Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
1.
Oecologia ; 205(1): 69-80, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38683388

RESUMEN

Hard limestone substrates, which are extensively distributed, are believed to exacerbate drought and increase the difficulty of restoration in vulnerable karst regions. Fissures in such substrates may alleviate the negative effect of drought on plants, but the underlying mechanisms remain poorly understood. In a two-way factorial block design, the growth and photosynthesis of 2-year-old Phoebe zhennan seedlings were investigated in two water availabilities (high versus low) and three stimulated fissure habitat groups (soil, soil-filled fissure and non-soil-filled fissure). Moreover, the fissure treatments included both small and big fissures. Compared to the soil group, the non-soil-filled fissure group had decreased the total biomass, root biomass, total root length, and the root length of fine roots in the soil layer at both water availabilities, but increased net photosynthetic rate (Pn) and retained stable water use efficiency (WUE) at low water availability. However, there were no significant differences between the soil-filled fissure group and soil group in the biomass accumulation and allocation as well as Pn. Nevertheless, the SF group decreased the root distribution in total and in the soil layer, and also increased WUE at low water availability. Across all treatments, fissure size had no effect on plant growth or photosynthesis. Karst fissures filled with soil can alleviate drought impacts on plant root growth, which involves adjusting root distribution strategies and increasing water use efficiency. These results suggest that rock fissures can be involved in long-term plant responses to drought stress and vegetation restoration in rocky mountain environments under global climate change.


Asunto(s)
Sequías , Fotosíntesis , Suelo , Biomasa , Agua , Raíces de Plantas/crecimiento & desarrollo , Ecosistema
2.
Ecol Evol ; 14(1): e10853, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38259957

RESUMEN

The invasion of alien plant species threatens the composition and diversity of native communities. However, the invasiveness of alien plants and the resilience of native communities are dependent on the interactions between biotic and abiotic factors, such as natural enemies and nutrient availability. In our study, we simulated the invasion of nine invasive plant species into native plant communities using two levels of nutrient availability and suppression of natural enemies. We evaluated the effect of biotic and abiotic factors on the response of alien target species and the resistance of native communities to invasion. The results showed that the presence of enemies (enemy release) increased the biomass proportion of alien plants while decreasing that of native communities in the absence of nutrient addition. Furthermore, we also found that the negative effect of enemy suppression on the evenness of the native community and the root-to-shoot ratio of alien target species was greatest under nutrient addition. Therefore, nutrient-poor and natural enemies might promote the invasive success of alien species in native communities, whereas nutrient addition and enemy suppression can better enhance the resistance of native plant communities to invasion.

3.
Environ Res ; 246: 118079, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38160967

RESUMEN

Remanufacturing has attracted much attention for its enormous potential in resource recycling and low-carbon emission reduction. To investigate the effects of different government intervention policies on remanufacturing and carbon emissions, two profit maximization models of the capital-constrained manufacturer under carbon tax and low-carbon credit policies are constructed respectively. Then, through theoretical and numerical analyses, some significant findings are drawn: (1) Both carbon tax and low-carbon credit policies can encourage capital-constrained manufacturers to produce more remanufactured products, but which intervention policy is more advantageous also depends on the carbon emission cost of new products or financing cost of the remanufactured products. (2) Although carbon tax policy can effectively control carbon emissions, it is always at the expense of both capital-constrained manufacturers and consumers; while low-carbon credit policy can help capital-constrained manufacturers achieve the goal of win-win economic and environmental benefits when the remanufacturing carbon savings advantages are more apparent. (3) From the perspective of consumer benefits, carbon tax is more advantageous when the consumer willingness to pay for remanufactured products is higher; otherwise, low-carbon credit policy should be implemented. (4) The higher the environmental damage coefficient is, the more it can highlight the advantages of the two intervention policies in social welfare enhancement, especially the carbon tax policy; and when the environmental damage coefficient is given, the stronger the consumers' willingness to pay for remanufactured products is, the more it is conducive to reducing the negative effects caused by the carbon tax or low-carbon credit policy in social welfare enhancement, or increasing the corresponding positive effects. Based on above findings, some managerial insights and policy implications are provided to capital-constrained manufacturers and policy-makers.


Asunto(s)
Carbono , Políticas , Costos y Análisis de Costo , Gobierno , Reciclaje , Comercio
6.
Int Immunopharmacol ; 121: 110222, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37343367

RESUMEN

BACKGROUND AND PURPOSE: Panaxynol (PNN) is a common natural minor component in Umbelliferae plants. Many clinical studies have shown that PNN exhibits nutritional value and anti-inflammatory and other pharmacological activities. However, whether PNN can mediate cardiac ischemia/reperfusion injury (IRI) remains unclear. Here, we aimed to determine the potential effects of PNN on myocardial IRI. METHODS: Myocardial IRI was stimulated in a mouse IRI model, and neonatal rat ventricle myocytes (NRVMs) were exposed to hypoxia/reoxygenation to construct in an vitro model. Myocardial infarction size, myocardial tissue injury, myocardial apoptotic index, hemodynamic monitoring, pyroptosis-related proteins, cardiac enzyme activities and inflammatory responses were examined to assess myocardial injury. RESULTS: It was found that PNN administration markedly reduced myocardial infarct size and apoptosis, suppressed myocardial damage and cell pyroptosis, attenuated pro-inflammatory cytokines and neutrophil infiltration via NLRP3 inhibitor. More importantly, PNN treatment remarkably decreased the expression of TLR4/NF-κB pathway-associated proteins and NLRP3-related pyroptosis proteins by HMGB1 inhibitor. PNN also enhanced cell viability, reduced cardiac enzyme activities, suppressed apoptosis and attenuated inflammation in the isolated NRVMs. Furthermore, vitro studies indicated that MCC950 (a NLRP3 inhibitor) increased the anti-inflammatory and anti-apoptotic effects of PNN on NRVMs via HMGB1/TLR4 pathway. CONCLUSION: To sum up, our results demonstrate that PNN exhibits a cardioprotective effect by modulating heart IRI-induced apoptosis and pyroptosis via HMGB1/TLR4/NF-κB pathway, thereby inhibiting NLRP3 inflammasome stimulation.


Asunto(s)
Proteína HMGB1 , Infarto del Miocardio , Daño por Reperfusión Miocárdica , Ratones , Ratas , Animales , FN-kappa B/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Piroptosis , Proteína HMGB1/metabolismo , Receptor Toll-Like 4/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Apoptosis , Miocitos Cardíacos/metabolismo , Inflamasomas/metabolismo , Infarto del Miocardio/metabolismo , Modelos Animales de Enfermedad
7.
Biophys J ; 122(12): 2518-2530, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37290437

RESUMEN

Single-molecule data are of great significance in biology, chemistry, and medicine. However, new experimental tools to characterize, in a multiplexed manner, protein bond rupture under force are still needed. Acoustic force spectroscopy is an emerging manipulation technique which generates acoustic waves to apply force in parallel on multiple microbeads tethered to a surface. We here exploit this configuration in combination with the recently developed modular junctured-DNA scaffold that has been designed to study protein-protein interactions at the single-molecule level. By applying repetitive constant force steps on the FKBP12-rapamycin-FRB complex, we measure its unbinding kinetics under force at the single-bond level. Special efforts are made in analyzing the data to identify potential pitfalls. We propose a calibration method allowing in situ force determination during the course of the unbinding measurement. We compare our results with well-established techniques, such as magnetic tweezers, to ensure their accuracy. We also apply our strategy to study the force-dependent rupture of a single-domain antibody with its antigen. Overall, we get a good agreement with the published parameters that have been obtained at zero force and population level. Thus, our technique offers single-molecule precision for multiplexed measurements of interactions of biotechnological and medical interest.


Asunto(s)
Acústica , ADN , Proteínas , Análisis Espectral , Análisis Espectral/métodos , ADN/química , Proteínas/química , Mapas de Interacción de Proteínas , Proteínas de Unión a Tacrolimus/química , Proteínas de Unión a Tacrolimus/metabolismo , Sirolimus/química , Sirolimus/metabolismo , Proteína 1A de Unión a Tacrolimus/química , Proteína 1A de Unión a Tacrolimus/metabolismo
8.
Am J Sports Med ; 51(3): 634-641, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36734479

RESUMEN

BACKGROUND: There are limited studies designed by matching related factors to compare clinical outcomes and return to sport (RTS) between patients undergoing revision anterior cruciate ligament reconstruction (R-ACLR) and primary ACLR (P-ACLR). PURPOSE: (1) To compare the outcomes between R-ACLR and P-ACLR in a matched-pair analysis with 3- to 5-year follow-up and (2) to evaluate patient-reported factors for not returning to preinjury-level sport. STUDY DESIGN: Cohort study; Level of evidence, 4. METHODS: Patients who underwent R-ACLR between September 2016 and November 2018 were propensity matched by age, sex, body mass index, passive anterior tibial subluxation, and generalized hypermobility in a 1:1 ratio to patients who underwent P-ACLR during the same period. By combining in person follow-up at 2 years postoperatively and telemedicine interview at the final follow-up (January 2022), knee stability and clinical scores were compared, including International Knee Documentation Committee (IKDC), Lysholm, and Tegner. Status of RTS was requested, specifically whether the patient returned to preinjury level of sport. Patient-reported reasons for not returning were analyzed. RESULTS: There were 63 matched pairs in the present study. Knee stability was similar in terms of KT-2000 arthrometer, Lachman test, and pivot-shift test results between the groups at 2 years of follow-up. At the final follow-up, no significant difference was found between groups for postoperative clinical scores (IKDC, Tegner, and Lysholm) (P > .05). There was a significant difference in total RTS: 53 (84.1%) in the P-ACLR cohort and 41 (65.1%) in the R-ACLR cohort (P = .014). No significant difference was shown in terms of RTS at the same level: 35 (55.6%) in P-ACLR and 31 (49.2%) in R-ACLR (P = .476). Significantly more patients showed fear of reinjury: 26 of 32 (81.3%) in the R-ACLR group as compared with 15 of 28 (53.5%) in the P-ACLR group (P < .021). CONCLUSION: R-ACLR resulted in similar clinical scores (IKDC, Tegner, and Lysholm) but significantly lower RTS versus P-ACLR at 3 to 5 years of follow-up. Fear of reinjury was the most common factor that caused sport changes in patients with R-ACLR.


Asunto(s)
Lesiones del Ligamento Cruzado Anterior , Lesiones de Repetición , Humanos , Ligamento Cruzado Anterior/cirugía , Estudios de Cohortes , Estudios de Seguimiento , Lesiones del Ligamento Cruzado Anterior/cirugía , Análisis por Apareamiento , Articulación de la Rodilla/cirugía
9.
J Med Chem ; 66(3): 1742-1760, 2023 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-36662031

RESUMEN

Most patients with senile osteoporosis (SOP) are severely deficient in bone mass, and treatments using bone resorption inhibitors, such as bisphosphonates, have shown limited efficacy. Small-molecule osteogenesis-promoting drugs are required to improve the treatment for this disease. Previously, we demonstrated that a compound with a benzofuran-like structure promoted bone formation by upregulating BMP-2, and it exhibited a therapeutic effect in SAMP-6 mice, glucocorticoid-induced osteoporosis rats, and ovariectomized rats. In this study, aged C57 and SAMP-6 mice models were used to investigate the therapeutic and preventive effects of compound 125 on SOP. scRNA-seq analysis showed that BMP-2 upregulation is the mechanism through which 125 accelerates bone turnover and increases the proportion of osteoblasts. We evaluated the structure-activity relationship of the candidate drugs and found that the derivative I-9 showed significantly higher efficacy than 125 and teriparatide in the zebrafish osteoporosis model. This study provides a foundation for the development of SOP drugs.


Asunto(s)
Benzofuranos , Osteoporosis , Ratas , Ratones , Animales , Pez Cebra , Osteoporosis/tratamiento farmacológico , Osteoporosis/prevención & control , Osteogénesis , Osteoblastos , Benzofuranos/farmacología , Benzofuranos/uso terapéutico , Benzofuranos/química , Relación Estructura-Actividad
10.
Ecol Appl ; : e2756, 2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-36196517

RESUMEN

Functional traits are frequently proposed to determine the invasiveness of alien species. However, few empirical studies have directly manipulated functional traits and tested their importance in the invasion success of alien species into native plant communities, particularly under global change. We manipulated clonal integration (a key clonal functional trait) of four alien clonal plants by severing inter-ramet connections or keeping them intact and simulated their invasion into native plant communities with two levels of species diversity, population density and nutrient availability. High community diversity and density impeded the invasion success of the alien clonal plants. Clonal integration of the alien plants promoted their invasion success, particularly in the low-density communities associated with low species diversity or nutrient addition, which resulted in a negative correlation between the performance of alien plants and native communities, as expected under global change. Thus, clonal integration can favor the invasion success of alien clonal plants into degraded resident communities with a high degree of disturbance and eutrophication. Our findings confirm the role of clonal functional traits in facilitating alien plant invasions into native plant communities and suggest that clonal functional traits should be considered to efficiently restore degraded communities heavily invaded by alien clonal plants.

14.
Front Plant Sci ; 13: 869072, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35720536

RESUMEN

Heavy metal (HM) contamination resulting from industrialization and urbanization during the Anthropocene along with plant invasion can severely threaten the growth and adaptation of local flora. Invasive alien plant species generally exhibit a growth pattern consistent with their functional traits in non-contaminated environments in the introduced range. However, it remains unclear whether invasive alien plants have an advantage over native plants in contaminated environments and whether this growth pattern is dependent on the adaptation of their leaf functional traits. Here, we selected two congeneric pairs of invasive alien and native grasses that naturally co-exist in China and are commonly found growing in contaminated soil. To evaluate the effect of cadmium (Cd) on the structural and physiological leaf traits, we grew all four species in soil contaminated without or with 80 mg/kg Cd. Invasive plants contained significantly higher concentrations of Cd in all three organs (leaf, stem, and root). They displayed a higher transfer factor and bioconcentration factor (BCF) of shoot and root than natives, indicating that invasive species are potential Cd hyperaccumulators. Invasive plants accumulated polyphenol oxidase (PPO) to higher levels than natives and showed similar patterns of leaf structural and physiological traits in response to changes in Cd bioconcentration. The quantifiable leaf structural traits of invasive plants were significantly greater (except for stomatal density and number of dead leaves) than native plants. Leaf physiological traits, chlorophyll content, and flavonoid content were also significantly higher in invasive plants than in natives under Cd stress conditions after 4 weeks, although nitrogen balance index (NBI) showed no significant difference between the two species. Chlorophyll fluorescence parameters decreased, except for the quantum yield of photosystem II (ΦPSII) and the proportion of open photosystem II (qP), which increased under Cd stress conditions in both species. However, invasive plants exhibited higher fluorescence parameters than natives under Cd stress, and the decrement observed in invasive plants under Cd stress was greater than that in natives. High Cd adaptation of invasive grasses over natives suggests that invasive plants possess optimal leaf structural and physiological traits, which enable them to adapt to stressful conditions and capture resources more quickly than natives. This study further emphasizes the potential invasion of alien plants in contaminated soil environments within the introduced range. To a certain extent, some non-invasive alien plants might adapt to metalliferous environments and serve as hyperaccumulator candidates in phytoremediation projects in contaminated environments.

15.
Knee Surg Sports Traumatol Arthrosc ; 30(11): 3760-3766, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35579682

RESUMEN

PURPOSE: The aim of this study was to evaluate the correlation between tibial tuberosity-trochlear groove distance (TT-TG) and body height or knee size, and to find height-related pathologic thresholds of increased TT-TG. METHODS: One-hundred and fifty-three patients with recurrent patellar instability and 151 controls were included. The TT-TG was measured on axial computed tomography (CT) images. Femora width and tibial width were selected to represent knee size. The correlation of TT-TG and gender, body height, femora width, and tibial width was evaluated. The height-related pathologic threshold of increased TT-TG was produced according to Dejour's method. To combine TT-TG with body height and knee size, three new indexes were introduced, ratio of TT-TG to body height (RTH), ratio of TT-TG to femoral width (RTF), and ratio of TT-TG to tibial width (RTT). The ability to predict patellar instability was assessed by the receiver-operating characteristic (ROC) curve, odds ratios (ORs), sensitivity, and specificity. RESULTS: In patients with patellar instability, TT-TG showed significantly correlation with patient height, femoral width, and tibial width respectively (range r = 0.266-0.283). This correlation was not found in the control group. The pathologic threshold of TT-TG was 18 mm in patients < 169 cm (53%), and the mean TT-TG was 21 mm in patients ≥ 169 cm (54%). There was significant difference in RTH, RTF, and RTT between the two groups. RTH, RTF and RTT have similar large area under the curve (AUC) with TT-TG. CONCLUSIONS: TT-TG showed significant correlation with body height and knee size, respectively. The pathologic threshold of increased TT-TG was suggested to be 21 mm for patients [Formula: see text] 169 cm and 18 mm for patients [Formula: see text] 169 cm. Body height-related pathologic threshold provided a supplement for indications of tibial tuberosity medialization. LEVEL OF EVIDENCE: IV.


Asunto(s)
Inestabilidad de la Articulación , Luxación de la Rótula , Articulación Patelofemoral , Humanos , Inestabilidad de la Articulación/diagnóstico por imagen , Inestabilidad de la Articulación/patología , Articulación de la Rodilla/diagnóstico por imagen , Articulación de la Rodilla/patología , Imagen por Resonancia Magnética , Luxación de la Rótula/patología , Articulación Patelofemoral/patología , Tibia/diagnóstico por imagen , Tibia/patología
18.
Front Plant Sci ; 13: 994367, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36684796

RESUMEN

Introduction: The factors that determine the growth and spread advantages of an alien plant during the invasion process remain open to debate. The genetic diversity and differentiation of an invasive plant population might be closely related to its growth adaptation and spread in the introduced range. However, little is known about whether phenotypic and genetic variation in invasive plant populations covary during the invasion process along invaded geographic distances. Methods: In a wild experiment, we examined the genetic variation in populations of the aggressively invasive species Erigeron annuus at different geographical distances from the first recorded point of introduction (FRPI) in China. We also measured growth traits in the wild and common garden experiments, and the coefficient of variation (CV) of populations in the common garden experiments. Results and discussion: We found that E. annuus populations had better growth performance (i.e., height and biomass) and genetic diversity, and less trait variation, in the long-term introduced region (east) than in the short-term introduced region (west). Furthermore, population growth performance was significantly positively or negatively correlated with genetic diversity or genetic variation. Our results indicate that there was parallel genetic and phenotypic differentiation along the invaded geographic distance in response to adaptation and spread, and populations that entered introduced regions earlier had consistently high genetic diversity and high growth dominance. Growth and reproduction traits can be used as reliable predictors of the adaptation and genetic variation of invasive plants.

19.
J Food Biochem ; 45(9): e13898, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34378802

RESUMEN

Hypericum patulum has been used as a folk medicine for its varied therapeutic effects including antifungal, wound-healing, spasmolytic, stimulant, hypotensive activities. The water decoction is drank as tea could treat cold, infantile malnutrition. The present study aims to isolate the constituents of the plant and investigate their effects on the glucose consumption in insulin-resistant HepG2 cells, furthermore, lipid metabolism in oleic acid (OA)-treated HepG2 cells was also studied. The phytochemical investigation of the plant led to the isolation of eleven compounds, and their structures were identified by spectroscopic analysis as n-dotriacontanol (1), shikimic acid (2), 1-O-caffeoylquinic acid methyl ester (3), 5-O-caffeoylquinic acid methyl ester (4), 5-O-coumaroylquinic acid methyl ester (5), 5-O-caffeoylquinic acid butyl ester (6), quercetin-3-O-α-L-rhamnoside (7), quercetin (8), quercetin-3-O-(4×´-methoxy)-α-L-rahmnopyranosyl (9), hyperoside (10), and rutin (11). The results revealed that compounds 7, 9, and 10 could enhance glucose consumption significantly in hyperglycemia induced HepG2 cells and insulin-resistant HepG2 cells. In addition, the western blotting analysis result exhibited that compounds 7, 9, and 10 in high concentration (5 µM, H) group could dramatically upregulate the expression of PPARγ protein, and even the effect of them had no significant difference compared with that of rosiglitazone. Furthermore, compounds 9 and 10 in middle concentration (2.5 µM, M) group and H group could dramatically promote triglyceride metabolism and decrease TG content in OA-treated HepG2 cells, and even in H group, reactive oxygen species (ROS) level were significantly decreased compared with model group. PRACTICAL APPLICATIONS: Hypericum patulum is a well-known plant of the genera Hypericum for its varied preventive and therapeutic potential activities. To study the chemical constituents and their effects on glucose and lipid metabolism in vitro, we detected glucose consumption in insulin-resistant HepG2 cells, triglyceride content and reactive oxygen species level in OA-treated HepG2 cells. In addition, PPARγ protein was also detected by western blotting analysis in the study. Compounds 1, 2, 3, 5, 6, 9, 10, and 11 were isolated from the plant for the first time. Quercetin-3-O-(4"-methoxy)-α-L-rahmnopyranosyl (9) and hyperoside (10) had potential therapeutic benefit against glucose and lipid metabolic disease. Therefore, this study might have certain guiding significance for further research and development of H. patulum.


Asunto(s)
Hypericum , Flavonoides , Glucosa , Células Hep G2 , Humanos , Ácido Oléico
20.
Langmuir ; 37(16): 4879-4890, 2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33848422

RESUMEN

Direct measurement and control of the dynamic wetting properties of a lipid-coated water-air interface over a wide range of surface tension variations have many important applications. However, the wetting dynamics of the interface near its partial-to-complete wetting transition has not been fully understood. Here, we report a systematic study of the wetting dynamics of a lipid-coated water-air interface around a thin glass fiber of diameter 1-5 µm and length 100-300 µm. The glass fiber is glued onto the front end of a rectangular cantilever to form a "long-needle" atomic-force-microscope probe. Three surface modifications are applied to the glass fiber to change its wetting properties from hydrophilic to hydrophobic. A monolayer of phospholipid dipalmitoylphosphatidylcholine (DPPC) is deposited on the water-air interface in a homemade Langmuir-Blodgett trough, and the surface tension γL of the DPPC-coated water-air interface is varied in the range of 2.5 ≲ γL ≲ 72 mN/m. From the measured hysteresis loop of the capillary force for the three coated fiber surfaces with varying γL, we observe a sharp transition from partial to complete wetting when γL is reduced to a critical value (γL)c. The obtained values of (γL)c are 27 ± 1 mN/m for a DPPC-coated fiber surface and 23 ± 1 mN/m for an trichloro(1H,1H,2H,2H-perfluorooctyl) silane (FTS)-coated surface. Below (γL)c, the contact angle θ0 of the liquid interface is found to be zero for both hydrophobic fiber surfaces and the corresponding spreading parameter S becomes positive. For the FTS-coated fiber surface, the height of capillary rise exhibits a jump when γL is reduced to (γL)c, which indicates that a rapidly advancing liquid film is formed on the fiber surface when the partial-to-complete wetting transition takes place. Our experiment thus establishes a quantitative method by which many other liquid interfaces coated with polymers, surfactants, and biomolecules (such as proteins and lipids) may be characterized dynamically.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...