Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Intervalo de año de publicación
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124955, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39173323

RESUMEN

Designing persistent dual-band afterglow materials with thermally activated delayed fluorescence (TADF) and room temperature phosphorescence (RTP) contributed to solving the problems of homogenization and singularity in long afterglow materials. Here, six aryl acetonitrile (CBM) and aryl dicyanoaniline (AMBT) derivatives, used as host and guest materials respectively, were successfully designed and synthesized based on the isomerization effect. Among of them, 0.1 % m-CBM/p-AMBT showed the longest dual-band TADF (540 ms) and RTP lifetimes (721 ms), as well as persistent afterglow over 8 s, whose fluorescence (ΦFL), TADF (ΦT) and RTP (ΦP) quantum yields were 0.11, 0.06 and 0.22 in sequence. More interestingly, some doping systems constructed by CBM and AMBT series compounds showed persistent triple-band emissions composed of TADF, unimolecular and aggregated AMBT series compounds. What's more, ΦFL, ΦT and ΦP of 1 % o-AMBT@PMMA film were up to 0.17, 0.17, 0.23 in turn, with TADF, RTP and afterglow lifetimes of 606 ms, 727 ms, and 10 s respectively. TADF and RTP emission of CBM/AMBT series doping systems was attributed to host sensitized guest emission. Besides, the comparison displayed AMBT series compounds had bigger intensity ratios between TADF and RTP emission in PMMA films compared to in CBM series compounds. Finally, a series of data encryption were successfully constructed based on different afterglow lifetimes of the doping systems, and a dynamic anti-counterfeiting pattern was prepared by using different temperature responses of TADF and RTP emissions.

2.
Food Res Int ; 192: 114823, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39147515

RESUMEN

This study explored how high hydrostatic pressure (HHP) and proteins (i.e., BSA and HSA) influence the color and chemical stability of cyanidin-3-O-glucoside (C3G) at neutral pH. HHP treatments (100-500 MPa, 0-20 min, 25 °C) did not affect C3G content in phosphate buffer (PB) and MOPS buffer. However, significant color loss of C3G occurred in PB due to pressure-induced pH reduction (e.g., from 7 to 4.8 at 500 MPa), which accelerated the hydration of C3G, converting it from colored to colorless species. Consequently, MOPS buffer was employed for subsequent stability experiments to assess the impact of protein and HHP on the thermal, storage, and UV light stability of C3G. Initially, rapid color loss occurred during heating and storage, primarily due to the reversible hydration of C3G until equilibrium with colorless species was reached, followed by slower parallel degradation. HSA increased the fraction of colored species at equilibrium but accelerated thermal degradation, while BSA had minimal effects. UV light irradiation accelerated the degradation of C3G colored species, causing direct degradation without conversion to colorless species, a process further intensified by the presence of proteins. HHP exhibited a negligible effect on C3G stability regardless of protein addition. These findings provide insights into anthocyanin stability under HHP and protein interactions, contributing to the development of future formulation and processing strategies for improved stability and broader applications.


Asunto(s)
Antocianinas , Color , Glucósidos , Presión Hidrostática , Antocianinas/química , Glucósidos/química , Concentración de Iones de Hidrógeno , Rayos Ultravioleta , Albúmina Sérica Bovina/química
3.
Food Chem ; 460(Pt 3): 140767, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39142206

RESUMEN

Developing highland barley products is complex, possibly due to the presence of ß-glucan in highland barley. This study aims to investigate the impact of ß-glucan on the physicochemical properties, microstructure, and molecular interactions of highland barley starch (HBS) during gelatinization and aging. Increasing the ß-glucan content significantly reduced peak viscosity, setback viscosity, and breakdown viscosity, indicating altered gelatinization behavior. The ß-glucan content increase caused a significant drop in peak viscosity. With 20% ß-glucan addition, it reduced by 883 mPa·s, nearly 38%. Rheological analysis showed a transition from a solid-like to a liquid-like texture or quality, ultimately leading to a shear-thinning behavior. Fourier-transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) confirmed the interaction between HBS and ß-glucan via intermolecular hydrogen bonding, promoting the formation of double helical structures in starch. These findings provide a deeper understanding of the role of ß-glucan in the processing of highland barley, highlighting its influence on the starch's properties.

4.
Sci Rep ; 14(1): 15349, 2024 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961190

RESUMEN

Precision-cut liver slices (PCLS) are increasingly used as a model to investigate anti-fibrotic therapies. However, many studies use PCLS from healthy animals treated with pro-fibrotic stimuli in culture, which reflects only the early stages of fibrosis. The effects of different culture conditions on PCLS from cirrhotic animals has not been well characterized and there is no consensus on optimal methods. In this study, we report a method for the collection and culture of cirrhotic PCLS and compare the effect of common culture conditions on viability, function, and gene expression. Additionally, we compared three methods of RNA isolation and identified a protocol with high yield and purity. We observed significantly increased albumin production when cultured with insulin-transferrin-selenium and dexamethasone, and when incubated on a rocking platform. Culturing with insulin-transferrin-selenium and dexamethasone maintained gene expression closer to the levels in fresh slices. However, despite stable viability and function up to 4 days, we found significant changes in expression of key genes by day 2. Interestingly, we also observed that cirrhotic PCLS maintain viability in culture longer than slices from healthy animals. Due to the influence of matrix stiffness on fibrosis and hepatocellular function, it is important to evaluate prospective anti-fibrotic therapies in a platform that preserves tissue biomechanics. PCLS from cirrhotic animals represent a promising tool for the development of treatments for chronic liver disease.


Asunto(s)
Dexametasona , Cirrosis Hepática , Hígado , Animales , Ratas , Hígado/metabolismo , Hígado/patología , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Cirrosis Hepática/genética , Dexametasona/farmacología , Masculino , ARN/aislamiento & purificación , ARN/genética , ARN/metabolismo , Insulina/metabolismo , Insulina/farmacología , Ratas Sprague-Dawley , Selenio/farmacología , Técnicas de Cultivo de Tejidos/métodos
5.
J Nanobiotechnology ; 22(1): 376, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926780

RESUMEN

Tissue regeneration technology has been rapidly developed and widely applied in tissue engineering and repair. Compared with traditional approaches like surgical treatment, the rising gene therapy is able to have a durable effect on tissue regeneration, such as impaired bone regeneration, articular cartilage repair and cancer-resected tissue repair. Gene therapy can also facilitate the production of in situ therapeutic factors, thus minimizing the diffusion or loss of gene complexes and enabling spatiotemporally controlled release of gene products for tissue regeneration. Among different gene delivery vectors and supportive gene-activated matrices, advanced gene/drug nanocarriers attract exceptional attraction due to their tunable physiochemical properties, as well as excellent adaptive performance in gene therapy for tissue regeneration, such as bone, cartilage, blood vessel, nerve and cancer-resected tissue repair. This paper reviews the recent advances on nonviral-mediated gene delivery systems with an emphasis on the important role of advanced nanocarriers in gene therapy and tissue regeneration.


Asunto(s)
Técnicas de Transferencia de Gen , Terapia Genética , Regeneración , Ingeniería de Tejidos , Andamios del Tejido , Humanos , Animales , Terapia Genética/métodos , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Nanopartículas/química , Portadores de Fármacos/química , Vectores Genéticos
6.
Food Chem ; 457: 140118, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-38905831

RESUMEN

The development of natural inhibitors of polyphenol oxidase (PPO) is crucial in the prevention of enzymatic browning in fresh foods. However, few studies have focused on the effect of subsequent sterilization on their inhibition efficiency. This study investigated the influence and mechanism of high hydrostatic pressure (HHP) on the inhibition of PPO by epigallocatechin gallate (EGCG), cyanidin-3-O-glucoside (C3G), and ferulic acid. Results showed that under the conditions of 550 MPa/30 min, the activity of EGCG-PPO decreased to 55.92%, C3G-PPO decreased to 81.80%, whereas the activity of FA-PPO remained stable. Spectroscopic experiments displayed that HHP intensified the secondary structure transformation and fluorescence quenching of PPO. Molecular dynamics simulations revealed that at 550 MPa, the surface interaction between PPO with EGCG or C3G increased, potentially leading to a reduction in their activity. In contrast, FA-PPO demonstrated conformational stability. This study can provide a reference for the future industrial application of natural inhibitors.


Asunto(s)
Antocianinas , Catequina , Catecol Oxidasa , Ácidos Cumáricos , Inhibidores Enzimáticos , Presión Hidrostática , Catecol Oxidasa/química , Catecol Oxidasa/metabolismo , Catecol Oxidasa/antagonistas & inhibidores , Catequina/química , Catequina/análogos & derivados , Catequina/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Antocianinas/química , Ácidos Cumáricos/química , Ácidos Cumáricos/farmacología , Glucósidos/química , Glucósidos/farmacología , Simulación de Dinámica Molecular
7.
JTCVS Open ; 18: 306-321, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38690408

RESUMEN

Objective: Previous studies have demonstrated synergistic antitumor effects of angiotensin system inhibition (ASI) combined with cisplatin therapy in pancreatic cancer. This study examines whether or not synergistic antitumor effects occur with combination ASI and cisplatin treatment in lung cancer, and whether or not ASI-induced changes in epithelial-mesenchymal transition play a role in the mechanism of this antitumor phenomenon. Methods: A set of lung cancer cell lines representing a spectrum of epithelial to mesenchymal phenotypes were identified and characterized. Response of epithelial-mesenchymal transition markers to losartan was characterized. Cell culture models of lung cancer were next treated with losartan, cisplatin, or combination of both. Markers of epithelial-mesenchymal transition or surrogates of other signaling pathways (AKT, Stat3, and programmed death-ligand), and cell viability were quantified. Findings were confirmed in both allogenic and syngeneic in vivo murine flank tumor models. Results: Losartan treatment significantly increased E-cadherin and reduced vimentin in human lung cancer cell lines. Combination treatment with losartan and cisplatin enhanced epithelial markers, reduced mesenchymal markers, inhibited promesenchymal signaling mediators, and reduced cell viability. Findings were confirmed in vivo in a murine flank tumor model with transition from mesenchymal to epithelial phenotype and reduced tumor size following combination losartan and cisplatin treatment. Conclusions: Combination losartan and cisplatin treatment attenuates the epithelial-mesenchymal transition pathway and enhances the cytotoxic effect of chemotherapy with in vitro and in vivo models of non-small cell lung cancer. This study suggests an important role for ASI therapy in the treatment of lung cancer.

8.
Compr Rev Food Sci Food Saf ; 23(3): e13362, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38720585

RESUMEN

Fermentation is a traditional method utilized for vegetable preservation, with microorganisms playing a crucial role in the process. Nowadays, traditional spontaneous fermentation methods are widely employed, which excessively depend on the microorganisms attached to the surface of raw materials, resulting in great difficulties in ideal control over the fermentation process. To achieve standardized production and improve product quality, it is essential to promote inoculated fermentation. In this way, starter cultures can dominate the fermentation processes successfully. Unfortunately, inoculated fermentation has not been thoroughly studied and applied. Therefore, this paper provides a systematic review of the potential upgrading strategy of vegetable fermentation technology. First, we disclose the microbial community structures and succession rules in some typical spontaneously fermented vegetables to comprehend the microbial fermentation processes well. Then, internal and external factors affecting microorganisms are explored to provide references for the selection of fermented materials and conditions. Besides, we widely summarize the potential starter candidates with various characteristics isolated from spontaneously fermented products. Subsequently, we exhibited the inoculated fermentation strategies with those isolations. To optimize the product quality, not only lactic acid bacteria that lead the fermentation, but also yeasts that contribute to aroma formation should be combined for inoculation. The inoculation order of the starter cultures also affects the microbial fermentation. It is equally important to choose a proper processing method to guarantee the activity and convenience of starter cultures. Only in this way can we achieve the transition from traditional spontaneous fermentation to modern inoculated fermentation.


Asunto(s)
Fermentación , Verduras , Bacterias , Alimentos Fermentados/microbiología , Microbiología de Alimentos/métodos , Microbiota , Verduras/microbiología , Levaduras
9.
Acta Biomater ; 182: 81-92, 2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38734287

RESUMEN

Tuning cell adhesion geometry can affect cytoskeleton organization and the distribution of cytoskeleton forces, which play critical roles in controlling cell functions. To elucidate the geometrical relationship with cytoskeleton force distribution, it is necessary to control cell morphology. In this study, a series of dextral vortex micropatterns were prepared to precisely control cell morphology for investigating the influence of the curvature degree of adhesion curves on intracellular force distribution and stem cell differentiation at a sub-cellular level. Peripherial actin filaments of micropatterned cells were assembled along the adhesion curves and showed different orientations, filament thicknesses and densities. Focal adhesion and cytoskeleton force distribution were dependent on the curvature degree. Intracellular force distribution was also regulated by adhesion curves. The cytoskeleton and force distribution affected the osteogenic differentiation of mesenchymal stem cells through a YAP/TAZ-mediated mechanotransduction process. Thus, regulation of cell adhesion curvature, especially at cytoskeletal filament level, is critical for cell function manipulation. STATEMENT OF SIGNIFICANCE: In this study, a series of dextral micro-vortexes were prepared and used for the culture of human mesenchymal stem cells (hMSCs) to precisely control adhesive curvatures (0°, 30°, 60°, and 90°). The single MSCs on the micropatterns had the same size and shape but showed distinct focal adhesion (FA) and cytoskeleton orientations. Cellular nanomechanics were observed to be correlated with the curvature degrees, subsequently influencing nuclear morphological features. As a consequence, the localization of the mechanotransduction sensor and activator-YAP/TAZ was affected, influencing osteogenic differentiation. The results revealed the pivotal role of adhesive curvatures in the manipulation of stem cell differentiation via the machanotransduction process, which has rarely been investigated.


Asunto(s)
Diferenciación Celular , Adhesiones Focales , Mecanotransducción Celular , Células Madre Mesenquimatosas , Osteogénesis , Adhesiones Focales/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Mecanotransducción Celular/fisiología , Humanos , Osteogénesis/fisiología , Actinas/metabolismo , Adhesión Celular , Forma de la Célula , Proteínas Señalizadoras YAP
10.
Spectrochim Acta A Mol Biomol Spectrosc ; 317: 124449, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38754206

RESUMEN

To explore the intrinsic mechanism of pure organic room temperature and clustering-induced phosphorescence and investigate mechanochromism and structural-function relationships, here, 4-(2-(9H-carbazol-9-yl)phenyl)-2-amino-6-methoxypyridine-3,5-dicarbonitrile (Lo-CzAD), 4-(3-(9H-carbazol-9-yl)phenyl)-2-amino-6-methoxypyridine-3,5-dicarbonitrile (Lm-CzAD), and 4-(4-(9H-carbazol-9-yl)phenyl)-2-amino-6-methoxypyridine-3,5-dicarbonitrile (Lp-CzAD) were designed and synthesized by choosing self-made carbazole and 3, 5-dicyanopyridine (DCP) unit as electron acceptor and electron donor in sequence. Compared with crystals Lm-CzAD and Lp-CzAD, crystal Lo-CzAD shows better room temperature phosphorescence (RTP) performance, with RTP lifetimes of 187.16 ms, as well as afterglows 1s, which are attributed to twisted carbazole unit and donor-acceptor (D-A) molecular conformation, big crystal density and spin orbit coupling constant ξ (S1 â†’ T1 and S1 â†’ T2), as well as intermolecular H type stacking and small ξ (S0 â†’ T1). By choosing urea and PPh3 as host materials and tuning doping ratio, four doping systems were successfully constructed, significantly improving RTP performance of Lo-CzAD and Lp-CzAD, as well as showing different fluorescence and RTP. The lifetimes and afterglows of pure organic Urea/Lo-CzAD and Urea/Lp-CzAD systems are up to 478.42 ms, 5 s, 261.66 ms and 4.5 s in turn. Moreover, Lo-CzAD and Lp-CzAD show time-dependent RTP in doping systems due to monomer and aggregate dispersion, as well as clustering-induced phosphorescence. Based on the different luminescent properties, multiple information encryptions were successfully constructed.

11.
Food Chem ; 452: 139544, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38723571

RESUMEN

This study investigated the effects of high hydrostatic pressure (HHP) on the binding interactions of cyanindin-3-O-glucoside (C3G) to bovine serum albumin, human serum albumin (HSA), bovine lactoferrin, and ovotransferrin. Fluorescence quenching revealed that HHP reduced C3G-binding affinity to HSA, while having a largely unaffected role for the other proteins. Notably, pretreating HSA at 500 MPa significantly increased its dissociation constant with C3G from 24.7 to 34.3 µM. Spectroscopic techniques suggested that HSA underwent relatively pronounced tertiary structural alterations after HHP treatments. The C3G-HSA binding mechanisms under pressure were further analyzed through molecular dynamics simulation. The localized structural changes in HSA under pressure might weaken its interaction with C3G, particularly polar interactions such as hydrogen bonds and electrostatic forces, consequently leading to a decreased binding affinity. Overall, the importance of pressure-induced structural alterations in proteins influencing their binding with anthocyanins was highlighted, contributing to optimizing HHP processing for anthocyanin-based products.


Asunto(s)
Antocianinas , Presión Hidrostática , Unión Proteica , Antocianinas/química , Antocianinas/metabolismo , Humanos , Animales , Bovinos , Albúmina Sérica/química , Albúmina Sérica/metabolismo , Simulación de Dinámica Molecular
12.
Adv Sci (Weinh) ; 11(29): e2402890, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38810102

RESUMEN

Copper-catalyzed C─H oxygenation has drawn considerable attention in mechanistic studies. However, a comprehensive investigation combining radical pathways with a metal-catalytic cycle is challenged by the intricate organic radicals and metallic intermediates. Herein, an online coupled EPR/UV-vis/near-IR detecting method is developed to simultaneously monitor both reactive radical species and copper complex intermediates during the reaction. Focusing on copper-catalyzed phenol oxygenation with cumene hydroperoxide, the short-lived alkylperoxyl radical (EPR signal at g = 2.0143) as well as the unexpected square planar Cu(II)-alkoxyl radical complex (near-IR signal at 833 nm) are unveiled during the reaction, in addition to the observable phenoxyl radical in EPR, quinone product in UV-vis, and Cu(II) center in EPR. With a comprehensive picture of diverse intermediates evolving over the same timeline, a novel Cu(I)/Cu(II) proposed relay-catalyzed sequential radical pathway. In this sequence, Cu(II) activates hydroperoxide through Cu(II)-OOR into the alkylperoxide radical, while the reaction between Cu(I) and hydroperoxide leads to Cu(II)(•OR)OH with high H-atom abstracting activity. These results provide a thorough understanding of the Cu(I)/Cu(II) relay catalysis for phenol oxygenation, setting the stage for mechanistic investigations into intricate radical reactions promoted by metallic complexes.

13.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124227, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38608557

RESUMEN

Low cost and strong fluorescence emission are two important guarantees for luminogens used as light conversion agents. By one-pot multicomponent approach and inexpensive starting materials, three dicyanopyridine (DP) derivatives named as DCP (2-amino-6-methoxy-4-phenylpyridine-3,5-dicarbonitrile), DCO (2-amino-6-methoxy-4-(4-methoxyphenyl) pyridine-3,5-dicarbonitrile) and DCC (2-amino-4-(4-cyanophenyl)-6-methoxypyridine-3,5-dicarbonitrile) were designed and synthesized. Meanwhile, the ACQ-to-AIE transformation was successfully realized by altering substituent groups rather than traditional rotor-stator theory. Based on crystal analysis and theoretical calculations, the ACQ-to-AIE transformation is attributed to the tunable stacking modes and intermolecular weak interactions. Owing to matched fluorescence emission, low lost, high yield, and AIE activity, DCC is used as light conversion agents and doped in EVA matrix. The light conversion quality confirms that DCC can not only convert ultraviolet light, but also significantly improve the transmittance of 25 %/40 % EVA, whose photosynthetic photon flux density at 400-500 nm and 600-700 nm increased to 30.67 %/30.21 % and 25.37 %/37.82 % of the blank film, respectively. After 20 h of UV irradiation (365 nm, 40 W), the fluorescence intensities of DCC films can maintain 92 % of the initial values, indicating good photostability in the doping films. This work not only provides an excellent and low-cost light conversion agent, but also has important significance for ACQ-to-AIE transformation of luminogens.

14.
J Mater Chem B ; 12(13): 3249-3261, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38466580

RESUMEN

Over the past few decades, the critical role played by cellular contractility associated mechanotransduction in the regulation of cell functions has been revealed. In this case, numerous biomaterials have been chemically or structurally designed to manipulate cell behaviors through the regulation of cellular contractility. In particular, adhesive proteins including fibronectin, poly-L-lysine and collagen type I have been widely applied in various biomaterials to improve cell adhesion. Therefore, clarifying the effects of adhesive proteins on cellular contractility has been valuable for the development of biomaterial design. In this study, reference-free traction force microscopy with a well-organized microdot array was designed and prepared to investigate the relationship between adhesive proteins, cellular contractility, and mechanotransduction. The results showed that fibronectin and collagen type I were able to promote the assembly of focal adhesions and further enhance cellular contraction and YAP activity. In contrast, although poly-L-lysine supported cell spreading and elongation, it was inefficient at inducing cell contractility and activating YAP. Additionally, compared with cellular morphogenesis, cellular contraction was essential for YAP activation.


Asunto(s)
Fibronectinas , Mecanotransducción Celular , Fibronectinas/metabolismo , Mecanotransducción Celular/fisiología , Microscopía de Fuerza Atómica , Colágeno Tipo I , Polilisina , Tracción , Adhesión Celular , Materiales Biocompatibles
15.
J Agric Food Chem ; 72(12): 6454-6462, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38477968

RESUMEN

In this study, the phenomenon of the stability-activity trade-off, which is increasingly recognized in enzyme engineering, was explored. Typically, enhanced stability in enzymes correlates with diminished activity. Utilizing Rosa roxburghii copper-zinc superoxide dismutase (RrCuZnSOD) as a model, single-site mutations were introduced based on a semirational design derived from consensus sequences. The initial set of mutants was selected based on activity, followed by combinatorial mutation. This approach yielded two double-site mutants, D25/A115T (18,688 ± 206 U/mg) and A115T/S135P (18,095 ± 1556 U/mg), exhibiting superior enzymatic properties due to additive and synergistic effects. These mutants demonstrated increased half-lives (T1/2) at 80 °C by 1.2- and 1.6-fold, respectively, and their melting temperatures (Tm) rose by 3.4 and 2.5 °C, respectively, without any loss in activity relative to the wild type. Via an integration of structural analysis and molecular dynamics simulations, we elucidated the underlying mechanism facilitating the concurrent enhancement of both thermostability and enzymatic activity.


Asunto(s)
Simulación de Dinámica Molecular , Ingeniería de Proteínas , Estabilidad de Enzimas , Temperatura , Secuencia de Consenso
17.
Bioresour Technol ; 398: 130529, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38437969

RESUMEN

The process of biological fermentation is often accompanied by the release of CO2, resulting in low yield and environmental pollution. Refixing CO2 to the product synthesis pathway is an attractive approach to improve the product yield. Cadaverine is an important diamine used for the synthesis of bio-based polyurethane or polyamide. Here, aiming to increase its final production, a RuBisCO-based shunt consisting of the ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) and phosphoribulate kinase (PRK) was expressed in cadaverine-producing E. coli. This shunt was calculated capable of increasing the maximum theoretical cadaverine yield based on flux model analysis. When a functional RuBisCO-based shunt was established and optimized in E. coli, the cadaverine production and yield of the final engineered strain reached the highest level, which were 84.1 g/L and 0.37 g/g Glucose, respectively. Thus, the design of in situ CO2 fixation provides a green and efficient industrial production process.


Asunto(s)
Escherichia coli , Ribulosa-Bifosfato Carboxilasa , Ribulosa-Bifosfato Carboxilasa/metabolismo , Cadaverina/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Dióxido de Carbono/metabolismo , Fermentación
18.
J Adv Res ; 2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38402948

RESUMEN

INTRODUCTION: The scarcity of naturally available sources for blue colorants has driven reliance on synthetic alternatives. Nevertheless, growing health concerns have prompted the development of naturally derived blue colorants, which remains challenging with limited success thus far. Anthocyanins (ACNs) are known for providing blue colors in plants, and metal complexation with acylated ACNs remains the primary strategy to generate stable blue hues. However, this approach can be costly and raise concerns regarding potential metal consumption risks. OBJECTIVES: Our study aims to introduce a metal-free approach to achieve blue coloration in commonly distributed non-acylated 3-glucoside ACNs by exploring their interactions with proteins and unveiling the underlying mechanisms. METHODS: Using human serum albumin (HSA) as a model protein, we investigated the structural influences of ACNs on their blue color generation using visible absorption spectroscopy, fluorescence quenching, and molecular simulations. Additionally, we examined the bluing effects of six proteins derived from milk and egg and identified the remarkable roles of bovine serum albumin (BSA) and lysozyme (LYS). RESULTS: Our findings highlighted the importance of two or more hydroxyl or methoxyl substituents in the B-ring of ACNs for generating blue colors. Cyanidin-, delphinidin- and petunidin-3-glucoside, featuring two neighboring hydroxyl groups in the B-ring, exhibited blue coloration when interacting with HSA or LYS, driven primarily by favorable enthalpy changes. In contrast, malvidin-3-glucoside, with two methoxyl substituents, achieved blue coloration through interactions with HSA or BSA, where entropy change played significant roles. CONCLUSION: Our work, for the first time, demonstrates the remarkable capability of widely distributed 3-glucoside ACNs to generate diverse blue shades through interactions with certain proteins. This offers a promising and straightforward strategy for the production of ACN-based blue colorants, stimulating further research in this field.

19.
Chem Commun (Camb) ; 60(20): 2772-2775, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38353965

RESUMEN

To accelerate the discovery of high-affinity aptamers, a magnetically activated continuous deflection (MACD) chip was designed. The MACD chip could achieve dynamic selection in a continuous flow, which meant that the binding and separation were carried out consecutively. Dynamic selection could make selection efficient. Low-affinity sequences could be eluted in time and high-affinity sequences could be enriched via dynamic selection. The stringency of the conditions could be further increased by lowering the target concentration in the dynamic selection. Finally, a C.al3 aptamer with high-affinity and high-specificity for Candida albicans (C. albicans) was obtained through six rounds of selection. Its dissociation constant (Kd) was 7.9 nM. This demonstrated that dynamic selection using a MACD chip was an effective method for high-affinity aptamer selection.


Asunto(s)
Aptámeros de Nucleótidos , Microfluídica , Microfluídica/métodos , Técnica SELEX de Producción de Aptámeros/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos
20.
J Org Chem ; 89(4): 2440-2447, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38306296

RESUMEN

Aromatic C-H oxygenation is important in both industrial production and organic synthesis. Here we report a metal-free approach for phenol oxygenation with water as the oxygen source using oxoammonium salts as the renewable oxidant. Employing this protocol, various alkyl-substituted phenols were converted into benzoquinones in yields of 59-98%. On the basis of 18O-labeling and kinetic studies, the hydroxy-oxoammonium adduct was proposed to attack the aromatic ring similarly to electrophilic aromatic substitution. We suppose that the findings described here not only provide an efficient and highly selective protocol for aromatic C-H oxygenation but also may encourage further developments of possible transition-metal-free catalytic methods.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA