Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Mater ; : e2405673, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39022876

RESUMEN

Immunogenic cell death (ICD) often results in the production and accumulation of adenosine (ADO), a byproduct that negatively impacts the therapeutic effect as well as facilitates tumor development and metastasis. Here, an innovative strategy is elaborately developed to effectively activate ICD while avoiding the generation of immunosuppressive adenosine. Specifically, ZIF-90, an ATP-responsive consumer, is synthesized as the core carrier to encapsulate AB680 (CD73 inhibitor) and then coated with an iron-polyphenol layer to prepare the ICD inducer (AZTF), which is further grafted onto prebiotic bacteria via the esterification reaction to obtain the engineered biohybrid (Bc@AZTF). Particularly, the designed Bc@AZTF can actively enrich in tumor sites and respond to the acidic tumor microenvironment to offload AZTF nanoparticles, which can consume intracellular ATP (iATP) content and simultaneously inhibit the ATP-adenosine axis to reduce the accumulation of adenosine, thereby alleviating adenosine-mediated immunosuppression and strikingly amplifying ICD effect. Importantly, the synergy of anti-PD-1 (αPD-1) with Bc@AZTF not only establishes a collaborative antitumor immune network to potentiate effective tumoricidal immunity but also activates long-lasting immune memory effects to manage tumor recurrence and rechallenge, presenting a new paradigm for ICD treatment combined with adenosine metabolism.

2.
Nano Lett ; 24(12): 3801-3810, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38477714

RESUMEN

The effectiveness of various cancer therapies for solid tumors is substantially limited by the highly hypoxic tumor microenvironment (TME). Here, a microalgae-integrated living hydrogel (ACG gel) is developed to concurrently enhance hypoxia-constrained tumor starvation therapy and immunotherapy. The ACG gel is formed in situ following intratumoral injection of a biohybrid fluid composed of alginate, Chlorella sorokiniana, and glucose oxidase, facilitated by the crossing-linking between divalent ions within tumors and alginate. The microalgae Chlorella sorokiniana embedded in ACG gel generate abundant oxygen through photosynthesis, enhancing glucose oxidase-catalyzed glucose consumption and shifting the TME from immunosuppressive to immunopermissive status, thus reducing the tumor cell energy supply and boosting antitumor immunity. In murine 4T1 tumor models, the ACG gel significantly suppresses tumor growth and effectively prevents postoperative tumor recurrence. This study, leveraging microalgae as natural oxygenerators, provides a versatile and universal strategy for the development of oxygen-dependent tumor therapies.


Asunto(s)
Chlorella , Microalgas , Neoplasias , Animales , Ratones , Hidrogeles , Glucosa Oxidasa , Fotosíntesis , Hipoxia , Oxígeno , Inmunoterapia , Alginatos , Microambiente Tumoral
3.
BMC Musculoskelet Disord ; 24(1): 955, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38066472

RESUMEN

BACKGROUND: About 15-60% of individuals with ankle sprains may develop functional ankle instability (FAI), which is characterised by ankle pain, decreased muscle strength, limited range of motion, and impaired balance, causing a decline in social activity and quality of life. However, the relationship between those characters is still unclear. This study aimed to investigate whether a relationship existed between ankle pain, active range of motion (AROM), strength and balance and if ankle pain, AROM and strength can predict balance in individuals with FAI. METHODS: Seventy-seven subjects (46 males; 31 females) with unilateral FAI participated in this study. Ankle pain was measured by the visual analogue scale (VAS), ankle AROM was measured using a universal goniometer, ankle strength was measured using a handheld dynamometer, the static balance was measured by the Time in Balance Test (TBT) and the dynamic balance was measured by the modified Star Excursion Balance Test (mSEBT). Pearson product-moment correlations were used to determine the correlations between ankle pain, AROM, strength and balance. Multiple linear regressions were used to investigate if ankle pain, AROM and strength can predict balance in individuals with FAI. RESULTS: VAS and AROM-plantarflexion predicted 25.6% of the TBT (f2 = 0.344, P < 0.001). AROM-dorsiflexion predicted 24.6% of the mSEBT-anterior reach (f2 = 0.326, P < 0.001). VAS, AROM-plantarflexion and strength-plantarflexion predicted 33.5% of the mSEBT-posteromedial reach (f2 = 0.504, P < 0.001). AROM-plantarflexion and strength-plantarflexion predicted 28.2% of the mSEBT-posterolateral reach (f2 = 0.393, P < 0.001). CONCLUSION: This study shows that ankle plantarflexion strength, AROM of dorsiflexion and plantarflexion and pain are predictors of balance in individuals with FAI. These factors could be considered in the rehabilitation of FAI. TRIAL REGISTRATION: Trial registration number: ChiCTR2200063532.


Asunto(s)
Tobillo , Inestabilidad de la Articulación , Masculino , Femenino , Humanos , Estudios Transversales , Calidad de Vida , Equilibrio Postural/fisiología , Articulación del Tobillo , Dolor , Artralgia , Rango del Movimiento Articular/fisiología
4.
Plant Cell Rep ; 31(7): 1283-96, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22532007

RESUMEN

UNLABELLED: Clivia miniata is an important indoor ornamental plant and has been reported to have medicinal value. We developed an efficient in vitro micropropagation protocol from young leaves (indirect organogenesis), young petals (indirect organogenesis) and shoot tips (direct organogenesis) of this plant. Using young leaves and shoot tips as explants, the regeneration frequencies were much higher than those in previous investigation and the regeneration was dependent upon less nutrition. We speculated that the leaf-derived callus can generate amino acids necessary for protein synthesis by itself. We employed the methylation-sensitive amplified polymorphism (MSAP) method to assess cytosine methylation variation in various regenerated plantlets and between organs. The MSAP profiles indicated that the frequency of somaclonal variation in the form of cytosine methylation was highest in petal-derived plantlets followed by secondary leaf-derived, primary leaf-derived and shoot tip-derived plantlets, but the methylation variation in petal-derived plantlets was lower than between petals and leaves of a single plant. The results indicated that the methylation variation in regenerated plantlets was related to the types of explants, regeneration pathways and number of regeneration generations. Two possible factors for the highest somaclonal variation rate in petal-derived plantlets are the callus phase and petal-specific set of epigenetic regulators. The property of meristem integrity can account for the lowest variation rate in shoot tip-derived plantlets. Moreover, the secondary plantlets underwent a longer total period of in vitro culture, which can explain why the methylation variation rate in the secondary plantlets is higher than in the primary ones. KEY MESSAGE: Methylation variation in regenerated plantlets of C. miniata was found to be related to the types of explants, regeneration pathways and number of regeneration generations.


Asunto(s)
Metilación de ADN , Liliaceae/genética , Regeneración , Citosina/metabolismo , ADN de Plantas/metabolismo , Epigénesis Genética , Raíces de Plantas/genética , Brotes de la Planta/genética , Técnicas de Cultivo de Tejidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA