Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Physiol Plant ; 176(2): e14288, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38644531

RESUMEN

Heat shock protein 20 (Hsp20) is a small molecule heat shock protein that plays an important role in plant growth, development, and stress resistance. Little is known about the function of Hsp20 family genes in apple (Malus domestica). Here, we performed a genome-wide analysis of the apple Hsp20 gene family, and a total of 49 Hsp20s genes were identified from the apple genome. Phylogenetic analysis revealed that the 49 genes were divided into 11 subfamilies, and MdHsp18.2b, a member located in the CI branch, was selected as a representative member for functional characterization. Treatment with NaCl and Botryosphaeria dothidea (B. dothidea), the causal agent of apple ring rot disease, significantly induced MdHsp18.2b transcription level. Further analysis revealed that overexpressing MdHsp18.2b reduced the resistance to salt stress but enhanced the resistance to B. dothidea infection in apple calli. Moreover, MdHsp18.2b positively regulated anthocyanin accumulation in apple calli. Physiology assays revealed that MdHsp18.2b promoted H2O2 production, even in the absence of stress factors, which might contribute to its functions in response to NaCl and B. dothidea infection. Hsps usually function as homo- or heterooligomers, and we found that MdHsp18.2b could form a heterodimer with MdHsp17.9a and MdHsp17.5, two members from the same branch with MdHsp18.2b in the phylogenetic tree. Therefore, we identified 49 Hsp20s genes from the apple genome and found that MdHsp18.2b was involved in regulating plant resistance to salt stress and B. dothidea infection, as well as in regulating anthocyanin accumulation in apple calli.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Proteínas del Choque Térmico HSP20 , Malus , Filogenia , Enfermedades de las Plantas , Proteínas de Plantas , Malus/genética , Malus/microbiología , Malus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Proteínas del Choque Térmico HSP20/genética , Proteínas del Choque Térmico HSP20/metabolismo , Ascomicetos/fisiología , Ascomicetos/genética , Ascomicetos/patogenicidad , Familia de Multigenes , Resistencia a la Enfermedad/genética , Antocianinas/metabolismo
2.
bioRxiv ; 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37745491

RESUMEN

The endocrine control of food intake remains incompletely understood, and whether the leptin receptor-mediated anorexigenic pathway in the hypothalamus is negatively regulated by a humoral factor is unknown. Here we identify an appetite-stimulating factor - ASRA - that acts as a leptin receptor antagonist. ASRA encodes an 8 kD protein that is abundantly and selectively expressed in adipose tissue and to a lesser extent, in liver, and is upregulated during fasting and cold. ASRA protein associates with autophagosomes and its secretion is induced by energy deficiency. Overexpression of ASRA in mice attenuates leptin receptor signaling leading to elevated blood glucose and development of severe hyperphagic obesity, whereas either adipose- or liver-specific ASRA knockout mice display increased leptin sensitivity, improved glucose homeostasis, reduced food intake, and resistance to high fat diet-induced obesity. Furthermore, ASRA is indispensable for cold-evoked feeding response. Recombinant ASRA (rASRA) protein binds to leptin receptor and suppresses leptin receptor signaling in cultured cells. In vivo, rASRA promotes food intake and increases blood glucose in a leptin receptor signaling-dependent manner. Our studies collectively show that ASRA, acting as a peripheral signal of energy deficit, stimulates appetite and regulates glucose metabolism by antagonizing leptin receptor signaling, thus revealing a previously unknown endocrine mechanism that has important implications for our understanding of leptin resistance.

3.
Nat Commun ; 13(1): 7633, 2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-36496438

RESUMEN

The signaling mechanisms underlying adipose thermogenesis have not been fully elucidated. Particularly, the involvement of adipokines that are selectively expressed in brown adipose tissue (BAT) and beige adipocytes remains to be investigated. Here we show that a previously uncharacterized adipokine (UPF0687 protein / human C20orf27 homolog) we named as Adissp (Adipose-secreted signaling protein) is a key regulator for white adipose tissue (WAT) thermogenesis and glucose homeostasis. Adissp expression is adipose-specific and highly BAT-enriched, and its secretion is stimulated by ß3-adrenergic activation. Gain-of-functional studies collectively showed that secreted Adissp promotes WAT thermogenesis, improves glucose homeostasis, and protects against obesity. Adipose-specific Adissp knockout mice are defective in WAT browning, and are susceptible to high fat diet-induced obesity and hyperglycemia. Mechanistically, Adissp binds to a putative receptor on adipocyte surface and activates protein kinase A independently of ß-adrenergic signaling. These results establish BAT-enriched Adissp as a major upstream signaling component in thermogenesis and offer a potential avenue for the treatment of obesity and diabetes.


Asunto(s)
Adipoquinas , Tejido Adiposo Pardo , Ratones , Animales , Humanos , Tejido Adiposo Pardo/metabolismo , Termogénesis , Tejido Adiposo Blanco/metabolismo , Obesidad/metabolismo , Glucosa/metabolismo , Adrenérgicos/metabolismo , Adipocitos Marrones/metabolismo , Metabolismo Energético
4.
Adv Sci (Weinh) ; 9(2): e2102949, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34747141

RESUMEN

Adipose thermogenesis plays a pivotal role in whole-body metabolic homeostasis. Although transcriptional mechanisms that promote thermogenesis are extensively studied, the negative regulatory network is still poorly understood. Here, a Krüppel-associated box (KRAB) domain-containing zinc finger protein, ZFP961, as a potent repressor of the thermogenic program is identified. ZFP961 expression is induced by cold and ß3-adrenergic agonist in adipose tissue. ZFP961 represses brown fat-selective gene expression and mitochondrial respiration without any effect on general adipogenesis in cultured adipocytes. Adipose-specific knockdown and overexpression of ZFP961 produce remarkable and opposite phenotypes of white fat remodeling. ZFP961 knockout mice display robust inguinal white adipose tissue browning, which is abolished by reexpression of full-length ZFP961, but not by KRAB domain-deleted ZFP961 mutant. ZFP961-deficient mice are cold tolerant and resistant to high-fat diet-induced obesity, hyperglycemia, and hepatic steatosis. ZFP961 suppresses thermogenic gene expression by directly interacting with PPARα and blocking its transcriptional activity, which can be completely negated by the PPARα agonist. The findings uncover ZFP961 as a critical physiological brake that limits adipose thermogenesis and provides insights into the regulatory mechanisms that maintain energy balance and tissue homeostasis.


Asunto(s)
Tejido Adiposo/metabolismo , Metabolismo Energético/genética , PPAR alfa/genética , PPAR alfa/metabolismo , Termogénesis/genética , Dedos de Zinc/genética , Animales , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
5.
Plant Physiol Biochem ; 149: 277-285, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32088579

RESUMEN

Drought can activate many stress responses in plant growth and development, including the synthesis of epidermal wax and the induction of abscisic acid (ABA), and increased wax accumulation will improve plant drought resistance. Therefore, an examination of wax biosynthesis genes could help to better understand the molecular mechanism of environmental factors regulating wax biosynthesis and the wax associated stress response. Here, we identified the MdCER2 gene from the 'Gala' (Malus× domestica Borkh.) variety of domestic apple, which is a homolog of Arabidopsis AtCER2. It possesses a transferase domain and the protein localizes on the cell membrane. The MdCER2 gene was constitutively expressed in apple tissues and was induced by drought treatment. Finally, we transformed the MdCER2 gene into Arabidopsis to identify its function, and found ectopic expression of MdCER2 promoted accumulation of cuticular wax in both leaves and stems, decreased water loss and permeability in leaves, increased lateral root number, changed plant ABA sensitivity, and increased drought resistance.


Asunto(s)
Sequías , Malus , Epidermis de la Planta , Proteínas de Plantas , Estrés Fisiológico , Ceras , Regulación de la Expresión Génica de las Plantas , Malus/genética , Malus/metabolismo , Epidermis de la Planta/genética , Epidermis de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Factores de Transcripción , Ceras/metabolismo
6.
BMC Plant Biol ; 19(1): 362, 2019 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-31426743

RESUMEN

BACKGROUND: The MYB transcription factor family is one of the largest transcriptional factor families in plants and plays a multifaceted role in plant growth and development. However, MYB transcription factors involved in pathogen resistance in apple remain poorly understood. RESULTS: We identified a new MYB family member from apple, and named it MdMYB30. MdMYB30 was localized to the nucleus, and was highly expressed in young apple leaves. Transcription of MdMYB30 was induced by abiotic stressors, such as polyethylene glycol and abscisic acid. Scanning electron microscopy and gas chromatograph-mass spectrometry analyses demonstrated that ectopically expressing MdMYB30 in Arabidopsis changed the wax content, the number of wax crystals, and the transcription of wax-related genes. MdMYB30 bound to the MdKCS1 promoter to activate its expression and regulate wax biosynthesis. MdMYB30 also contributed to plant surface properties and increased resistance to the bacterial strain Pst DC3000. Furthermore, a virus-based transformation in apple fruits and transgenic apple calli demonstrated that MdMYB30 increased resistance to Botryosphaeria dothidea. Our findings suggest that MdMYB30 plays a vital role in the accumulation of cuticular wax and enhances disease resistance in apple. CONCLUSIONS: MdMYB30 bound to the MdKCS1 gene promoter to activate its transcription and regulate cuticular wax content and composition, which influenced the surface properties and expression of pathogenesis-related genes to resistance against pathogens. MdMYB30 appears to be a crucial element in the formation of the plant cuticle and confers apple with a tolerance to pathogens.


Asunto(s)
Ascomicetos/fisiología , Resistencia a la Enfermedad , Malus/genética , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Factores de Transcripción/genética , Ceras/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/fisiología , Expresión Génica Ectópica , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Patógeno , Malus/metabolismo , Malus/microbiología , Enfermedades de las Plantas/microbiología , Epidermis de la Planta/genética , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/fisiología , ARN de Planta/análisis , Alineación de Secuencia , Factores de Transcripción/química , Factores de Transcripción/metabolismo
7.
Planta ; 249(5): 1627-1643, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30826884

RESUMEN

MAIN CONCLUSION: This study showed that AP2/EREBP transcription factor MdSHINE2 functioned in mediating cuticular permeability, sensitivity to abscisic acid (ABA), and drought resistance by regulating wax biosynthesis. Plant cuticular wax plays crucial roles in protecting plants from environmental stresses, particularly drought stress. Many enzymes and transcription factors involved in wax biosynthesis have been identified in plant species. In this study, we identified an AP2/EREBP transcription factor, MdSHINE2 from apple, which is a homolog of AtSHINE2 in Arabidopsis. MdSHINE2 was constitutively expressed at different levels in various apple tissues, and the transcription level of MdSHINE2 was induced substantially by abiotic stress and hormone treatments. MdSHINE2-overexpressing Arabidopsis exhibited great change in cuticular wax crystal numbers and morphology and wax composition of leaves and stems. Moreover, MdSHINE2 heavily influenced cuticular permeability, sensitivity to abscisic acid, and drought resistance.


Asunto(s)
Ácido Abscísico/farmacología , Sequías , Malus/metabolismo , Factor de Transcripción AP-2/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/genética , Malus/efectos de los fármacos , Factor de Transcripción AP-2/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
8.
Cell Rep ; 22(11): 2860-2872, 2018 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-29539416

RESUMEN

Transcriptional co-activator Prdm16 controls brown fat development and white fat browning, but how this thermogenic function is modulated post-translationally is poorly understood. Here, we report that Cbx4, a Polycomb group protein, is a SUMO E3 ligase for Prdm16 and that Cbx4-mediated sumoylation of Prdm16 is required for thermogenic gene expression. Cbx4 expression is enriched in brown fat and is induced in adipose tissue by acute cold exposure. Sumoylation of Prdm16 at lysine 917 by Cbx4 blocks its ubiquitination-mediated degradation, thereby augmenting its stability and thermogenic function. Moreover, this sumoylation event primes Prdm16 to be further stabilized by methyltransferase Ehmt1. Heterozygous Cbx4-knockout mice develop metabolic phenotypes resembling those of Prdm16-knockout mice. Furthermore, fat-specific Cbx4 knockdown and overexpression produce remarkable, opposite effects on white fat remodeling. Our results identify a modifying enzyme for Prdm16, and they demonstrate a central role of Cbx4 in the control of Prdm16 stability and white fat browning.


Asunto(s)
Adipocitos Marrones/metabolismo , Proteínas de Unión al ADN/metabolismo , Ligasas/metabolismo , Complejo Represivo Polycomb 1/metabolismo , Proteínas del Grupo Polycomb/metabolismo , Protaminas/metabolismo , Factores de Transcripción/metabolismo , Adipocitos Marrones/citología , Adipocitos Marrones/fisiología , Animales , Células Cultivadas , Femenino , Células HEK293 , Humanos , Ligasas/genética , Masculino , Ratones , Ratones Noqueados , Complejo Represivo Polycomb 1/genética , Sumoilación , Termogénesis/fisiología , Transfección
9.
Nat Commun ; 8(1): 68, 2017 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-28701693

RESUMEN

Browning of subcutaneous white fat (iWAT) involves several reprograming events, but the underlying mechanisms are incompletely understood. Here we show that the transcription factor Hlx is selectively expressed in brown adipose tissue (BAT) and iWAT, and is translationally upregulated by ß3-adrenergic signaling-mediated suppression of the translational inhibitor 4E-BP1. Hlx interacts with and is co-activated by Prdm16 to control BAT-selective gene expression and mitochondrial biogenesis. Hlx heterozygous knockout mice have defects in brown-like adipocyte formation in iWAT, and develop glucose intolerance and high fat-induced hepatic steatosis. Conversely, transgenic expression of Hlx at a physiological level drives a full program of thermogenesis and converts iWAT to brown-like fat, which improves glucose homeostasis and prevents obesity and hepatic steatosis. The adipose remodeling phenotypes are recapitulated by fat-specific injection of Hlx knockdown and overexpression viruses, respectively. Our studies establish Hlx as a powerful regulator for systematic white adipose tissue browning and offer molecular insights into the underlying transcriptional mechanism.The transcriptional co-activator Prdm16 regulates browning of white adipose tissue (WAT). Here, the authors show that Prdm16 interacts with the transcription factor Hlx, which is stabilized in response to ß3-adrenergic signaling, to increase thermogenic gene expression and mitochondrial biogenesis in subcutaneous WAT.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Homeodominio/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular , Reprogramación Celular/genética , Dieta Alta en Grasa , Factores Eucarióticos de Iniciación , Hígado Graso/genética , Intolerancia a la Glucosa/genética , Proteínas de Homeodominio/metabolismo , Humanos , Ratones , Ratones Noqueados , Biogénesis de Organelos , Fosfoproteínas/metabolismo , Receptores Adrenérgicos beta 3/metabolismo , Grasa Subcutánea/metabolismo , Termogénesis/genética
10.
Dev Cell ; 35(5): 568-583, 2015 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-26625958

RESUMEN

Progression from brown preadipocytes to adipocytes engages two transcriptional programs: the expression of adipogenic genes common to both brown fat (BAT) and white fat (WAT), and the expression of BAT-selective genes. However, the dynamics of chromatin states and epigenetic enzymes involved remain poorly understood. Here we show that BAT development is selectively marked and guided by repressive H3K27me3 and is executed by its demethylase Jmjd3. We find that a significant subset of BAT-selective genes, but not common fat genes or WAT-selective genes, are demarcated by H3K27me3 in both brown and white preadipocytes. Jmjd3-catalyzed removal of H3K27me3, in part through Rreb1-mediated recruitment, is required for expression of BAT-selective genes and for development of beige adipocytes both in vitro and in vivo. Moreover, gain- and loss-of-function Jmjd3 transgenic mice show age-dependent body weight reduction and cold intolerance, respectively. Together, we identify an epigenetic mechanism governing BAT fate determination and WAT plasticity.


Asunto(s)
Tejido Adiposo Pardo/embriología , Tejido Adiposo Blanco/embriología , Regulación del Desarrollo de la Expresión Génica , Histona Demetilasas con Dominio de Jumonji/metabolismo , Adipocitos/citología , Adipocitos/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Peso Corporal , Proteínas de Unión al ADN/metabolismo , Canales Iónicos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Mitocondriales/metabolismo , Mutación Puntual , Regiones Promotoras Genéticas , Análisis de Secuencia de ARN , Termogénesis/genética , Factores de Transcripción/metabolismo , Transgenes , Proteína Desacopladora 1
11.
Nat Commun ; 5: 4725, 2014 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-25145289

RESUMEN

Both classical brown adipocytes and brown-like beige adipocytes are considered as promising therapeutic targets for obesity; however, their development, relative importance and functional coordination are not well understood. Here we show that a modest expression of miR-378/378* in adipose tissue specifically increases classical brown fat (BAT) mass, but not white fat (WAT) mass. Remarkably, BAT expansion, rather than miR-378 per se, suppresses formation of beige adipocytes in subcutaneous WAT. Despite this negative feedback, the expanded BAT depot is sufficient to prevent both genetic and high-fat diet-induced obesity. At the molecular level, we find that miR-378 targets phosphodiesterase Pde1b in BAT but not in WAT. Indeed, miR-378 and Pde1b inversely regulate brown adipogenesis in vitro in the absence of phosphodiesterase inhibitor isobutylmethylxanthine. Our work identifies miR-378 as a key regulatory component underlying classical BAT-specific expansion and obesity resistance, and adds novel insights into the physiological crosstalk between BAT and WAT.


Asunto(s)
Tejido Adiposo Pardo/fisiología , MicroARNs/genética , Obesidad/genética , Adipocitos/fisiología , Adipogénesis/genética , Tejido Adiposo Pardo/citología , Tejido Adiposo Blanco/fisiología , Animales , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 1/genética , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 1/metabolismo , Dieta Alta en Grasa/efectos adversos , Regulación de la Expresión Génica , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Obesidad/etiología , Obesidad/patología
12.
PLoS Genet ; 9(7): e1003626, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23874225

RESUMEN

Prdm16 determines the bidirectional fate switch of skeletal muscle/brown adipose tissue (BAT) and regulates the thermogenic gene program of subcutaneous white adipose tissue (SAT) in mice. Here we show that miR-133a, a microRNA that is expressed in both BAT and SATs, directly targets the 3' UTR of Prdm16. The expression of miR-133a dramatically decreases along the commitment and differentiation of brown preadipocytes, accompanied by the upregulation of Prdm16. Overexpression of miR-133a in BAT and SAT cells significantly inhibits, and conversely inhibition of miR-133a upregulates, Prdm16 and brown adipogenesis. More importantly, double knockout of miR-133a1 and miR-133a2 in mice leads to elevations of the brown and thermogenic gene programs in SAT. Even 75% deletion of miR-133a (a1(-/-)a2(+/-) ) genes results in browning of SAT, manifested by the appearance of numerous multilocular UCP1-expressing adipocytes within SAT. Additionally, compared to wildtype mice, miR-133a1(-/-)a2(+/-) mice exhibit increased insulin sensitivity and glucose tolerance, and activate the thermogenic gene program more robustly upon cold exposure. These results together elucidate a crucial role of miR-133a in the regulation of adipocyte browning in vivo.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Diferenciación Celular/genética , Proteínas de Unión al ADN/genética , MicroARNs/genética , Factores de Transcripción/genética , Adipocitos/citología , Adipocitos/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Proteínas de Unión al ADN/metabolismo , Regulación del Desarrollo de la Expresión Génica , Ratones , MicroARNs/metabolismo , Termogénesis/genética , Termogénesis/fisiología , Factores de Transcripción/metabolismo
13.
PLoS One ; 8(6): e66294, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23755305

RESUMEN

Aberrant gluconeogenic gene expression is associated with diabetes, glycogen storage disease, and liver cancer. However, little is known how these genes are regulated at the chromatin level. In this study, we investigated in HepG2 cells whether histone demethylation is a potential mechanism. We found that knockdown or pharmacological inhibition of histone demethylase LSD1 causes remarkable transcription activation of two gluconeogenic genes, FBP1 and G6Pase, and consequently leads to increased de novo glucose synthesis and decreased intracellular glycogen content. Mechanistically, LSD1 occupies the promoters of FBP1 and G6Pase, and modulates their H3K4 dimethylation levels. Thus, our work identifies an epigenetic pathway directly governing gluconeogenic gene expression, which might have important implications in metabolic physiology and diseases.


Asunto(s)
ADN Helicasas/genética , Proteínas de Unión al ADN/genética , Epigénesis Genética , Glucosa-6-Fosfatasa/genética , Histona Demetilasas/metabolismo , Histonas/metabolismo , Procesamiento Proteico-Postraduccional , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Expresión Génica , Técnicas de Silenciamiento del Gen , Gluconeogénesis/genética , Glucosa/metabolismo , Glucosa-6-Fosfatasa/metabolismo , Células Hep G2 , Histona Demetilasas/antagonistas & inhibidores , Histona Demetilasas/genética , Humanos , Metilación , Regiones Promotoras Genéticas , Proteínas de Unión al ARN , Activación Transcripcional , Tranilcipromina/farmacología
14.
PLoS Genet ; 8(6): e1002761, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22719268

RESUMEN

Hepatic gluconeogenesis is required for maintaining blood glucose homeostasis; yet, in diabetes mellitus, this process is unrestrained and is a major contributor to fasting hyperglycemia. To date, the impacts of chromatin modifying enzymes and chromatin landscape on gluconeogenesis are poorly understood. Through catalyzing the removal of methyl groups from specific lysine residues in the histone tail, histone demethylases modulate chromatin structure and, hence, gene expression. Here we perform an RNA interference screen against the known histone demethylases and identify a histone H3 lysine 36 (H3K36) demethylase, Jhdm1a, as a key negative regulator of gluconeogenic gene expression. In vivo, silencing of Jhdm1a promotes liver glucose synthesis, while its exogenous expression reduces blood glucose level. Importantly, the regulation of gluconeogenesis by Jhdm1a requires its demethylation activity. Mechanistically, we find that Jhdm1a regulates the expression of a major gluconeogenic regulator, C/EBPα. This is achieved, at least in part, by its USF1-dependent association with the C/EBPα promoter and its subsequent demethylation of dimethylated H3K36 on the C/EBPα locus. Our work provides compelling evidence that links histone demethylation to transcriptional regulation of gluconeogenesis and has important implications for the treatment of diabetes.


Asunto(s)
Glucemia , Gluconeogénesis , Histona Demetilasas con Dominio de Jumonji , Hígado/metabolismo , Animales , Glucemia/metabolismo , Proteínas Potenciadoras de Unión a CCAAT/genética , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Células Cultivadas , Regulación de la Expresión Génica , Gluconeogénesis/genética , Glucosa-6-Fosfatasa/metabolismo , Hepatocitos/metabolismo , Humanos , Histona Demetilasas con Dominio de Jumonji/genética , Histona Demetilasas con Dominio de Jumonji/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Interferente Pequeño/genética , Ratas , Factores Estimuladores hacia 5'/metabolismo
15.
Mol Cell Biol ; 32(2): 266-75, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22064484

RESUMEN

The transcriptional coactivator PGC-1α is a master regulator of energy metabolism and adaptive thermogenesis in the brown fat cell. PGC-1α is a short-lived protein, and the molecular components that control PGC-1α turnover and their functional importance in energy metabolism are largely unknown. Here we performed a luciferase-based overexpression screen and identified a Ring-finger-containing protein, RNF34, as a specific E3 ubiquitin ligase for PGC-1α. RNF34 is a nuclear protein that interacts with and ubiquitinates PGC-1α to promote its turnover. Interestingly, RNF34 binds to the C-terminal half of PGC-1α and targets it for degradation independently of the previously identified N-terminal phosphodegron motif. In brown fat cells, knockdown of RNF34 increases the endogenous PGC-1α protein level, uncoupling protein 1 (UCP1) expression, and oxygen consumption, while the opposite effects are observed in brown fat cells ectopically expressing wild-type RNF34 but not in cells expressing the ligase activity-defective mutant. Moreover, cold exposure and ß3-adrenergic receptor signaling, conditions that induce PGC-1α expression, suppress RNF34 expression in the brown fat cell, indicating a physiological relevance of this E3 ligase in thermogenesis. Our results reveal that RNF34 is a bona fide E3 ubiquitin ligase for PGC-1α and negatively regulates brown fat cell metabolism.


Asunto(s)
Adipocitos Marrones/metabolismo , Proteínas Portadoras/metabolismo , Transactivadores/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Células COS , Proteínas Portadoras/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Chlorocebus aethiops , Frío , Metabolismo Energético , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Proteína 7 que Contiene Repeticiones F-Box-WD , Regulación de la Expresión Génica , Células HEK293 , Humanos , Ratones , Unión Proteica , Transactivadores/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación , Regulación hacia Arriba
16.
Skelet Muscle ; 1(1): 33, 2011 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-22040534

RESUMEN

Peroxisome proliferator-activated receptors (PPARs) are a class of nuclear receptors that play important roles in development and energy metabolism. Whereas PPARδ has been shown to regulate mitochondrial biosynthesis and slow-muscle fiber types, its function in skeletal muscle progenitors (satellite cells) is unknown. Since constitutive mutation of Pparδ leads to embryonic lethality, we sought to address this question by conditional knockout (cKO) of Pparδ using Myf5-Cre/Pparδflox/flox alleles to ablate PPARδ in myogenic progenitor cells. Although Pparδ-cKO mice were born normally and initially displayed no difference in body weight, muscle size or muscle composition, they later developed metabolic syndrome, which manifested as increased body weight and reduced response to glucose challenge at age nine months. Pparδ-cKO mice had 40% fewer satellite cells than their wild-type littermates, and these satellite cells exhibited reduced growth kinetics and proliferation in vitro. Furthermore, regeneration of Pparδ-cKO muscles was impaired after cardiotoxin-induced injury. Gene expression analysis showed reduced expression of the Forkhead box class O transcription factor 1 (FoxO1) gene in Pparδ-cKO muscles under both quiescent and regenerating conditions, suggesting that PPARδ acts through FoxO1 in regulating muscle progenitor cells. These results support a function of PPARδ in regulating skeletal muscle metabolism and insulin sensitivity, and they establish a novel role of PPARδ in muscle progenitor cells and postnatal muscle regeneration.

17.
Cell Res ; 20(2): 124-37, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20101262

RESUMEN

The nuclear receptor PPARs are fundamentally important for energy homeostasis. Through their distinct yet overlapping functions and tissue distribution, the PPARs regulate many aspects of energy metabolism at the transcriptional level. Functional impairment or dysregulation of these receptors leads to a variety of metabolic diseases, while their ligands offer many metabolic benefits. Studies of these receptors have advanced our knowledge of the transcriptional basis of energy metabolism and helped us understand the pathogenic mechanisms of metabolic syndrome.


Asunto(s)
Metabolismo Energético/genética , Enfermedades Metabólicas/genética , Receptores Activados del Proliferador del Peroxisoma/fisiología , Adipogénesis/efectos de los fármacos , Adipogénesis/genética , Adipogénesis/fisiología , Animales , Humanos , Resistencia a la Insulina/genética , Resistencia a la Insulina/fisiología , Modelos Biológicos , Receptores Activados del Proliferador del Peroxisoma/agonistas , Receptores Activados del Proliferador del Peroxisoma/genética , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Tiazolidinedionas/farmacología
18.
Cell ; 137(1): 73-86, 2009 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-19345188

RESUMEN

Brown fat is specialized for energy expenditure, a process that is principally controlled by the transcriptional coactivator PGC-1alpha. Here, we describe a molecular network important for PGC-1alpha function and brown fat metabolism. We find that twist-1 is selectively expressed in adipose tissue, interacts with PGC-1alpha, and is recruited to the promoters of PGC-1alpha's target genes to suppress mitochondrial metabolism and uncoupling. In vivo, transgenic mice expressing twist-1 in the adipose tissue are prone to high-fat-diet-induced obesity, whereas twist-1 heterozygous knockout mice are obesity resistant. These phenotypes are attributed to their altered mitochondrial metabolism in the brown fat. Interestingly, the nuclear receptor PPARdelta not only mediates the actions of PGC-1alpha but also regulates twist-1 expression, suggesting a negative-feedback regulatory mechanism. These findings reveal an unexpected physiological role for twist-1 in the maintenance of energy homeostasis and have important implications for understanding metabolic control and metabolic diseases.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Proteínas Nucleares/metabolismo , Transactivadores/genética , Proteína 1 Relacionada con Twist/metabolismo , Adipocitos/metabolismo , Tejido Adiposo Pardo/citología , Animales , Metabolismo Energético , Histonas/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Mitocondrias/metabolismo , Obesidad/metabolismo , PPAR delta/genética , PPAR delta/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Transactivadores/metabolismo , Factores de Transcripción
19.
Cell ; 134(3): 405-15, 2008 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-18674809

RESUMEN

The benefits of endurance exercise on general health make it desirable to identify orally active agents that would mimic or potentiate the effects of exercise to treat metabolic diseases. Although certain natural compounds, such as reseveratrol, have endurance-enhancing activities, their exact metabolic targets remain elusive. We therefore tested the effect of pathway-specific drugs on endurance capacities of mice in a treadmill running test. We found that PPARbeta/delta agonist and exercise training synergistically increase oxidative myofibers and running endurance in adult mice. Because training activates AMPK and PGC1alpha, we then tested whether the orally active AMPK agonist AICAR might be sufficient to overcome the exercise requirement. Unexpectedly, even in sedentary mice, 4 weeks of AICAR treatment alone induced metabolic genes and enhanced running endurance by 44%. These results demonstrate that AMPK-PPARdelta pathway can be targeted by orally active drugs to enhance training adaptation or even to increase endurance without exercise.


Asunto(s)
Aminoimidazol Carboxamida/análogos & derivados , Complejos Multienzimáticos/metabolismo , Músculo Esquelético/metabolismo , PPAR delta/agonistas , Resistencia Física/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/metabolismo , Ribonucleótidos/farmacología , Tiazoles/farmacología , Proteínas Quinasas Activadas por AMP , Administración Oral , Aminoimidazol Carboxamida/administración & dosificación , Aminoimidazol Carboxamida/farmacología , Animales , Biomimética , Masculino , Ratones , Ratones Endogámicos C57BL , Condicionamiento Físico Animal , Ribonucleótidos/administración & dosificación
20.
PLoS Biol ; 2(10): e294, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15328533

RESUMEN

Endurance exercise training can promote an adaptive muscle fiber transformation and an increase of mitochondrial biogenesis by triggering scripted changes in gene expression. However, no transcription factor has yet been identified that can direct this process. We describe the engineering of a mouse capable of continuous running of up to twice the distance of a wild-type littermate. This was achieved by targeted expression of an activated form of peroxisome proliferator-activated receptor delta (PPARdelta) in skeletal muscle, which induces a switch to form increased numbers of type I muscle fibers. Treatment of wild-type mice with PPARdelta agonist elicits a similar type I fiber gene expression profile in muscle. Moreover, these genetically generated fibers confer resistance to obesity with improved metabolic profiles, even in the absence of exercise. These results demonstrate that complex physiologic properties such as fatigue, endurance, and running capacity can be molecularly analyzed and manipulated.


Asunto(s)
Fibras Musculares Esqueléticas/metabolismo , PPAR delta/fisiología , Condicionamiento Físico Animal , Animales , ADN Mitocondrial/metabolismo , Etiquetas de Secuencia Expresada , Regulación de la Expresión Génica , Ligandos , Metabolismo de los Lípidos , Ratones , Ratones Transgénicos , Mitocondrias/metabolismo , Modelos Estadísticos , Obesidad/metabolismo , Oxígeno/metabolismo , Esfuerzo Físico , Estructura Terciaria de Proteína , Carrera , Transducción de Señal , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...