Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 378
Filtrar
1.
Chemistry ; : e202401463, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38699856

RESUMEN

Aqueous zinc-ion batteries are anticipated to be the next generation of important energy storage devices to replace lithium-ion batteries due to the ongoing use of lithium resources and the safety hazards associated with organic electrolytes in lithium-ion batteries. Manganese-based compounds, including MnOx materials, have prominent places among the many zinc-ion battery cathode materials. Additionally, Cu doping can cause the creation of an oxygen vacancy, which increases the material's internal electric field and enhances cycle stability. MnOx also has great cyclic stability and promotes ion transport. At a current density of 0.2 A g-1, the Cu/MnOx nanocomposite obtained a high specific capacitance of 304.4 mAh g-1. In addition, Cu/MnOx nanocomposites showed A high specific capacity of 198.9 mAh g-1 after 1000 cycles at a current density of 0.5 A g-1. Therefore, Cu/MnOx nanocomposites are expected to be a strong contender for the next generation of zinc-ion battery cathode materials in high energy density storage systems.

2.
Eur J Med Chem ; 271: 116395, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38626523

RESUMEN

The transforming growth factor ß1 (TGFß1)/SMAD signaling pathway regulates many vital physiological processes. The development of potent inhibitors targeting activin receptor-like kinase 5 (ALK5) would provide potential treatment reagents for various diseases. A significant number of ALK5 inhibitors have been discovered, and they are currently undergoing clinical evaluation at various stages. However, the clinical demands were far from being met. In this study, we utilized an alternative conformation-similarity-based virtual screening (CSVS) combined with a fragment-based drug designing (FBDD) strategy to efficiently discover a potent and active hit with a novel chemical scaffold. After structural optimization in the principle of group replacement, compound 57 was identified as the most promising ALK5 inhibitor. Compound 57 demonstrated significant inhibitory effects against the TGF-ß1/SMAD signaling pathway. It could markedly attenuate the production of extracellular matrix (ECM) and deposition of collagen. Also, the lead compound showed adequate pharmacokinetic (PK) properties and good in vivo tolerance. Moreover, treatment with compound 57 in two different xerograph models showed significant inhibitory effects on the growth of pancreatic cancer cells. These results suggested that lead compound 57 refers as a promising ALK5 inhibitor both in vitro and in vivo, which merits further validation.


Asunto(s)
Diseño de Fármacos , Inhibidores de Proteínas Quinasas , Pirazoles , Pirimidinas , Receptor Tipo I de Factor de Crecimiento Transformador beta , Receptor Tipo I de Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Receptor Tipo I de Factor de Crecimiento Transformador beta/metabolismo , Humanos , Pirazoles/farmacología , Pirazoles/química , Pirazoles/síntesis química , Pirimidinas/farmacología , Pirimidinas/química , Pirimidinas/síntesis química , Relación Estructura-Actividad , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Animales , Estructura Molecular , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta1/antagonistas & inhibidores , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ratones , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Receptores de Factores de Crecimiento Transformadores beta/antagonistas & inhibidores , Receptores de Factores de Crecimiento Transformadores beta/metabolismo
3.
RSC Adv ; 14(16): 11584-11593, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38601709

RESUMEN

It is challenging to naturally produce large amounts of ß-crystals by directly adding a commercial ß-nucleating agent (ß-NA) into polypropylene random copolymer (PPR) at present. In this work, a novel rare earth ß-NA WBN-28 was directly introduced into PPR to prepare ß-PPR with high ß-crystal conversion. The results of differential scanning calorimetry (DSC) and wide-angle X-ray diffraction (WAXD) indicated that it is an efficient ß-NA for PPR. The ß-conversion rate (ß-CR) could surpass 85% when the nucleating agent content was mere 0.05%. With the further increment of nucleating agent, the ß-CR increased gradually, which could reach 89.5% and 86.9% respectively calculated by DSC and WAXD when the addition amount was 0.4%. The incredible high ß-CR delayed the ßα-recrystallization in isothermal crystallization. The fusion peak of α-crystal was unobserved below the isothermal crystallization temperature of 122 °C when the addition amount was more than 0.2%. Furthermore, there was a highly ordered structure in WBN-28 with the periodicity of 12.89 Å, which was approximately twice of the unit cell parameter in the c direction of ß-PP, indicating a high lattice matching rate between them. Intuitively observed by polarizing optical microscope (POM), the crystal grains of the blends with ß-NA were more refined and finally crystallized in a plate-like shape. The forming process of the plate-like ß crystalline regions were proposed by scanning electron microscope (SEM) and POM.

4.
Artículo en Inglés | MEDLINE | ID: mdl-38624164

RESUMEN

Combined mild-temperature photothermal/chemotherapy has emerged as a highly promising modality for tumor therapy. However, its therapeutic efficacy is drastically compromised by the heat-induced overexpression of heat shock proteins (HSPs) by the cells, which resist heat stress and apoptosis. The purpose of this study was to downregulate HSPs and enhance the mild-temperature photothermal/chemotherapy effect. In detail, the colon cancer cell membrane (CT26M)-camouflaged HSP90 inhibitor ganetespib and the chemotherapeutic agent doxorubicin (DOX)-coloaded hollow mesoporous Prussian blue (HMPB) nanoplatform (named PGDM) were designed for synergistic mild photothermal/chemotherapy via HSP inhibition. In addition to being a photothermal agent with a high efficiency of photothermal conversion (24.13%), HMPB offers a hollow hole that can be filled with drugs. Concurrently, the cancer cell membrane camouflaging enhances tumor accumulation through a homologous targeting mechanism and gives the nanoplatform the potential to evade the immune system. When exposed to NIR radiation, HMPB's photothermal action (44 °C) not only causes tumor cells to undergo apoptosis but also causes ganetespib to be released on demand. This inhibits the formation of HSP90, which enhances the mild photothermal/chemotherapy effect. The results confirmed that the combined treatment regimen of mild photothermal therapy (PTT) and chemotherapy showed a better therapeutic efficacy than the individual treatment methods. Therefore, this multimodal nanoparticle can advance the development of drugs for the treatment of malignancies, such as colon cancer, and has prospects for clinical application.

5.
ACS Chem Neurosci ; 15(9): 1937-1947, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38630556

RESUMEN

The development of antiepileptic drugs is still a long process. In this study, heparin-modified superparamagnetic iron oxide nanoparticles (UFH-SPIONs) were prepared, and their antiepileptic effect and underlying mechanism were investigated. UFH-SPIONs are stable, homogeneous nanosystems with antioxidant enzyme activity that are able to cross the blood-brain barrier (BBB) and enriched in hippocampal epileptogenic foci. The pretreatment with UFH-SPIONs effectively prolonged the onset of seizures and reduced seizure severity after lithium/pilocarpine (LP)-induced seizures in rats. The pretreatment with UFH-SPIONs significantly decreased the expression of inflammatory factors in hippocampal tissues, including IL-6, IL-1ß, and TNF-α. LP-induced oxidative stress in hippocampal tissues was in turn reduced upon pretreatment with UFH-SPIONs, as evidenced by an increase in the levels of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) and a decrease in the level of lipid peroxidation (MDA). Moreover, the LP-induced upregulation of apoptotic cells was decreased upon pretreatment with UFH-SPIONs. Together, these observations suggest that the pretreatment with UFH-SPIONs ameliorates LP-induced seizures and downregulates the inflammatory response and oxidative stress, which exerts neuronal protection during epilepsy.


Asunto(s)
Epilepsia del Lóbulo Temporal , Heparina , Inflamación , Cloruro de Litio , Nanopartículas Magnéticas de Óxido de Hierro , Estrés Oxidativo , Pilocarpina , Animales , Estrés Oxidativo/efectos de los fármacos , Ratas , Masculino , Epilepsia del Lóbulo Temporal/inducido químicamente , Epilepsia del Lóbulo Temporal/metabolismo , Epilepsia del Lóbulo Temporal/tratamiento farmacológico , Cloruro de Litio/farmacología , Heparina/farmacología , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inflamación/inducido químicamente , Ratas Sprague-Dawley , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Anticonvulsivantes/farmacología
6.
Cell Signal ; 119: 111150, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38552892

RESUMEN

BACKGROUND: Dilated cardiomyopathy (DCM) and coronary heart disease (CHD) stand as two of the foremost causes of mortality. However, the comprehensive comprehension of the regulatory mechanisms governing DCM and CHD remains limited, particularly from the vantage point of single-cell transcriptional analysis. METHOD: We used the GSE121893 dataset from the GEO database, analyzing single-cell expressions with tools like DropletUtils, Seurat, and Monocle. We also utilized the GSVA package for comparing gene roles in DCM and CHD, Finally, we conducted qRT-PCR and Western blot analyses to measure the expression levels of SMARCA4, Col1A1, Col3A1 and α-SMA, and the role of SMARCA4 on fibroblasts were explored by EdU and Transwell assay. RESULTS: Our analysis identified six cell types in heart tissue, with fibroblasts showing the most interaction with other cells. DEGs in fibroblasts were linked to muscle development and morphogenesis. Pseudotime analysis revealed the dynamics of fibroblast changes in both the normal and disease groups and many transcription factors (TFs) potentially involved in this process. Among these TFs, SMARCA4 which was translated into protein BRG1, showed the most significantly difference. In vivo experiments have demonstrated that SMARCA4 indeed promoted fibroblasts proliferation and migration. CONCLUSION: This study provides a clearer understanding of cell-type dynamics in heart diseases, emphasizing the role of fibroblasts and the significance of SMARCA4 in their function. Our results offer insights into the cellular mechanisms underlying DCM and CHD, potentially guiding future therapeutic strategies.


Asunto(s)
Cardiomiopatía Dilatada , ADN Helicasas , Proteínas Nucleares , Análisis de la Célula Individual , Factores de Transcripción , Factores de Transcripción/metabolismo , ADN Helicasas/metabolismo , ADN Helicasas/genética , Humanos , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/metabolismo , Cardiomiopatía Dilatada/patología , Animales , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Fibroblastos/metabolismo , Enfermedad Coronaria/metabolismo , Enfermedad Coronaria/genética , Enfermedad Coronaria/patología , Ratones , Proliferación Celular
7.
Neural Regen Res ; 19(10): 2229-2239, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38488557

RESUMEN

JOURNAL/nrgr/04.03/01300535-202410000-00024/figure1/v/2024-02-06T055622Z/r/image-tiff Inflammation is closely related to stroke prognosis, and high inflammation status leads to poor functional outcome in stroke. DNA methylation is involved in the pathogenesis and prognosis of stroke. However, the effect of DNA methylation on stroke at high levels of inflammation is unclear. In this study, we constructed a hyperinflammatory cerebral ischemia mouse model and investigated the effect of hypomethylation and hypermethylation on the functional outcome. We constructed a mouse model of transient middle cerebral artery occlusion and treated the mice with lipopolysaccharide to induce a hyperinflammatory state. To investigate the effect of DNA methylation on stroke, we used small molecule inhibitors to restrain the function of key DNA methylation and demethylation enzymes. 2,3,5-Triphenyltetrazolium chloride staining, neurological function scores, neurobehavioral tests, enzyme-linked immunosorbent assay, quantitative reverse transcription PCR and western blot assay were used to evaluate the effects after stroke in mice. We assessed changes in the global methylation status by measuring DNA 5-mc and DNA 5-hmc levels in peripheral blood after the use of the inhibitor. In the group treated with the DNA methylation inhibitor, brain tissue 2,3,5-triphenyltetrazolium chloride staining showed an increase in infarct volume, which was accompanied by a decrease in neurological scores and worsening of neurobehavioral performance. The levels of inflammatory factors interleukin 6 and interleukin-1 beta in ischemic brain tissue and plasma were elevated, indicating increased inflammation. Related inflammatory pathway exploration showed significant overactivation of nuclear factor kappa B. These results suggested that inhibiting DNA methylation led to poor functional outcome in mice with high inflammation following stroke. Further, the effects were reversed by inhibition of DNA demethylation. Our findings suggest that DNA methylation regulates the inflammatory response in stroke and has an important role in the functional outcome of hyperinflammatory stroke.

8.
Sci Rep ; 14(1): 6824, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38514726

RESUMEN

Over the last 20 years, industry interest in copper has increased. Its application in the petrochemical, automotive, and nuclear power industries highlights the need for new research directions especially in the joining of copper to other metals. In this work, lap joint of 304 stainless steel and T2 copper precoated with Cu-Mn-Ni filler metal was performed by laser brazing. The aim of this study is to characterize the influence of laser beam incidence angle on the welded joint forming mode, microstructure, elements diffusion and corrosion resistance. According to the findings, the joint is classified as a welded joint when the laser beam incidence angle is 80°, and as a welded-brazed joint when it's 90°, 70°, or 60°. The microstructure is mainly composed of Cu-rich and Fe-rich phases, Mn in the Cu-rich phase aggregation and Cr in the Fe-rich phase aggregation. In the fusion zone (FZ) the content of less than 50% of the liquid will be in the form of supersaturated droplets in the matrix of the other side. The local corrosion pair that the copper steel matrix and liquid drop produce in the FZ speeds up the dissolution of the Cu-rich phase, which effected corrosion resistance of the joint.

9.
Front Plant Sci ; 15: 1338062, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38504894

RESUMEN

Late blight, caused by Phytophthora infestans, is one of the most serious diseases affecting potatoes (Solanum tuberosum L.). Long non-coding RNAs (lncRNAs) are transcripts with a length of more than 200 nucleotides that have no protein-coding potential. Few studies have been conducted on lncRNAs related to plant immune regulation in plants, and the molecular mechanisms involved in this regulation require further investigation. We identified and screened an lncRNA that specifically responds to P. infestans infection, namely, StlncRNA13558. P. infestans infection activates the abscisic acid (ABA) pathway, and ABA induces StlncRNA13558 to enhance potato resistance to P. infestans. StlncRNA13558 positively regulates the expression of its co-expressed PR-related gene StPRL. StPRL promotes the accumulation of reactive oxygen species and transmits a resistance response by affecting the salicylic acid hormone pathway, thereby enhancing potato resistance to P. infestans. In summary, we identified the potato late blight resistance lncRNA StlncRNA13558 and revealed its upstream and downstream regulatory relationship of StlncRNA13558. These results improve our understanding of plant-pathogen interactions' immune mechanism and elucidate the response mechanism of lncRNA-target genes regulating potato resistance to P. infestans infection.

10.
Polymers (Basel) ; 16(6)2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38543432

RESUMEN

The crystal morphology and conformational changes during crystallization of a polypropylene random copolymer (PPR) are the basis for understanding its crystallization process. In this work, novel rare-earth ß-nucleating agent WBN-28 was directly added into PPR to induce ß-crystallization. The results of differential scanning calorimetry (DSC) showed that it has an excellent ß-crystal-induced effect. The ß-crystal content could surpass 85%, calculated from wide-angle X-ray diffraction (WAXD) data. The morphology of the ß-crystal and α-crystal was intuitively observed via a polarizing optical microscope (POM). The ß-crystallites were interconnected to naturally develop plate-like crystalline regions possessing a certain size, and the α-crystallites with sufficient thicknesses possessed a cross-hatched phenomenon. The bundle-like supramolecular structure of the ß-crystal induced by WBN-28 was further observed via a scanning electron microscope (SEM). The conformational changes in the crystallization process of PPR were resolved via high-resolution infrared spectroscopy to understand its ß-crystallization in depth. The conformational changes during the crystallization of PPR were found to be different from those of the isotactic polypropylene homopolymer (PPH); they had their own characteristics. This will provide guidance for understanding the ß-crystallization of PPR in depth.

11.
Angew Chem Int Ed Engl ; 63(17): e202318568, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38433368

RESUMEN

ATR has emerged as a promising target for anti-cancer drug development. Several potent ATR inhibitors are currently undergoing various stages of clinical trials, but none have yet received FDA approval due to unclear regulatory mechanisms. In this study, we discovered a potent and selective ATR degrader. Its kinase-independent regulatory functions in acute myeloid leukemia (AML) cells were elucidated using this proteolysis-targeting chimera (PROTAC) molecule as a probe. The ATR degrader, 8 i, exhibited significantly different cellular phenotypes compared to the ATR kinase inhibitor 1. Mechanistic studies revealed that ATR deletion led to breakdown in the nuclear envelope, causing genome instability and extensive DNA damage. This would increase the expression of p53 and triggered immediately p53-mediated apoptosis signaling pathway, which was earlier and more effective than ATR kinase inhibition. Based on these findings, the in vivo anti-proliferative effects of ATR degrader 8 i were assessed using xenograft models. The degrader significantly inhibited the growth of AML cells in vivo, unlike the ATR inhibitor. These results suggest that the marked anti-AML activity is regulated by the kinase-independent functions of the ATR protein. Consequently, developing potent and selective ATR degraders could be a promising strategy for treating AML.


Asunto(s)
Antineoplásicos , Leucemia Mieloide Aguda , Humanos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/uso terapéutico , Línea Celular Tumoral , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/metabolismo , Proteolisis , Proteína p53 Supresora de Tumor/metabolismo
12.
Neurospine ; 21(1): 182-203, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38317556

RESUMEN

Primary atypical teratoid/rhabdoid tumors (AT/RTs) in the spinal canal are rare central nervous system (CNS) neoplasms that are challenging to diagnose and treat. To date, there has been no standard treatment regimen for these challenging malignant tumors. Thus, we conducted this research to explore potential prognostic factors and feasible treatment modalities for improving the prognosis of these tumors. Articles were retrieved from the PubMed, MEDLINE, and Embase databases, using the keywords "atypical teratoid/rhabdoid tumor," "rhabdoid tumor," "spine," "spinal," "spinal neoplasm", and "spinal cord neoplasm." All eligible cases demonstrated SMARCB1-deficient expression validated by pathological examination. We collected and analyzed data related to clinical presentation, radiological features, pathological characteristics, treatment modalities and prognosis via Kaplan-Meier and Cox regression analyses. Thirty-six articles comprising 58 spinal AT/RT patients were included in the study. The median progression-free survival (PFS) and overall survival (OS) were 18 and 22 months, respectively. Kaplan-Meier analysis demonstrated significant survival improvements for OS in the nonmetastasis, male, radiotherapy and intrathecal chemotherapy groups as well as for PFS in the chemotherapy and radiotherapy groups. Multivariate analysis revealed that chemotherapy and radiotherapy were prognostic factors for improved PFS, and that intrathecal chemotherapy reduced the risk of mortality. Spinal AT/RTs are uncommon malignant entities with a dismal survival rate. Although our review is limited by variability between cases, there is some evidence revealing potential risk factors and the importance of systematic chemotherapy, intrathecal chemotherapy and radiotherapy in spinal AT/RT treatment modalities.

13.
Cancers (Basel) ; 16(4)2024 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-38398140

RESUMEN

Primary endocrine therapy (PET) offers non-surgical treatment for older women with early-stage breast cancer who are unsuitable for surgery due to frailty or comorbidity. This research assessed all-cause and breast cancer-specific mortality of PET vs. surgery in older women (≥70 years) with oestrogen-receptor-positive early-stage breast cancer by frailty and comorbidity levels. This study used UK secondary data to analyse older female patients from 2000 to 2016. Patients were censored until 31 May 2019 and grouped by the Charlson comorbidity index (CCI) and hospital frailty risk score (HFRS). Cox regression models compared all-cause and breast cancer-specific mortality between PET and surgery within each group, adjusting for patient preferences and covariates. Sensitivity analyses accounted for competing risks. There were 23,109 patients included. The hazard ratio (HR) comparing PET to surgery for overall survival decreased significantly from 2.1 (95%CI: 2.0, 2.2) to 1.2 (95%CI: 1.1, 1.5) with increasing HFRS and from 2.1 (95%CI: 2.0, 2.2) to 1.4 (95%CI 1.2, 1.7) with rising CCI. However, there was no difference in BCSM for frail older women (HR: 1.2; 0.9, 1.9). There were no differences in competing risk profiles between other causes of death and breast cancer-specific mortality with PET versus surgery, with a subdistribution hazard ratio of 1.1 (0.9, 1.4) for high-level HFRS (p = 0.261) and CCI (p = 0.093). Given limited survival gains from surgery for older patients, PET shows potential as an effective option for frail older women with early-stage breast cancer. Despite surgery outperforming PET, surgery loses its edge as frailty increases, with negligible differences in the very frail.

14.
Pharmaceutics ; 16(2)2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38399294

RESUMEN

Effective drug delivery is essential for cancer treatment. Drug delivery systems, which can be tailored to targeted transport and integrated tumor therapy, are vital in improving the efficiency of cancer treatment. Peptides play a significant role in various biological and physiological functions and offer high design flexibility, excellent biocompatibility, adjustable morphology, and biodegradability, making them promising candidates for drug delivery. This paper reviews peptide-mediated drug delivery systems, focusing on self-assembled peptides and peptide-drug conjugates. It discusses the mechanisms and structural control of self-assembled peptides, the varieties and roles of peptide-drug conjugates, and strategies to augment peptide stability. The review concludes by addressing challenges and future directions.

15.
Cancer Lett ; 588: 216762, 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38408602

RESUMEN

The third-generation EGFR-TKI osimertinib is widely used in EGFR-mutated positive non-small cell lung cancer (NSCLC) patients, but drug resistance is inevitable. The currently known mechanisms only explain resistance in a small proportion of patients. For most patients, the mechanism of osimertinib resistance is still unclear, especially for EGFR-independent resistance. Herein, we thoroughly investigated the novel mechanism of osimertinib resistance and treatment strategies. We identified that ST3GAL4, a sialyltransferase, catalyzes terminal glycan sialylation of receptor protein tyrosine kinases, which induces acquired resistance to osimertinib in vitro and in vivo. In addition, ST3GAL4 is generally overexpressed in osimertinib-resistant patients with unknown resistance mechanisms. ST3GAL4 modifies MET glycosylation on N785 with sialylation, which antagonizes K48-related ubiquitin-dependent MET degradation and subsequently activates MET and its downstream proliferation signaling pathways. Meanwhile, ST3GAL4 knockdown or inhibition by brigatinib resensitizes resistant non-small cell lung cancer cells to osimertinib in vitro and in vivo This study suggests that ST3GAL4 can induce acquired resistance to osimertinib, which may be an important EGFR-independent resistance mechanism Furthermore, targeting ST3GAL4 with brigatinib provides new strategies to overcome osimertinib resistance.


Asunto(s)
Acrilamidas , Carcinoma de Pulmón de Células no Pequeñas , Indoles , Neoplasias Pulmonares , Compuestos Organofosforados , Pirimidinas , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Receptores ErbB/metabolismo , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Resistencia a Antineoplásicos , Compuestos de Anilina/farmacología , Sialiltransferasas/genética
16.
Medicine (Baltimore) ; 103(7): e36679, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38363903

RESUMEN

Studies have indicated that Vascular mimicry (VM) could contribute to the unfavorable prognosis of skin cutaneous melanoma (SKCM). Thus, the objective of this study was to identify therapeutic targets associated with VM in SKCM and develop a novel prognostic model. Gene expression data from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) were utilized to identify differentially expressed genes (DEGs). By intersecting these DEGs with VM genes, we acquired VM-related DEGs specific to SKCM, and then identified prognostic-related VM genes. A VM risk score system was established based on these prognosis-associated VM genes, and patients were then categorized into high- and low-score groups using the median score. Subsequently, differences in clinical characteristics, gene set enrichment analysis (GSEA), and other analyses were further presented between the 2 groups of patients. Finally, a novel prognostic model for SKCM was established using the VM score and clinical characteristics. 26 VM-related DEGs were identified in SKCM, among the identified DEGs associated with VM in SKCM, 5 genes were found to be prognostic-related. The VM risk score system, comprised of these genes, is an independent prognostic risk factor. There were significant differences between the 2 patient groups in terms of age, pathological stage, and T stage. VM risk scores are associated with epithelial biological processes, angiogenesis, regulation of the SKCM immune microenvironment, and sensitivity to targeted drugs. The novel prognostic model demonstrates excellent predictive ability. Our study identified VM-related prognostic markers and therapeutic targets for SKCM, providing novel insights for clinical diagnosis and treatment.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Humanos , Melanoma/genética , Neoplasias Cutáneas/genética , Pronóstico , Sistemas de Liberación de Medicamentos , Factores de Riesgo , Microambiente Tumoral
17.
Am J Clin Pathol ; 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38387041

RESUMEN

OBJECTIVES: Previous studies have been inconsistent concerning the association between the prognostic value of CD30 expression and extranodal natural killer/T-cell lymphoma (ENKTL). METHODS: CD30 expression in 82 patients with newly diagnosed ENKTL (mean age, 50 years; 73.2% male) was assessed by immunohistochemistry on paraffin-embedded sections. The level of CD30 expression was categorized into negative (0%, no staining) and positive groups. RESULTS: Sixty-seven cases exhibited positive CD30 expression, and the main between-group difference was the Chinese Southwest Oncology Group and Asia Lymphoma Study Group (CA) ENKTL stage and Eastern Cooperative Oncology Group (ECOG) performance status. The cutoff point for CD30 expression was 40% by restricted cubic splines analysis. The overall survival of patients with high expression (>40%) was statistically superior to negative (0%) and low-expression groups. A positive correlation was observed between CD30 and Epstein-Barr virus-encoded small RNA status (r = 0.305). Multivariable analysis suggested that positive CD30 expression (hazard ratio, 0.420 [95% CI, 0.193-0.914]; P = .029) and CA advanced stage (hazard ratio, 2.844 [95% CI, 1.371-5.896]; P = .005) were independent prognostic factors for ENKTL. CONCLUSIONS: Positive CD30 expression was a favorable prognostic factor for ENKTL, and CD30 expression could restratify the survival of patients in clinical subgroups.

18.
Neurosurg Rev ; 47(1): 35, 2024 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-38183517

RESUMEN

Clear cell meningiomas are a rare histological subtype of World Health Organization (WHO) grade II meningioma. Despite its relatively low frequency, clear cell meningioma has attracted considerable attention because of its unique pathological characteristics, clinical behavior, and challenging management considerations. The purpose of our systematic review is to provide clinicians with a better understanding of this rare disease. PubMed was searched for articles in the English language published from 1988 to 2023 June. The keywords were as follows: "clear cell meningioma," "clear cell" and "meningioma." We analyzed clinical manifestations, radiological manifestations, pathological features, comprehensive treatment strategies, and prognosis to determine the factors influencing recurrence-free survival (RFS). Recurrence-free survival curves of related factors were calculated by the Kaplan‒Meier method. The log-rank test and Cox univariate analysis were adopted to assess the intergroup differences and seek significant factors influencing prognosis and recurrence. Fifty-seven papers met the eligibility criteria, including 207 cases of clear cell meningioma (CCM), which were confirmed by postoperative pathology. The fifty-seven articles involved 84 (40.6%) males and 123 (59.4%) females. The average age at diagnosis was 27.9 years (range, 14 months to 84 years). Among the symptoms observed, headache, neurologic deficit, and hearing loss were the most commonly reported clinical manifestations. Most tumors (47.8%) were located in the skull base region. Most tumors showed significant enhancement, and homogeneous enhancement was more common. A total of 152 (74.1%) patients underwent gross total resection (GTR), and 53 (25.9%) patients underwent subtotal resection (STR). During the follow-up, the tumor recurred in 80 (39.4%) patients. The log-rank test and the Cox univariate analysis revealed that tumor resection range (GTR vs. STR) and adjuvant treatment (YES vs. NO) were significant predictors of recurrence-free survival (RFS). Clear cell meningioma is a rare type of meningioma with challenging diagnosis and therapy. The prognosis of this disease is different from that of regular meningiomas. Recurrence remains a possibility even after total tumor resection. We found that the surgical resection range and adjuvant treatment affected the recurrence period. This finding provides significant guidance for the treatment of clear cell meningioma.


Asunto(s)
Neoplasias Meníngeas , Meningioma , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Persona de Mediana Edad , Adulto Joven , Sistema Nervioso Central , Cefalea , Neoplasias Meníngeas/cirugía , Meningioma/cirugía
19.
Redox Biol ; 69: 103030, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38181705

RESUMEN

Ferroptosis is a type of programmed cell death resulting from iron overload-dependent lipid peroxidation, and could be promoted by activating transcription factor 3 (ATF3). SIRT1 is an enzyme accounting for removing acetylated lysine residues from target proteins by consuming NAD+, but its role remains elusive in ferroptosis and activating ATF3. In this study, we found SIRT1 was activated during the process of RSL3-induced glioma cell ferroptosis. Moreover, the glioma cell death was aggravated by SIRT1 activator SRT2183, but suppressed by SIRT inhibitor EX527 or when SIRT1 was silenced with siRNA. These indicated SIRT1 sensitized glioma cells to ferroptosis. Furthermore, we found SIRT1 promoted RSL3-induced expressional upregulation and nuclear translocation of ATF3. Silence of ATF3 with siRNA attenuated RSL3-induced increases of ferrous iron and lipid peroxidation, downregulation of SLC7A11 and GPX4 and depletion of cysteine and GSH. Thus, SIRT1 promoted glioma cell ferroptosis by inducting ATF3 activation. Mechanistically, ATF3 activation was reinforced when RSL3-induced decline of NAD+ was aggravated by FK866 that could inhibit NAD + synthesis via salvage pathway, but suppressed when intracellular NAD+ was maintained at higher level by supplement of exogenous NAD+. Notably, the NAD + decline caused by RSL3 was enhanced when SIRT1 was further activated by SRT2183, but attenuated when SIRT1 activation was inhibited by EX527. These indicated SIRT1 promoted ATF3 activation via consumption of NAD+. Finally, we found RSL3 activated SIRT1 by inducing reactive oxygen species-dependent upregulation of AROS. Together, our study revealed SIRT1 activated by AROS sensitizes glioma cells to ferroptosis via activation of ATF3-dependent inhibition of SLC7A11 and GPX4.


Asunto(s)
Ferroptosis , Glioma , Humanos , NAD , Factor de Transcripción Activador 3/genética , Línea Celular Tumoral , Sirtuina 1/genética , Glioma/genética , Glioma/metabolismo , ARN Interferente Pequeño
20.
Discov Oncol ; 15(1): 6, 2024 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-38184514

RESUMEN

BACKGROUND: Cyclin-dependent kinase-2 (CDK-2) is an important regulatory factor in the G1/S phase transition. CDK-2 targeting has been shown to suppress the viability of multiple cancers. However, the exploration and application of a CDK-2 inhibitor in the treatment of glioblastoma are sparse. METHODS: We synthesized P129 based on isolongifolanone, a natural product with anti-tumor activity. Network pharmacology analysis was conducted to predict the structural stability, affinity, and pharmacological and toxicological properties of P129. Binding analysis and CETSA verified the ability of P129 to target CDK-2. The effect of P129 on the biological behavior of glioma cells was analyzed by the cell counting kit-8, colony formation, flow cytometry, and other experiments. Western blotting was used to detect the expression changes of proteins involved in the cell cycle, cell apoptosis, and epithelial-mesenchymal transition. RESULTS: Bioinformatics analysis and CETSA showed that P129 exhibited good intestinal absorption and blood-brain barrier penetrability together with high stability and affinity with CDK-2, with no developmental toxicity. The viability, proliferation, and migration of human glioma cells were significantly inhibited by P129 in a dose- and time-dependent manner. Flow cytometry and western blotting analyses showed G0/G1 arrest and lower CDK-2 expression in cells treated with P129 than in the controls. The apoptotic ratio of glioma cells increased significantly with increasing concentrations of P129 combined with karyopyknosis and karyorrhexis. Apoptosis occurred via the mitochondrial pathway. CONCLUSION: The pyrazole ring-containing isolongifolanone derivate P129 exhibited promising anti-glioma activity by targeting CDK-2 and promoting apoptosis, indicating its potential importance as a new chemotherapeutic option for glioma.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...