthermore, the DFO NPs loaded composite hydrogel exhibited accelerated wound closure and promoted neovascularisation and granular formation when tested in an excisional skin wound model in mice. These findings highlight the potential of our composite hydrogel system for promoting the faster healing of diabetes-induced skin wounds and oral lesions through its ability to modulate tissue regeneration processes.


Asunto(s)
Materiales Biomiméticos , Deferoxamina , Gelatina , Ácido Hialurónico , Hidrogeles , Nanopartículas , Gelatina/química , Deferoxamina/química , Deferoxamina/farmacología , Animales , Hidrogeles/química , Ácido Hialurónico/química , Nanopartículas/química , Ratones , Materiales Biomiméticos/química , Proliferación Celular/efectos de los fármacos , Cicatrización de Heridas/efectos de los fármacos , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Materiales Biocompatibles/química , Humanos , Porosidad , Regeneración , Biomimética
2.
Cell Death Discov ; 10(1): 204, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693141

RESUMEN

Interferon Gamma Inducible Protein 16 (IFI16) belongs to the HIN-200 protein family and is pivotal in immunological responses. Serving as a DNA sensor, IFI16 identifies viral and aberrant DNA, triggering immune and inflammatory responses. It is implicated in diverse cellular death mechanisms, such as pyroptosis, apoptosis, and necroptosis. Notably, these processes are integral to the emergent concept of PANoptosis, which encompasses cellular demise and inflammatory pathways. Current research implies a significant regulatory role for IFI16 in PANoptosis, particularly regarding cardiac pathologies. This review delves into the complex interplay between IFI16 and PANoptosis in heart diseases, including atherosclerosis, myocardial infarction, heart failure, and diabetic cardiomyopathy. It synthesizes evidence of IFI16's impact on PANoptosis, with the intention of providing novel insights for therapeutic strategies targeting heart diseases.

3.
J Mater Chem B ; 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38712810

RESUMEN

Composite materials can take advantages of the functional benefits of multiple pure nanomaterials to a greater degree than single nanomaterials alone. The UCNPs-MoS2 composite is a nano-application platform that combines upconversion luminescence and photothermal properties. Upconversion nanoparticles (UCNPs) are inorganic nanomaterials with long-wavelength excitation and short-wavelength tunable emission capabilities, and are able to effectively convert near-infrared (NIR) light into visible light for increased photostability. However, UCNPs have a low capacity for absorbing visible light, whereas MoS2 shows better absorption in the ultraviolet and visible regions. By integrating the benefits of UCNPs and MoS2, UCNPs-MoS2 nanocomposites can convert NIR light with a higher depth of detection into visible light for application with MoS2 through fluorescence resonance energy transfer (FRET), which compensates for the issues of MoS2's low tissue penetration light-absorbing wavelengths and expands its potential biological applications. Therefore, starting from the construction of UCNPs-MoS2 nanoplatforms, herein, we review the research progress in biological applications, including biosensing, phototherapy, bioimaging, and targeted drug delivery. Additionally, the current challenges and future development trends of UCNPs-MoS2 nanocomposites for biological applications are also discussed.

4.
Opt Express ; 32(6): 9105-9115, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38571151

RESUMEN

The strong interaction between light and matter is one of the current research hotspots in the field of nanophotonics, and provides a suitable platform for fundamental physics research such as on nanolasers, high-precision sensing in biology, quantum communication and quantum computing. In this study, double Rabi splitting was achieved in a composite structure monolayer MoS2 and a single Ag@Au hollow nanocube (HNC) in room temperature mainly due to the two excitons in monolayer MoS2. Moreover, the tuning of the plasmon resonance peak was realized in the scattering spectrum by adjusting the thickness of the shell to ensure it matches the energy of the two excitons. Two distinct anticrossings are observed at both excitons resonances, and large double Rabi splittings (90 meV and 120 meV) are obtained successfully. The finite-difference time domain (FDTD) method was also used to simulate the scattering spectra of the nanostructures, and the simulation results were in good agreement with the experimental results. Additionally, the local electromagnetic field ability of the Ag@Au hollow HNC was proved to be stronger by calculating and comparing the mode volume of different nanoparticles. Our findings provides a good platform for the realization of strong multi-mode coupling and open up a new way to construct nanoscale photonic devices.

5.
J Tissue Viability ; 33(2): 208-214, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38599978

RESUMEN

OBJECTIVE: In this study, we evaluated the pH (potential of hydrogen) value of diabetic foot ulcers and explored the relationship between the pH value and infection, sinus formation, stasis dermatitis, and the process of healing. METHODS: From October 2022 to June 2023, 99 patients with 106 diabetic foot ulcers were selected. Diabetic foot ulcers were treated in a standardized manner by a professional team. The pH value, area, PUSH (Pressure Ulcer Scale for Healing) score, and the degree of infection of the wounds were compared before and after the treatment. RESULTS: The baseline wound pH value in 76.4% of the patients was in the alkaline range and was closely related to the degree of infection (P < 0.05). As the ulcers healed, the pH decreased. For moderately and severely infected diabetic foot ulcers, each unit decrease in pH was associated with a decrease in the PUSH score of approximately 4.6 points (P < 0.05). The pH values of wounds with surrounding ecchymosis dermatitis were significantly higher than those of wounds without ecchymosis dermatitis (P < 0.05). The pH value of the wound with a sinus tract was higher. After treatment, there was no significant difference in pH value between the patients with and without sinus tracts (P < 0.05). CONCLUSIONS: The measurement of pH value is efficient and simple, and the patient suffers no discomfort in the process. The change in pH helps predict the healing process of diabetic foot ulcers and quickly identify whether there are key factors such as infection and ischemia in the wound. It is suggested that dynamic pH monitoring be included in the whole course evaluation and intervention strategy development of diabetic foot.


Asunto(s)
Pie Diabético , Cicatrización de Heridas , Humanos , Pie Diabético/fisiopatología , Cicatrización de Heridas/fisiología , Masculino , Femenino , Persona de Mediana Edad , Concentración de Iones de Hidrógeno , Anciano , Anciano de 80 o más Años , Adulto
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124328, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38669986

RESUMEN

We designed and developed the probe W-3 for detection of Cu2+. The results showed probe can selectively detect Cu2+, accompanied by noticeable color change. The probe can detect the Cu2+ in water samples and drinks based on absorption detection. In addition, the combination of portable test paper and the smartphone platform obtained great convenience for on-site and visual detection of Cu2+, with satisfactory sensitivity and reliability. More importantly, the fluorescence probe W-3 can be used for the detection of Cu2+ in cells and mice. Therefore, the W-3 provided potential chemical tools for detecting Cu2+ in vitro and vivo.


Asunto(s)
Cobre , Colorantes Fluorescentes , Espectrometría de Fluorescencia , Cobre/análisis , Colorantes Fluorescentes/química , Animales , Espectrometría de Fluorescencia/métodos , Humanos , Ratones , Imagen Óptica/métodos , Células HeLa , Límite de Detección
7.
ACS Sens ; 9(4): 2010-2019, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38602267

RESUMEN

Digital nucleic acid amplification enables the absolute quantification of single molecules. However, due to the ultrasmall reaction volume in the digital system (i.e., short light path), most digital systems are limited to fluorescence signals, while label-free and naked-eye readout remain challenging. In this work, we report a digital nucleic acid plate culture method for label-free, ultrasimple, and naked-eye nucleic acid analysis. As simple as the bacteria culture, the nanoconfined digital loop-mediated isothermal amplification was performed by using polyacrylamide (PAM) hydrogel as the amplification matrix. The nanoconfinement of PAM hydrogel with an ionic polymer chain can remarkably accelerate the amplification of target nucleic acids and the growth of inorganic byproducts, namely, magnesium pyrophosphate particles (MPPs). Compared to that in aqueous solutions, MPPs trapped in the hydrogel with enhanced light scattering characteristics are clearly visible to the naked eye, forming white "colony" spots that can be simply counted in a label-free and instrument-free manner. The MPPs can also be photographed by a smartphone and automatically counted by a machine-learning algorithm to realize the absolute quantification of antibiotic-resistant pathogens in diverse real samples.


Asunto(s)
Resinas Acrílicas , Hidrogeles , Aprendizaje Automático , Técnicas de Amplificación de Ácido Nucleico , Técnicas de Amplificación de Ácido Nucleico/métodos , Hidrogeles/química , Resinas Acrílicas/química , Difosfatos/química , Compuestos de Magnesio/química , Teléfono Inteligente
8.
Adv Healthc Mater ; : e2400102, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38657167

RESUMEN

The phosphorylated noncollagenous proteins (NCPs) play a vital role in manipulating biomineralization, while the mechanism of phosphorylation of NCPs in intrafibrillar mineralization of collagen fibril has not been completely deciphered. Poly(vinylphosphonic acid) (PVPA) and sodium trimetaphosphate (STMP) as templating analogs of NCPs induce hierarchical mineralization in cooperation with indispensable sequestration analogs such as polyacrylic acid (PAA) via polymer-induced liquid-like precursor (PILP) process. Herein, STMP-Ca and PVPA-Ca complexes are proposed to achieve rapid intrafibrillar mineralization through polyelectrolyte-Ca complexes pre-precursor (PCCP) process. This strategy is further verified effectively for remineralization of demineralized dentin matrix both in vitro and in vivo. Although STMP micromolecule fails to stabilize amorphous calcium phosphate (ACP) precursor, STMP-Ca complexes facilely permeate into intrafibrillar interstices and trigger phase transition of ACP to hydroxyapatite within collagen. In contrast, PVPA-stabilized ACP precursors lack liquid-like characteristic and crystallize outside collagen due to rigid conformation of PVPA macromolecule, while PVPA-Ca complexes infiltrate into partial intrafibrillar intervals under electrostatic attraction and osmotic pressure as evidenced by intuitionistic 3D stochastic optical reconstruction microscopy (3D-STORM). The study not only extends the variety and size range of polyelectrolyte for PCCP process but also sheds light on the role of phosphorylation for NCPs in biomineralization.

9.
J Control Release ; 370: 230-238, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38643937

RESUMEN

Colorectal carcinoma (CRC) has become one of the most prevalent malignant tumors and exploring a potential therapeutic strategy with diminished drug-associated adverse effects to combat CRC is urgent. Herein, we designed a pH-responsive polymer to efficiently encapsulate a stimulator of interferon genes (STING) agonist (5,6- dimethylxanthenone-4-acetic acid, termed ASA404) and a common clinically used chemotherapeutic agent (1-hexylcarbamoyl-5-fluorouracil, termed HCFU). Investigations in vitro demonstrated that polymer encapsulation endowed the system with a pH-dependent disassembly behavior (pHt 6.37), which preferentially selected cancerous cells with a favorable dose reduction (dose reduction index (DRI) of HCFU was 4.09). Moreover, the growth of CRC in tumor-bearing mice was effectively suppressed, with tumor suppression rates up to 94.74%, and a combination index (CI) value of less than one (CI = 0.41 for CT26 cell lines), indicating a significant synergistic therapeutic effect. Histological analysis of the tumor micro-vessel density and enzyme-linked immunosorbent assay (ELISA) tests indicated that the system increased TNF-α and IFN-ß levels in serum. Therefore, this research introduces a pH-responsive polymer-based theranostic platform with great potential for immune-chemotherapeutic and anti-vascular combination therapy of CRC.

10.
Biosens Bioelectron ; 254: 116233, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38518563

RESUMEN

Intracellular microenvironment (viscosity and polarity) and peroxynitrite ions (ONOO-) are involved in maintaining cell morphology, cell function, and signaling so that it is crucial to explore their level changes in vitro and vivo. In this work, we designed and synthesized a mitochondria-targeted fluorescence probe XBL for monitoring the dynamic changes of viscosity, polarity, and ONOO- based on TICT and ICT mechanism. The fluorescence spectra showed obvious changes for polarity at 500 nm as well as ONOO- and viscosity at 660 nm, respectively. The XBL can image simultaneously viscosity, polarity, and ONOO- in cells, and the results showed excess ONOO- leaded to the increase of viscosity in mitochondrial. The ferroptosis process was accompanied by increase of intracellular viscosity and ONOO- levels (or decrease of polarity), which allowed us to better understand the relevant physiological and pathological processes. The XBL can distinguish normal cells and cancerous cells by the fluorescence intensity changes in green and red channels, and image viscosity in inflamed mice. Thus, XBL can provided the chemical tool to understand the physiological and pathological mechanisms of disease by simultaneous detection of viscosity, polarity and ONOO-.


Asunto(s)
Técnicas Biosensibles , Colorantes Fluorescentes , Ratones , Animales , Viscosidad , Células RAW 264.7 , Mitocondrias , Ácido Peroxinitroso
11.
FASEB J ; 38(6): e23563, 2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38498358

RESUMEN

Acute kidney injury (AKI), a prevalent clinical syndrome, involves the participation of the nervous system in neuroimmune regulation. However, the intricate molecular mechanism that governs renal function regulation by the central nervous system (CNS) is complex and remains incompletely understood. In the present study, we found that the upregulated expression of lncTCONS_00058568 in lower thoracic spinal cord significantly ameliorated AKI-induced renal tissue injury, kidney morphology, inflammation and apoptosis, and suppressed renal sympathetic nerve activity. Mechanistically, the purinergic ionotropic P2X7 receptor (P2X7R) was overexpressed in AKI rats, whereas lncTCONS_00058568 was able to suppress the upregulation of P2X7R. In addition, RNA sequencing data revealed differentially expressed genes associated with nervous system inflammatory responses after lncTCONS_00058568 was overexpressed in AKI rats. Finally, the overexpression of lncTCONS_00058568 inhibited the activation of PI3K/Akt and NF-κB signaling pathways in spinal cord. Taken together, the results from the present study show that lncTCONS_00058568 overexpression prevented renal injury probably by inhibiting sympathetic nerve activity mediated by P2X7R in the lower spinal cord subsequent to I/R-AKI.


Asunto(s)
Lesión Renal Aguda , Receptores Purinérgicos P2X7 , Ratas , Animales , Ratas Sprague-Dawley , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Lesión Renal Aguda/metabolismo , Médula Espinal/metabolismo
12.
Autophagy ; 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38390831

RESUMEN

Infectious diseases, such as Mycobacterium tuberculosis (Mtb)-caused tuberculosis (TB), remain a global threat exacerbated by increasing drug resistance. Host-directed therapy (HDT) is a promising strategy for infection treatment through targeting host immunity. However, the limited understanding of the function and regulatory mechanism of host factors involved in immune defense against infections has impeded HDT development. Here, we identify the ubiquitin ligase (E3) TRIM27 (tripartite motif-containing 27) as a host protective factor against Mtb by enhancing host macroautophagy/autophagy flux in an E3 ligase activity-independent manner. Mechanistically, upon Mtb infection, nuclear-localized TRIM27 increases and functions as a transcription activator of TFEB (transcription factor EB). Specifically, TRIM27 binds to the TFEB promoter and the TFEB transcription factor CREB1 (cAMP responsive element binding protein 1), thus enhancing CREB1-TFEB promoter binding affinity and promoting CREB1 transcription activity toward TFEB, eventually inducing autophagy-related gene expression as well as autophagy flux activation to clear the pathogen. Furthermore, TFEB activator 1 can rescue TRIM27 deficiency-caused decreased autophagy-related gene transcription and attenuated autophagy flux, and accordingly suppressed the intracellular survival of Mtb in cell and mouse models. Taken together, our data reveal that TRIM27 is a host defense factor against Mtb, and the TRIM27-CREB1-TFEB axis is a potential HDT-based TB target that can enhance host autophagy flux.

13.
Plant Physiol ; 194(4): 2616-2630, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38206190

RESUMEN

The plant cuticle is essential in plant defense against biotic and abiotic stresses. To systematically elucidate the genetic architecture of maize (Zea mays L.) cuticular wax metabolism, 2 cuticular wax-related traits, the chlorophyll extraction rate (CER) and water loss rate (WLR) of 389 maize inbred lines, were investigated and a genome-wide association study (GWAS) was performed using 1.25 million single nucleotide polymorphisms (SNPs). In total, 57 nonredundant quantitative trait loci (QTL) explaining 5.57% to 15.07% of the phenotypic variation for each QTL were identified. These QTLs contained 183 genes, among which 21 strong candidates were identified based on functional annotations and previous publications. Remarkably, 3 candidate genes that express differentially during cuticle development encode ß-ketoacyl-CoA synthase (KCS). While ZmKCS19 was known to be involved in cuticle wax metabolism, ZmKCS12 and ZmKCS3 functions were not reported. The association between ZmKCS12 and WLR was confirmed by resequencing 106 inbred lines, and the variation of WLR was significant between different haplotypes of ZmKCS12. In this study, the loss-of-function mutant of ZmKCS12 exhibited wrinkled leaf morphology, altered wax crystal morphology, and decreased C32 wax monomer levels, causing an increased WLR and sensitivity to drought. These results confirm that ZmKCS12 plays a vital role in maize C32 wax monomer synthesis and is critical for drought tolerance. In sum, through GWAS of 2 cuticular wax-associated traits, this study reveals comprehensively the genetic architecture in maize cuticular wax metabolism and provides a valuable reference for the genetic improvement of stress tolerance in maize.


Asunto(s)
Estudio de Asociación del Genoma Completo , Zea mays , Zea mays/genética , Zea mays/metabolismo , Sitios de Carácter Cuantitativo/genética , Fenotipo , Agua/metabolismo , Hojas de la Planta/genética
14.
Nanoscale Adv ; 6(2): 467-480, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38235102

RESUMEN

Calcium carbonate (CaCO3), possessing excellent biocompatibility, bioactivity, osteoconductivity and superior biodegradability, may serve as an alternative to hydroxyapatite (HAp), the natural inorganic component of bone and dentin. Intrafibrillar mineralization of collagen with CaCO3 was achieved through the polymer-induced liquid precursor (PILP) process for at least 2 days. This study aims to propose a novel pathway for rapid intrafibrillar mineralization with CaCO3 by sequential application of the carbonate-bicarbonate buffer and polyaspartic acid (pAsp)-Ca suspension. Fourier transform infrared (FTIR) spectroscopy, zeta potential measurements, atomic force microscopy/Kelvin probe force microscopy (AFM/KPFM), and three-dimensional stochastic optical reconstruction microscopy (3D STORM) demonstrated that the carbonate-bicarbonate buffer significantly decreased the surface potential of collagen and CO32-/HCO3- ions could attach to collagen fibrils via hydrogen bonds. The electropositive pAsp-Ca complexes and free Ca2+ ions are attracted to and interact with CO32-/HCO3- ions through electrostatic attractions to form amorphous calcium carbonate that crystallizes gradually. Moreover, like CaCO3, strontium carbonate (SrCO3) can deposit inside the collagen fibrils through this pathway. The CaCO3-mineralized collagen gels exhibited better biocompatibility and cell proliferation ability than SrCO3. This study provides a feasible strategy for rapid collagen mineralization with CaCO3 and SrCO3, as well as elucidating the tissue engineering of CaCO3-based biomineralized materials.

15.
ACS Macro Lett ; : 130-137, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38205953

RESUMEN

Double-network (DN) hydrogels are tough soft materials, and the high fracture resistance can be attributed to the formation of a large damage zone (internal fracture of the brittle first network) around the crack tip. In this work, we studied the effect of predamage in the brittle network on the fracture energy Γc of DN hydrogels. The prestretch of the first network was induced by prestretching the DN gels to prestretch ratio λpre. Depending on the λpre in relative to the yielding stretch ratio λy, above which the brittle first network starts to break into discontinuous fragments inside DN gels, two regimes were observed: Γc decreases monotonically with λpre in the regime of λpre < λy, mainly due to the decreasing contribution from the bulk internal damage, while Γc increases with λpre in the regime of λpre > λy. The latter can be understood by the release of the hidden length of the stretchable network strands by the rupture of the brittle network, whereby the broken fragments of the brittle network could serve as sliding cross-links to further delocalize the stress-concentration near the crack tip and prevent chain scissions.

16.
Biol Res ; 57(1): 3, 2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38217055

RESUMEN

BACKGROUND: Sensorineural hearing loss (SNHL) poses a major threat to both physical and mental health; however, there is still a lack of effective drugs to treat the disease. Recently, novel biological therapies, such as mesenchymal stem cells (MSCs) and their products, namely, exosomes, are showing promising therapeutic potential due to their low immunogenicity, few ethical concerns, and easy accessibility. Nevertheless, the precise mechanisms underlying the therapeutic effects of MSC-derived exosomes remain unclear. RESULTS: Exosomes derived from MSCs reduced hearing and hair cell loss caused by neomycin-induced damage in models in vivo and in vitro. In addition, MSC-derived exosomes modulated autophagy in hair cells to exert a protective effect. Mechanistically, exogenously administered exosomes were internalized by hair cells and subsequently upregulated endocytic gene expression and endosome formation, ultimately leading to autophagy activation. This increased autophagic activity promoted cell survival, decreased the mitochondrial oxidative stress level and the apoptosis rate in hair cells, and ameliorated neomycin-induced ototoxicity. CONCLUSIONS: In summary, our findings reveal the otoprotective capacity of exogenous exosome-mediated autophagy activation in hair cells in an endocytosis-dependent manner, suggesting possibilities for deafness treatment.


Asunto(s)
Exosomas , Neomicina , Neomicina/toxicidad , Neomicina/metabolismo , Exosomas/metabolismo , Células Ciliadas Auditivas , Autofagia/fisiología
17.
Adv Sci (Weinh) ; 11(5): e2300509, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37949677

RESUMEN

Keratins are an integral part of cell structure and function. Here, it is shown that ectopic expression of a truncated isoform of keratin 81 (tKRT81) in breast cancer is upregulated in metastatic lesions compared to primary tumors and patient-derived circulating tumor cells, and is associated with more aggressive subtypes. tKRT81 physically interacts with keratin 18 (KRT18) and leads to changes in the cytosolic keratin intermediate filament network and desmosomal plaque formation. These structural changes are associated with a softer, more elastically deformable cancer cell with enhanced adhesion and clustering ability leading to greater in vivo lung metastatic burden. This work describes a novel biomechanical mechanism by which tKRT81 promotes metastasis, highlighting the importance of the biophysical characteristics of tumor cells.


Asunto(s)
Neoplasias de la Mama , Queratinas Específicas del Pelo , Femenino , Humanos , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Expresión Génica Ectópica , Queratinas Específicas del Pelo/genética , Queratinas Específicas del Pelo/metabolismo , Isoformas de Proteínas/genética
18.
An Bras Dermatol ; 99(2): 210-222, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38030537

RESUMEN

BACKGROUND: Cutaneous squamous cell carcinoma (cSCC) develops from epithelial keratinocytes by dysregulation of self-renewal and differentiation. Recent studies have found that the size and number of cSCC tumors gradually decrease or even disappear after HPV vaccination. However, the role of the HPV vaccine in the cSCC mechanism is poorly understood. OBJECTIVE: The aim of this study is to investigate the effect and mechanism of the HPV vaccine in cSCC. METHODS: Immunofluorescence was used to study the immune infiltrating cells in the tumor tissues of patients with cSCC. The effects of the HPV vaccine on cSCC cells and tissues were studied by Cell Culture, Real-time PCR, Western Blot, Cytotoxicity Assay, Enzyme-linked Immunosorbent Assay, m6A Blotting, CCK-8 Assay, m6A Ribonucleic acid Methylation Quantification and tumor transplantation. RESULTS: The HPV vaccine enhanced the toxic effect of CD8+T cells on cSCC cells and promoted the secretion of multiple cytokines by CD8+T cells. In addition, HPV vaccines can increase tumor sensitivity to anti-PD-1 therapy by downregulating METTL3 in tumor tissue, with the combination of HPV vaccine and PD-1 monoclonal antibodies producing enhanced immune cell infiltration compared to PD-1 blockade alone. STUDY LIMITATIONS: It is important to note the limitations of this study, including the small sample size, the construction of the mouse model, and the choice of HPV vaccine and PD-1 monoclonal antibody, which may limit the generalization of our findings to a wider population. CONCLUSIONS: It is hoped that this research will contribute to a deeper understanding of the role of the HPV vaccine in the treatment of cSCC. HPV vaccine is expected to become an important approach to alleviate the development of cSCC.


Asunto(s)
Carcinoma de Células Escamosas , Vacunas contra Papillomavirus , Neoplasias Cutáneas , Animales , Ratones , Humanos , Carcinoma de Células Escamosas/patología , Neoplasias Cutáneas/patología , Vacunas contra Papillomavirus/uso terapéutico , Receptor de Muerte Celular Programada 1 , Inmunoterapia , Metiltransferasas
19.
Biol. Res ; 57: 3-3, 2024. ilus, graf, tab
Artículo en Inglés | LILACS | ID: biblio-1550058

RESUMEN

BACKGROUND: Sensorineural hearing loss (SNHL) poses a major threat to both physical and mental health; however, there is still a lack of effective drugs to treat the disease. Recently, novel biological therapies, such as mesenchymal stem cells (MSCs) and their products, namely, exosomes, are showing promising therapeutic potential due to their low immunogenicity, few ethical concerns, and easy accessibility. Nevertheless, the precise mechanisms underlying the therapeutic effects of MSC-derived exosomes remain unclear. RESULTS: Exosomes derived from MSCs reduced hearing and hair cell loss caused by neomycin-induced damage in models in vivo and in vitro. In addition, MSC-derived exosomes modulated autophagy in hair cells to exert a protective effect. Mechanistically, exogenously administered exosomes were internalized by hair cells and subsequently upregulated endocytic gene expression and endosome formation, ultimately leading to autophagy activation. This increased autophagic activity promoted cell survival, decreased the mitochondrial oxidative stress level and the apoptosis rate in hair cells, and ameliorated neomycin-induced ototoxicity. CONCLUSIONS: In summary, our findings reveal the otoprotective capacity of exogenous exosome-mediated autophagy activation in hair cells in an endocytosis-dependent manner, suggesting possibilities for deafness treatment.


Asunto(s)
Neomicina/metabolismo , Neomicina/toxicidad , Exosomas/metabolismo , Autofagia/fisiología , Células Ciliadas Auditivas
20.
Acad Radiol ; 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38065749

RESUMEN

RATIONALE AND OBJECTIVES: To investigate the value of contrast-enhanced microflow imaging (CEUS-MFI) in distinguishing benign and malignant breast masses. METHODS: A total of 116 breast masses classified as Breast Imaging Reporting and Data System (BI-RADS) category 3-5 by ultrasound (US) were included. Both contrast-enhanced ultrasound (CEUS) and CEUS-MFI were performed before excision or biopsy, with features and diagnostic efficiency analyzed. The US and CEUS BI-RADS 4A masses were also re-assessed by CEUS-MFI. RESULTS: The features of CEUS-MFI including both interior and peripheral enlarged, twisted vessels (both P < 0.05), penetrating vessels (P = 0.007), and radial/spiculated vessels (P < 0.001) were more frequently detected in malignant masses, while peripheral annular vessels were mostly observed in benign masses (P < 0.001). Interestingly, a significant difference in the orientation of penetrating vessels between benign and malignant masses was found (P < 0.001), with parallel orientation mostly displayed in benign masses, while vertical or multiple-direction orientation mostly displayed in malignant masses. The microvascular architecture of breast masses was categorized into five patterns: avascular, line-like, tree-like, root hair-like, and crab claw-like pattern. Benign masses mainly displayed tree-like pattern (77.1% vs 10.9%, P < 0.05); malignant masses mainly displayed root hair-like (34.8% vs 5.7%, P < 0.05) and crab claw-like patterns (50.0% vs 1.4%, P < 0.05). The diagnostic efficiency of CEUS-MFI was higher relative to CEUS and US. In addition, CEUS-MFI decreased the biopsy rates of US and CEUS BI-RADS 4A masses without missing malignancies. CONCLUSION: CEUS-MFI could be a valuable and promising technique in diagnosis of breast masses, and could provide more diagnostic information for radiologists.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...