Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 805
Filtrar
1.
J Headache Pain ; 25(1): 74, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38724948

RESUMEN

BACKGROUND: Chronic migraine (CM) is a debilitating neurofunctional disorder primarily affecting females, characterized by central sensitization. Central sensitization refers to the enhanced response to sensory stimulation, which involves changes in neuronal excitability, synaptic plasticity, and neurotransmitter release. Environmental enrichment (EE) can increase the movement, exploration, socialization and other behaviors of mice. EE has shown promising effects in various neurological disorders, but its impact on CM and the underlying mechanism remains poorly understood. Therefore, the purpose of this study was to determine whether EE has the potential to serve as a cost-effective intervention strategy for CM. METHODS: A mouse CM model was successfully established by repeated administration of nitroglycerin (NTG). We selected adult female mice around 8 weeks old, exposed them to EE for 2 months, and then induced the CM model. Nociceptive threshold tests were measured using Von Frey filaments and a hot plate. The expression of c-Fos, calcitonin gene-related peptide (CGRP) and inflammatory response were measured using WB and immunofluorescence to evaluate central sensitization. RNA sequencing was used to find differentially expressed genes and signaling pathways. Finally, the expression of the target differential gene was investigated. RESULTS: Repeated administration of NTG can induce hyperalgesia in female mice and increase the expression of c-Fos and CGRP in the trigeminal nucleus caudalis (TNC). Early exposure of mice to EE reduced NTG-induced hyperalgesia in CM mice. WB and immunofluorescence revealed that EE inhibited the overexpression of c-Fos and CGRP in the TNC of CM mice and alleviated the inflammatory response of microglia activation. RNA sequencing analysis identified that several central sensitization-related signaling pathways were altered by EE. VGluT1, a key gene involved in behavior, internal stimulus response, and ion channel activity, was found to be downregulated in mice exposed to EE. CONCLUSION: EE can significantly ameliorate hyperalgesia in the NTG-induced CM model. The mechanisms may be to modulate central sensitization by reducing the expression of CGRP, attenuating the inflammatory response, and downregulating the expression of VGluT1, etc., suggesting that EE can serve as an effective preventive strategy for CM.


Asunto(s)
Sensibilización del Sistema Nervioso Central , Modelos Animales de Enfermedad , Hiperalgesia , Trastornos Migrañosos , Nitroglicerina , Animales , Nitroglicerina/toxicidad , Trastornos Migrañosos/inducido químicamente , Trastornos Migrañosos/metabolismo , Hiperalgesia/inducido químicamente , Femenino , Sensibilización del Sistema Nervioso Central/efectos de los fármacos , Sensibilización del Sistema Nervioso Central/fisiología , Ratones , Péptido Relacionado con Gen de Calcitonina/metabolismo , Ambiente , Ratones Endogámicos C57BL
2.
Acc Chem Res ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38723018

RESUMEN

ConspectusLithium ion batteries (LIBs) with inorganic intercalation compounds as electrode active materials have become an indispensable part of human life. However, the rapid increase in their annual production raises concerns about limited mineral reserves and related environmental issues. Therefore, organic electrode materials (OEMs) for rechargeable batteries have once again come into the focus of researchers because of their design flexibility, sustainability, and environmental compatibility. Compared with conventional inorganic cathode materials for Li ion batteries, OEMs possess some unique characteristics including flexible molecular structure, weak intermolecular interaction, being highly soluble in electrolytes, and moderate electrochemical potentials. These unique characteristics make OEMs suitable for applications in multivalent ion batteries, low-temperature batteries, redox flow batteries, and decoupled water electrolysis. Specifically, the flexible molecular structure and weak intermolecular interaction of OEMs make multivalent ions easily accessible to the redox sites of OEMs and facilitate the desolvation process on the redox site, thus improving the low-temperature performance, while the highly soluble nature enables OEMs as redox couples for aqueous redox flow batteries. Finally, the moderate electrochemical potential and reversible proton storage and release of OEMs make them suitable as redox mediators for water electrolysis. Over the past ten years, although various new OEMs have been developed for Li-organic batteries, Na-organic batteries, Zn-organic batteries, and other battery systems, batteries with OEMs still face many challenges, such as poor cycle stability, inferior energy density, and limited rate capability. Therefore, previous reviews of OEMs mainly focused on organic molecular design for organic batteries or strategies to improve the electrochemical performance of OEMs. A comprehensive review to explore the characteristics of OEMs and establish the correlation between these characteristics and their specific application in energy storage and conversion is still lacking.In this Account, we initially provide an overview of the sustainability and environmental friendliness of OEMs for energy storage and conversion. Subsequently, we summarize the charge storage mechanisms of the different types of OEMs. Thereafter, we explore the characteristics of OEMs in comparison with conventional inorganic intercalation compounds including their structural flexibility, high solubility in the electrolyte, and appropriate electrochemical potential in order to establish the correlations between their characteristics and potential applications. Unlike previous reviews that mainly introduce the electrochemical performance progress of different organic batteries, this Account specifically focuses on some exceptional applications of OEMs corresponding to the characteristics of organic electrode materials in energy storage and conversion, as previously published by our groups. These applications include monovalent ion batteries, multivalent ion batteries, low-temperature batteries, redox flow batteries with soluble OEMs, and decoupled water electrolysis employing organic electrodes as redox mediators. We hope that this Account will make an invaluable contribution to the development of organic electrode materials for next-generation batteries and help to unlock a world of potential energy storage applications.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38727971

RESUMEN

Petroleum hydrocarbons are a stubborn pollutant that is difficult to degrade globally, and plant-microbial degradation is the main way to solve this type of pollutant. In this study, the physiological and ecological responses of alfalfa to petroleum hydrocarbons in different concentrations of petroleum hydrocarbon-contaminated soil with KB1 (Rhodococcus erythropolis) were analyzed and determined by laboratory potting techniques. The growth of alfalfa (CK) and alfalfa with KB1 (JZ) in different concentrations of petroleum hydrocarbons contaminated soil was compared and analyzed. The results of the CK group showed that petroleum hydrocarbons could significantly affect the activity of alfalfa antioxidant enzyme system, inhibit the development of alfalfa roots and the normal growth of plants, especially in the high-concentration group. KB1 strain had the ability to produce IAA, form biofilm, fix nitrogen, produce betaine and ACC deaminase, and the addition of KB1 could improve the growth traits of alfalfa in the soil contaminated with different concentrations of petroleum hydrocarbons, the content of soluble sugars in roots, and the stress resistance and antioxidant enzyme activities of alfalfa. In addition, the degradation kinetics of the strain showed that the degradation rate of petroleum could reach 75.2% after soaking with KB1. Furthermore, KB1 can efficiently degrade petroleum hydrocarbons in advance and significantly alleviate the damage of high concentration of petroleum hydrocarbons to plant roots. The results showed that KB1 strains and alfalfa plants could effectively enhance the degradation of petroleum hydrocarbons, which provided new ideas for improving bioremediation strategies.

4.
Int J Inj Contr Saf Promot ; : 1-13, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38708845

RESUMEN

Taxis play a crucial role in urban public transportation, but the traffic safety situation of taxi drivers is far from optimistic, especially considering the introduction of ride-hailing services into the taxi industry. This study conducted a comparative analysis of risk factors in crashes between traditional taxi drivers and ride-hailing taxi drivers in China, including their demographic characteristics, working conditions, and risky driving behaviors. The data was collected from 2,039 traditional taxi drivers and 2,182 ride-hailing taxi drivers via self-reported questionnaires. Four XGBoost models were established, taking into account different types of taxi drivers and crash types. All models showed acceptable performance, and SHAP explainer was used to analyze the model results. The results showed that for both taxi drivers, risk factors related to risky driving behaviors are more important in predicting property damage (PD) crashes, while risk factors related to working conditions are more important in predicting person injury (PI) crashes. However, the relative importance of each risk factor varied depending on the type of crashes and the type of taxi drivers involved. Furthermore, the results also validated certain interactions among the risk factors, indicating that the combination of certain factors generated a greater impact on crashes compared to individual factors alone. These findings can provide valuable insights for formulating appropriate measures to enhance road safety for taxi driver.

5.
Angew Chem Int Ed Engl ; : e202401724, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38691401

RESUMEN

The dual emission (DE) characteristics of atomically precise copper nanoclusters (Cu NCs) are of significant theoretical and practical interest. Despite this, the underlying mechanism driving DE in Cu NCs remains elusive, primarily due to the complexities of excited state processes. Herein, a novel [Cu4(PPh3)4(C≡C-p-NH2C6H4)3]PF6 (Cu4) NC, shielded by alkynyl and exhibiting DE, was synthesized. Hydrostatic pressure was applied to Cu4, for the first time, to investigate the mechanism of DE. With increasing pressure, the higher-energy emission peak of Cu4 gradually disappeared, leaving the lower-energy emission peak as the dominant emission. Additionally, the Cu4 crystal exhibited notable piezochromism transitioning from cyan to orange. Angle-dispersive synchrotron X-ray diffraction results revealed that the reduced inter-cluster distances under pressure brought the peripheral ligands closer, leading to the formation of new C-H···N and N-H···N hydrogen bonds in Cu4. It is proposed that these strengthened hydrogen bond interactions limit the ligands´ vibration, resulting in the vanishing of the higher-energy peak. In situ high-pressure Raman and vibrationally resolved emission spectra demonstrated that the benzene ring C=C stretching vibration is the structural source of the DE in Cu4.

6.
Sensors (Basel) ; 24(7)2024 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-38610551

RESUMEN

As an indispensable component of coal-fired power plants, boilers play a crucial role in converting water into high-pressure steam. The oxygen content in the flue gas is a crucial indicator, which indicates the state of combustion within the boiler. The oxygen content not only affects the thermal efficiency of the boiler and the energy utilization of the generator unit, but also has adverse impacts on the environment. Therefore, accurate measurement of the flue gas's oxygen content is of paramount importance in enhancing the energy utilization efficiency of coal-fired power plants and reducing the emissions of waste gas and pollutants. This study proposes a prediction model for the oxygen content in the flue gas that combines the whale optimization algorithm (WOA) and long short-term memory (LSTM) networks. Among them, the whale optimization algorithm (WOA) was used to optimize the learning rate, the number of hidden layers, and the regularization coefficients of the long short-term memory (LSTM). The data used in this study were obtained from a 350 MW power generation unit in a coal-fired power plant to validate the practicality and effectiveness of the proposed hybrid model. The simulation results demonstrated that the whale optimization algorithm-long short-term memory (WOA-LSTM) model achieved an MAE of 0.16493, an RMSE of 0.12712, an MAPE of 2.2254%, and an R2 value of 0.98664. The whale optimization algorithm-long short-term memory (WOA-LSTM) model demonstrated enhancements in accuracy compared with the least squares support vector machine (LSSVM), long short-term memory (LSTM), particle swarm optimization-least squares support vector machine (PSO-LSSVM), and particle swarm optimization-long short-term memory (PSO-LSTM), with improvements of 4.93%, 4.03%, 1.35%, and 0.49%, respectively. These results indicated that the proposed soft sensor model exhibited more accurate performance, which can meet practical requirements of coal-fired power plants.

7.
Nat Commun ; 15(1): 3217, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622141

RESUMEN

Commonly-used ether and carbonate electrolytes show distinct advantages in active lithium-metal anode and high-voltage cathode, respectively. While these complementary characteristics hold promise for energy-dense lithium metal batteries, such synergy cannot be realized solely through physical blending. Herein, a linear functionalized solvent, bis(2-methoxyethyl) carbonate (BMC), is conceived by intramolecularly hybridizing ethers and carbonates. The integration of the electron-donating ether group with the electron-withdrawing carbonate group can rationalizes the charge distribution, imparting BMC with notable oxidative/reductive stability and relatively weak solvation ability. Furthermore, BMC also offers advantages including the ability to slightly dissolve LiNO3, excellent thermostability and nonflammability. Consequently, the optimized BMC-based electrolyte, even with typical concentrations in the single solvent, demonstrates high-voltage tolerance (4.4 V) and impressive Li plating/stripping Coulombic efficiency (99.4%). Moreover, it fulfills practical lithium metal batteries with satisfactory cycling performance and exceptional tolerance towards thermal/mechanical abuse, showcasing its suitability for safe high-energy lithium metal batteries.

8.
Appl Opt ; 63(8): 1947-1951, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38568633

RESUMEN

Three samples whose growth temperatures were 450°C, 500°C, and 560°C for S E S A M 1, S E S A M 2, and S E S A M 3, respectively, were tested by femto-second time-resolved transient absorption spectroscopy. The results indicate that the carrier dynamics of excited state absorption were dominant, and the lifetimes of carriers trapped by defect levels were about tens of pico-seconds. To further study the influence of carrier dynamics and recovery time of samples by ion-implantation, B + ions of 80 and 130 KeV were implanted into the samples with dose of 1014/c m 2. The modified samples showed a dominance of ultra-fast carrier dynamics of ground-state bleaching and direct recombination, which lasted for hundreds of femto-seconds, over excited state absorption. Additionally, carrier fast trapping was observed to be competitive with the excited state absorption process. After ion-implantation, the carrier dynamics of carrier trapping were enhanced, which contributed to forming an ultra-short laser, while the carrier dynamics of absorption of the excited state were suppressed. The conclusion that defect levels were partially eliminated by B + ion-implantation can be drawn.

9.
Pharmaceuticals (Basel) ; 17(4)2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38675434

RESUMEN

Xiaochaihu granules (XCHG) are extensively used to treat fever. Nevertheless, the underlying mechanism remains elusive. This study aimed to explore the potential of XCHG in mitigating yeast-induced fever and the underlying metabolic pathways. The chemical composition of XCHG was ascertained using ultra-fast liquid chromatography/quadrupole-time-of-flight tandem mass spectrometry (UFLC-Q-TOF-MS/MS), followed by integrated network analysis to predict potential targets. We then conducted experimental validation using pharmacological assays and metabolomics analysis in a yeast-induced mouse fever model. The study identified 133 compounds in XCHG, resulting in the development of a comprehensive network of herb-compound-biological functional modules. Subsequently, molecular dynamic (MD) simulations confirmed the stability of the complexes, including γ-aminobutyric acid B receptor 2 (GABBR2)-saikosaponin C, prostaglandin endoperoxide synthases (PTGS2)-lobetyolin, and NF-κB inhibitor IκBα (NFKBIA)-glycyrrhizic acid. Animal experiments demonstrated that XCHG reduced yeast-induced elevation in NFKBIA's downstream regulators [interleukin (IL)-1ß and IL-8], inhibited PTGS2 activity, and consequently decreased prostaglandin E2 (PGE2) levels. XCHG also downregulated the levels of 5-hydroxytryptamine (5-HT), γ-aminobutyric acid (GABA), corticotropin releasing hormone (CRH), and adrenocorticotrophin (ACTH). These corroborated the network analysis results indicating XCHG's effectiveness against fever in targeting NFKBIA, PTGS2, and GABBR2. The hypothalamus metabolomics analysis identified 14 distinct metabolites as potential antipyretic biomarkers of XCHG. In conclusion, our findings suggest that XCHG alleviates yeast-induced fever by regulating inflammation/immune responses, neuromodulation, and metabolism modules, providing a scientific basis for the anti-inflammatory and antipyretic properties of XCHG.

10.
Cell ; 187(9): 2305-2323.e33, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38614099

RESUMEN

Cancer immunotherapy has transformed treatment possibilities, but its effectiveness differs significantly among patients, indicating the presence of alternative pathways for immune evasion. Here, we show that ITPRIPL1 functions as an inhibitory ligand of CD3ε, and its expression inhibits T cells in the tumor microenvironment. The binding of ITPRIPL1 extracellular domain to CD3ε on T cells significantly decreased calcium influx and ZAP70 phosphorylation, impeding initial T cell activation. Treatment with a neutralizing antibody against ITPRIPL1 restrained tumor growth and promoted T cell infiltration in mouse models across various solid tumor types. The antibody targeting canine ITPRIPL1 exhibited notable therapeutic efficacy against naturally occurring tumors in pet clinics. These findings highlight the role of ITPRIPL1 (or CD3L1, CD3ε ligand 1) in impeding T cell activation during the critical "signal one" phase. This discovery positions ITPRIPL1 as a promising therapeutic target against multiple tumor types.


Asunto(s)
Complejo CD3 , Activación de Linfocitos , Linfocitos T , Escape del Tumor , Microambiente Tumoral , Animales , Complejo CD3/metabolismo , Complejo CD3/inmunología , Humanos , Ratones , Linfocitos T/inmunología , Linfocitos T/metabolismo , Microambiente Tumoral/inmunología , Perros , Neoplasias/inmunología , Línea Celular Tumoral , Femenino , Unión Proteica , Proteína Tirosina Quinasa ZAP-70/metabolismo , Anticuerpos Neutralizantes/inmunología , Ratones Endogámicos C57BL
11.
Front Pharmacol ; 15: 1361379, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38590639

RESUMEN

Background and purpose: The Bushenyiqi decoction (BYD), a contemporary prescription of traditional Chinese medicine (TCM), has been observed to significantly ameliorate asthma symptoms in patients based on clinical observations. Although multi-component and multi-target characteristics are important attributes of BYD treatment, its pharmacological effect on asthma and the underlying mechanism of action remain unclear. Method: Network pharmacology: the asthma-related genes were retrieved from the GeneCards and OMIM database. The active constituents of BYD and their corresponding target genes were collected from the TCMSP database. The underlying pathways associated with overlapping targets between BYD and asthma were identified through GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analysis. Experimental validation: pulmonary function tests, enzyme-linked immunosorbent assay (ELISA), Hematoxylin and eosin (HE), periodic acid-Schiff (PAS), and Masson's trichrome stainings were conducted to validate the efficacy of BYD in ameliorating airway inflammation in allergic asthma mice. Western blot (WB) and molecular docking were performed to confirm the involvement of the underlying pathway in BYD treatment of asthma. Results: The results of animal experiments demonstrated that BYD may improve airway responsiveness and suppress airway inflammation in allergic asthma mice. The network pharmacological analysis revealed the involvement of 11 potentially key active components, 9 potential key targets, and the phosphatidylinositol3 kinase-RAC-α serine/threonine-protein kinase (PI3K/AKT) signaling pathway in the mechanism of action of BYD for asthma treatment. Our findings have confirmed that BYD effectively alleviated airway inflammation by targeting interleukin 6 (IL-6), epidermal growth factor receptor (EGFR), and hypoxia inducible factor 1 alpha (HIF1A), with quercetin, kaempferol, and luteolin performing as the pivotal active constituents. BYD may potentially reduce inflammatory cell infiltration in lung tissues by regulating the PI3K/AKT signaling pathway. Conclusion: In conclusion, the integration of network pharmacology and biological experiments has demonstrated that key constituents of BYD, such as quercetin, kaempferol, and luteolin, exhibit targeted effects on IL-6, EGFR, and HIF1A in combating asthma-related inflammation through inhibition of the PI3K/AKT signaling pathway. The findings of this investigation provide evidence supporting the effectiveness of TCM's "bushenyiqi" therapy in asthma management, as corroborated by contemporary medical technology.

12.
Small ; : e2311197, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38593375

RESUMEN

Biomass-derived porous carbon materials are meaningful to employ as a hard carbon precursor for anode materials of sodium-ion batteries (SIBs) from a sustainability perspective. Here, a straightforward approach is proposed to develop rich closed pores in pinenut-derived carbon, with the aim of improving Na+ plateau storage by adjusting the pyrolysis temperature. The optimized sample, namely the pinenut-derived carbon at 1300 °C, demonstrates remarkable reversible specific capacity of 278 mAh g-1, along with a high initial Coulomb efficiency of 85% and robust cycling stability (with a capacity retention of 89% after 800 cycles at 0.2 A g-1). In situ and ex situ analyses unveil that the developed closed pores play a significant role in enhancing the plateau capacity, providing compelling evidence for the "adsorption-filling" mechanism. Moreover, the corresponding full-cell achieves a high energy density of 245.7 Wh kg-1 (based on the total weight of both electrode active materials) and exhibits outstanding rate capability (191.4 mAh g-1 at 3 A g-1).

13.
Dev Neurosci ; 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38583418

RESUMEN

INTRODUCTION: Transcription factor EB (TFEB), a key regulator of autophagy and lysosomal biogenesis, has diverse roles in various physiological processes. Enhancing lysosomal function by TFEB activation has recently been implicated in restoring neural stem cells (NSCs) function. Overexpression of TFEB can inhibit the cell cycle of newborn cortical NSCs. It has also been found that TFEB regulates the pluripotency transcriptional network in mouse embryonic stem cells independent of autophagy lysosomal biogenesis. This study aims to explore the effects of TFEB activation on neurogenesis in vivo through transgenic mice. METHODS: We developed a GFAP-driven TFEB overexpression mouse model (TFEB GoE) by crossing the floxed TFEB overexpression mice and hGFAP-cre mice. We performed immunohistochemical and fluorescence staining on brain tissue from newborn mice to assess neurogenesis changes, employing markers such as GFAP, Nestin, Ki67, DCX, Tbr1 and Neun to trace different stages of neural development and cell proliferation. RESULTS: TFEB GoE mice exhibited premature mortality, dying at 10-20 days after birth. Immunohistochemical analysis revealed significant abnormalities, including disrupted hippocampal structure and cortical layering. Compared to control mice, TFEB GoE mice showed a marked increase in radial glial cells (RGCs) in the hippocampus and cortex, with Ki67 staining indicating these cells were predominantly in a quiescent state. This suggests that TFEB overexpression suppresses RGCs proliferation. Additionally, abnormal distributions of migrating neurons and mature neurons were observed, highlighted by DCX, Tbr1 and Neun staining, indicating a disruption in normal neurogenesis. CONCLUSION: This study, using transgenic animals in vivo, revealed that GFAP-driven TFEB overexpression leads to abnormal neural layering in the hippocampus and cortex by dysregulating neurogenesis. Our study is the first to discover the detrimental impact of TFEB overexpression on neurogenesis during embryonic development, which has important reference significance in future TFEB overexpression interventions in NSCs for treatment.

14.
Nature ; 629(8010): 86-91, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38658763

RESUMEN

Replacement of liquid electrolytes with polymer gel electrolytes is recognized as a general and effective way of solving safety problems and achieving high flexibility in wearable batteries1-6. However, the poor interface between polymer gel electrolyte and electrode, caused by insufficient wetting, produces much poorer electrochemical properties, especially during the deformation of the battery7-9. Here we report a strategy for designing channel structures in electrodes to incorporate polymer gel electrolytes and to form intimate and stable interfaces for high-performance wearable batteries. As a demonstration, multiple electrode fibres were rotated together to form aligned channels, while the surface of each electrode fibre was designed with networked channels. The monomer solution was effectively infiltrated first along the aligned channels and then into the networked channels. The monomers were then polymerized to produce a gel electrolyte and form intimate and stable interfaces with the electrodes. The resulting fibre lithium-ion battery (FLB) showed high electrochemical performances (for example, an energy density of about 128 Wh kg-1). This strategy also enabled the production of FLBs with a high rate of 3,600 m h-1 per winding unit. The continuous FLBs were woven into a 50 cm × 30 cm textile to provide an output capacity of 2,975 mAh. The FLB textiles worked safely under extreme conditions, such as temperatures of -40 °C and 80 °C and a vacuum of -0.08 MPa. The FLBs show promise for applications in firefighting and space exploration.

15.
CNS Neurosci Ther ; 30(3): e14686, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38516817

RESUMEN

OBJECTIVES: The new daily persistent headache (NDPH) is a rare primary headache disorder. However, the underlying mechanisms of NDPH remain incompletely understood. This study aims to apply seed-based analysis to explore the functional connectivity (FC) of brainstem nuclei in patients with NDPH using resting-state functional magnetic resonance imaging (MRI). METHODS: The FC analysis from the region of interest (ROI) to whole brain voxels was used to investigate 29 patients with NDPH and 37 well-matched healthy controls (HCs) with 3.0 Tesla MRI. The 76 nuclei in the brainstem atlas were defined as ROIs. Furthermore, we explored the correlations between FC and patients' clinical characteristics and neuropsychological evaluations. RESULTS: Patients with NDPH exhibited reduced FC in multiple brainstem nuclei compared to HCs (including right inferior medullary reticular formation, right mesencephalic reticular formation, bilateral locus coeruleus, bilateral laterodorsal tegmental nucleus-central gray of the rhombencephalon, median raphe, left medial parabrachial nucleus, periaqueductal gray, and bilateral ventral tegmental area-parabrachial pigmented nucleus complex) and increased FC in periaqueductal gray. No significant correlations were found between the FC of these brain regions and clinical characteristics or neuropsychological evaluations after Bonferroni correction (p > 0.00016). CONCLUSIONS: Our results demonstrated that patients with NDPH have abnormal FC of brainstem nuclei involved in the perception and regulation of pain and emotions.


Asunto(s)
Tronco Encefálico , Encéfalo , Humanos , Tronco Encefálico/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Bulbo Raquídeo , Mapeo Encefálico , Cefalea
16.
Adv Mater ; : e2314130, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38428436

RESUMEN

Radiative cooling technology is well known for its subambient temperature cooling performance under sunlight radiation. However, the intrinsic maximum cooling power of radiative cooling limits the performance when the objects meet the thermal shock. Here, a dual-function strategy composed of radiative cooling and latent heat storage simultaneously enabling the efficient subambient cooling and high-efficiency thermal-shock resistance performance is proposed. The electrospinning and absorption-pressing methods are used to assemble the dual-function cooler. The high sunlight reflectivity and high mid-infrared emissivity of radiative film allow excellent subambient temperature of 5.1 °C. When subjected the thermal shock, the dual-function cooler demonstrates a pinning effect of huge temperature drop of 39 °C and stable low-temperature level by isothermal heat absorption compared with the traditional radiative cooler. The molten phase change materials provide the heat-time transfer effect by converting thermal-shock heat to the delayed preservation. This strategy paves a powerful way to protect the objects from thermal accumulation and high-temperature damage, expanding the applications of radiative cooling and latent heat storage technologies.

17.
J Am Chem Soc ; 146(13): 9455-9464, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38512342

RESUMEN

Owing to the high H2O activity, the aqueous electrolyte in the Zn battery exhibits a narrow electrochemical window and inevitable hydrogen evolution reaction, limiting the anode utilization ratio and performance at high voltage. Carbonate ester, the well-developed electrolyte solvent in Li-ion batteries, exhibits aprotic properties and high anodic stability. However, its use in Zn metal batteries is limited due to the low solubility of Zn salts in carbonate esters. Herein, we propose a carbonate ester-based electrolyte (EC:DMC:EMC = 1:1:1 wt %), which contains a new Zn salt (Zn(BHFip)2) characterized by low cost, easy synthesis, and excellent aprotic solvent solubility. The BHFip- anion assists in forming Zn2+ conductive SEI on the anode and decomposes at high voltage to generate a protective CEI layer on the cathode. The Zn//Zn symmetric cell using such electrolyte achieves a remarkable Zn utilization ratio of 91% for 125 h, which has rarely been reported before. Furthermore, the Zn//LiMn2O4 full cell with an average operation voltage of 1.7 V demonstrates reliable cycling for 135 cycles with an N/P ratio of 1:1. In addition, the Zn//LiNi0.5Mn1.5O4 full cell exhibits a high discharge median voltage exceeding 2.2 V for 280 cycles, with the high voltage plateau (above 2 V) constituting 82% of the total capacity.

18.
Small ; : e2310518, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38429235

RESUMEN

Due to their significant capacity and reliable reversibility, transition metal sulphides (TMSs) have received attention as potential anode materials for sodium-ion batteries (SIBs). Nonetheless, a prevalent challenge with TMSs lies in their significant volume expansion and sluggish kinetics, impeding their capacity for rapid and enduring Na+ storage. Herein, a Cu1.96 S@NC nanodisc material enriched with copper vacancies is synthesised via a hydrothermal and annealing procedure. Density functional theory (DFT) calculations reveal that the incorporation of copper vacancies significantly boosts electrical conductivity by reducing the energy barrier for ion diffusion, thereby promoting efficient electron/ion transport. Moreover, the presence of copper vacancies creates ample active sites for the integration of sodium ions, streamlines charge transfer, boosts electronic conductivity, and, ultimately, significantly enhances the overall performance of SIBs. This novel anode material, Cu1.96 S@NC, demonstrates a reversible capacity of 339 mAh g-1 after 2000 cycles at a rate of 5 A g-1 . In addition, it maintains a noteworthy reversible capacity of 314 mAh g-1 with an exceptional capacity retention of 96% even after 2000 cycles at 20 A g-1 . The results demonstrate that creating cationic vacancies is a highly effective strategy for engineering anode materials with high capacity and rapid reactivity.

19.
Heliyon ; 10(5): e26873, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38434384

RESUMEN

Objective: In recent decades, there has been a notable increase in the morbidity and mortality rates linked to bacteremia and candidemia. This study aimed to investigate the clinical significance of inflammatory markers in assessing the disease severity in critically ill patients suffering from mixed-bloodstream infections (BSIs) due to Enterococcus spp. and Candida spp. Methods: In this retrospective research, patients diagnosed with BSIs who were admitted to the intensive care unit (ICU) during the period of January 2019 to December 2022 were analyzed. The patients were divided into two groups: a mixed-pathogen BSI group with both Enterococcus spp. and Candida spp., and a single-pathogen BSI group with only Enterococcus spp. The study examined the differences in inflammatory marker levels and disease severity, including Acute Physiology and Chronic Health Evaluation (APACHE) II scores, duration of ICU stay, and 30-day mortality, between the two groups. Furthermore, we sought to scrutinize the potential associations among these aforementioned parameters. Results: The neutrophil-to-lymphocyte ratios (NLRs) and levels of plasma C-reactive protein (CRP), interleukin (IL)-6, IL-8, and tumor necrosis factor-α (TNF-α) in the mixed-pathogen BSI group were higher than those in the single-pathogen BSI group. Spearman's rank correlation analysis showed that NLRs and plasma CRP and IL-6 levels were positively correlated with disease severity in the mixed-pathogen BSI group. Further, the levels of plasma IL-8 and TNF-α were also positively correlated with ICU stay duration and 30-day mortality. In multivariate analysis, plasma CRP and IL-6 levels were independently associated with 30-day mortality. Conclusion: Mixed-pathogen BSIs caused by Enterococcus spp. and Candida spp. may give rise to increased NLRs and plasma CRP, IL-6, IL-8, and TNF-α levels in comparison to BSI caused by Enterococcus spp. only, thus leading to elevated disease severity in critically ill patients.

20.
J Am Chem Soc ; 146(14): 9688-9696, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38427795

RESUMEN

Nearly a decade has passed since the discovery of superconductivity in CrAs, but until now, the discovered structure types of chromium-based superconductors are still scanty. It is urgent to expand this family to decipher the interplay between magnetism and superconductivity penetratingly. Here, we report the observation of superconductivity in ferromagnet CrSbSe3 with a quasi-one-dimensional structure under high pressure. Under compression, CrSbSe3 undergoes an insulator-to-metal transition and sequential isostructural phase transitions accompanied by volume collapse. Superconductivity emerges at 32.8 GPa concomitant with metallization in CrSbSe3. A maximum superconducting transition temperature Tc of 7.7 K is achieved at 57.9 GPa benefiting from both the phonon softening and the enhanced p-d hybridization between Se and Cr in CrSbSe3. The discovery of superconductivity in CrSbSe3 expands the existing chromium-based superconductor family and sheds light on the search for concealed superconductivity in low-dimensional van der Waals materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...