Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 244
Filtrar
1.
Sci Rep ; 14(1): 16278, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39009648

RESUMEN

This study explores the role of SIRT2 in regulating autophagy and its interaction with AMPK in the context of acute liver failure (ALF). This study investigated the effects of SIRT2 and AMPK on autophagy in ALF mice and TAA-induced AML12 cells. The results revealed that the liver tissue in ALF model group had a lot of inflammatory cell infiltration and hepatocytes necrosis, which were reduced by SIRT2 inhibitor AGK2. In comparison to normal group, the level of SIRT2, P62, MDA, TOS in TAA group were significantly increased, which were decreased in AGK2 treatment. Compared with normal group, the expression of P-PRKAA1, Becilin1 and LC3B-II was decreased in TAA group. However, AGK2 enhanced the expression of P-PRKAA1, Becilin1 and LC3B-II in model group. Overexpression of SIRT2 in AML12 cell resulted in decreased P-PRKAA1, Becilin1 and LC3B-II level, enhanced the level of SIRT2, P62, MDA, TOS. Overexpression of PRKAA1 in AML12 cell resulted in decreased SIRT2, TOS and MDA level and triggered more autophagy. In conclusion, the data suggested the link between AMPK and SIRT2, and reveals the important role of AMPK and SIRT2 in autophagy on acute liver failure.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Autofagia , Fallo Hepático Agudo , Sirtuina 2 , Sirtuina 2/metabolismo , Sirtuina 2/genética , Animales , Fallo Hepático Agudo/metabolismo , Fallo Hepático Agudo/patología , Fallo Hepático Agudo/inducido químicamente , Ratones , Proteínas Quinasas Activadas por AMP/metabolismo , Masculino , Hepatocitos/metabolismo , Hepatocitos/patología , Transducción de Señal , Modelos Animales de Enfermedad , Línea Celular , Tioacetamida/toxicidad , Hígado/metabolismo , Hígado/patología , Furanos , Quinolinas
2.
World J Clin Cases ; 12(20): 4074-4081, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39015919

RESUMEN

BACKGROUND: Breast cancer (BC) is the second leading cause of tumor-related mortality after lung cancer. Chemotherapy resistance remains a major challenge to progress in BC treatment, warranting further exploration of feasible and effective alternative therapies. AIM: To analyzed the quality of life (QoL) and survival of patients with BC treated with integrated traditional Chinese and Western medicine (TCM-WM). METHODS: This study included 226 patients with BC admitted to the First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine between February 2018 and February 2023, including 100 who received conventional Western medicine treatment (control group) and 126 who received TCM-WM treatment (research group). The total effective rate, side effects (alopecia, nausea and vomiting, hepatorenal toxicity, and myelosuppression), QoL assessed using the European Organization for Research and Treatment of Cancer Core Quality of Life Questionnaire (EORTC QLQ-C30), 1-year overall survival (OS), recurrence and metastasis rates, and serum inflammatory factors [interleukin (IL)-6, IL-10, and tumor necrosis factor alpha] were comparatively analyzed. RESULTS: The research group showed statistically better overall efficacy, EORTC QoL-C30 scores, and 1-year OS than the control group, with markedly lower side effects and 1-year recurrence and metastasis rates. Moreover, the posttreatment levels of serum inflammatory in the research group were significantly lower than the baseline and those in the control group. CONCLUSION: Overall, TCM-WM demonstrated significantly improved therapeutic efficacy while ensuring drug safety in BC, which not only improved patients' QoL and prolonged survival, but also significantly inhibited the inflammatory response.

3.
bioRxiv ; 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38979198

RESUMEN

Cytoskeleton-tethered mechanosensitive channels (MSCs) utilize compliant proteins or protein domains called gating springs to convert mechanical stimuli into electric signals, enabling sound and touch sensation and proprioception. The mechanical properties of these gating springs, however, remain elusive. Here, we explored the mechanical properties of the homotetrameric NompC complex containing long ankyrin-repeat domains (ARDs). We developed a toehold-mediated strand displacement approach to tether single membrane proteins, allowing us to exert force on them and precisely measure their absolute extension using optical tweezers. Our findings revealed that each ARD has a low stiffness of ~0.7 pN/nm and begins to unfold stepwise at ~7 pN, leading to nonlinear compliance. Our calculations indicate that this nonlinear compliance may help regulate NompC's sensitivity, dynamic range, and kinetics to detect mechanical stimuli. Overall, our research highlights the importance of a compliant and unfolding-refolding gating spring in facilitating a graded response of MSC ion transduction across a wide spectrum of mechanical stimuli.

4.
Heliyon ; 10(12): e32709, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38975148

RESUMEN

Background: Machine learning has shown to be an effective method for early prediction and intervention of Gestational diabetes mellitus (GDM), which greatly decreases GDM incidence, reduces maternal and infant complications and improves the prognosis. However, there is still much room for improvement in data quality, feature dimension, and accuracy. The contributions and mechanism explanations of clinical data at different pregnancy stages to the prediction accuracy are still lacking. More importantly, current models still face notable obstacles in practical applications due to the complex and diverse input features and difficulties in redeployment. As a result, a simple, practical but accurate enough model is urgently needed. Design and methods: In this study, 2309 samples from two public hospitals in Shenzhen, China were collected for analysis. Different algorithms were systematically compared to build a robust and stepwise prediction system (level A to C) based on advanced machine learning, and models under different levels were interpreted. Results: XGBoost reported the best performance with ACC of 0.922, 0.859 and 0.850, AUC of 0.974, 0.924 and 0.913 for the selected level A to C models in the test set, respectively. Tree-based feature importance and SHAP method successfully identified the commonly recognized risk factors, while indicated new inconsistent impact trends for GDM in different stages of pregnancy. Conclusion: A stepwise prediction system was successfully established. A practical tool that enables a quick prediction of GDM was released at https://github.com/ifyoungnet/MedGDM.This study is expected to provide a more detailed profiling of GDM risk and lay the foundation for the application of the model in practice.

5.
Cell Signal ; : 111284, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38964444

RESUMEN

The mitochondrial calcium uniporter complex (MCUc), serving as the specific channel for calcium influx into the mitochondrial matrix, is integral to calcium homeostasis and cellular integrity. Given its importance, ongoing research spans various disease models to understand the properties of the MCUc in pathophysiological contexts, but reported a different conclusion. Therefore, this review delves into the profound connection between MCUc-mediated calcium transients and cellular signaling pathways, mitochondrial dynamics, metabolism, and cell death. Additionally, we shed light on the recent advancements concerning the structural intricacies and auxiliary components of the MCUc in both resting and activated states. Furthermore, emphasis is placed on novel extrinsic and intrinsic regulators of the MCUc and their therapeutic implications across a spectrum of diseases. Meanwhile, we employed molecular docking simulations and identified candidate traditional Chinese medicine components with potential binding sites to the MCUc, potentially offering insights for further research on MCUc modulation.

6.
Cell Death Discov ; 10(1): 275, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38851781

RESUMEN

Acute liver failure (ALF) is a disease with a high mortality rate and poor prognosis, whose pathogenesis is not fully understood. PANoptosis is a recently proposed mode of cell death characterized by pyroptosis, apoptosis, and necroptosis, but it cannot be explained by any of them alone. This study aims to explore the role of PANoptosis in ALF and the impact and mechanism of deacetylated malate dehydrogenase 1 (MDH1) and isocitrate dehydrogenase 1 (IDH1) on PANoptosis. Our results found that, compared with the control group, the cell viability in the lipopolysaccharide (LPS)/D-galactosamine (D-Gal) group decreased, lactate dehydrogenase (LDH) release increased, cell death increased, and the levels of PANoptosis-related molecules RIPK1, GSDMD, caspase-3, MLKL, IL-18, IL-1ß increased, indicating that PANoptosis increased during ALF. Deacetylated MDH1 at K118 and IDH1 at K93 increased the expression of PANoptosis-related molecules RIPK1, GSDMD, caspase-3, MLKL, IL-18, and IL-1ß in vivo and in vitro. The deacetylation weakened the inhibitory effect of histone deacetylase (HDAC) inhibitor ACY1215 on PANoptosis-related molecules, suggesting that deacetylated MDH1 at K118 and IDH1 at K93 aggravated PANoptosis during ALF. Deacetylated MDH1 at K118 and IDH1 at K93 also promoted the expression of endoplasmic reticulum stress-related molecules BIP, ATF6, XBP1, and CHOP in vivo and in vitro. The use of endoplasmic reticulum stress inhibitor 4-PBA weakened the promotion effect of deacetylated MDH1 K118 and IDH1 K93 on PANoptosis. The results suggested that deacetylated MDH1 at K118 and IDH1 at K93 may aggravate PANoptosis in ALF through endoplasmic reticulum stress signaling. In conclusion, deacetylated MDH1 and IDH1 may aggravate PANoptosis in ALF, and the mechanism may act through endoplasmic reticulum stress signaling.

7.
Plants (Basel) ; 13(11)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38891295

RESUMEN

Sweet basil (Ocimum basilicum L.) is an important aromatic plant with high edibility and economic value, widely distributed in many regions of the tropics including the south of China. In recent years, environmental problems, especially soil salinization, have seriously restricted the planting and spread of sweet basil. However, the molecular mechanism of the salt stress response in sweet basil is still largely unknown. In this study, seed germination, seedling growth, and chlorophyll synthesis in sweet basil were inhibited under salt stress conditions. Through comparative transcriptome analysis, the gene modules involved in the metabolic processes, oxidative response, phytohormone signaling, cytoskeleton, and photosynthesis were screened out. In addition, the landscape of transcription factors during salt treatment in sweet basil was displayed as well. Moreover, the overexpression of the WRKY transcription factor-encoding gene, ObWRKY16, and the phenylalanine ammonia-lyase-encoding gene, ObPAL2, enhanced the seed germination, seedling growth, and survival rate, respectively, of transgenic Arabidopsis, suggesting that they might be important candidates for the creation of salt-tolerant sweet basil cultivars. Our data enrich the study on salt responses in sweet basil and provide essential gene resources for genetic improvements in sweet basil in the future.

8.
Intractable Rare Dis Res ; 13(2): 73-88, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38836174

RESUMEN

Epidemiological data on rare diseases in China are currently limited. The objective of this study was to provide a comprehensive understanding of the prevalence and incidence of rare diseases by systematically analyzing the available epidemiological data. We conducted a comprehensive search of English and Chinese databases, the Incidence and Prevalence Database, the Chinese Rare Disease Guideline, and the Taiwan Health Promotion Administration from 2010 to 2023. We identified the top diseases and regions based on epidemiological data and present the maximum, minimum, and median prevalence and incidence values in tables and forest plots. 1,264 prevalence and incidence data were retrieved from 277 studies, guidelines and official websites, covering 110 rare diseases (53.1%) and 32 regions (94.1%). In terms of geographical regions, incidence or prevalence data were available for 32 regions (94.1%), excluding Tibet Hui Autonomous Region and Macao Special Administrative Region. In terms of rate, 60 and 77 out of 207 diseases (29.0% and 37.2%) had available incidence and prevalence data, respectively. Eight diseases had an incidence rate equal to or greater than that of 1,000 patients per million. The present study provides a comprehensive epidemiological analysis and valuable insights into the prevalence and incidence of rare diseases in China. Our findings underscore the pressing need for sustained drug research and medical support for individuals and families impacted by rare diseases.

10.
Sci Total Environ ; 943: 173638, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38825202

RESUMEN

In the context of climate change, extreme precipitation events are continuously increasing and impact the water­carbon coupling of ecosystems. The vertical vegetation zonation, as a characteristic of mountain ecosystems, reflects the differences in vegetation response to climate change at different elevations. In this study, we used the water use efficiency (WUE) as an indicator to evaluate the water­carbon relationship. By using MODIS data, we analyzed the spatiotemporal patterns of gross primary productivity (GPP), evapotranspiration (ET), and WUE from 2001 to 2020, as well as the responses of WUE to extreme wetness factor Number of precipitation days (R0.1), extreme dryness factor Consecutive dry days (CDD), and meteorological factors under the vertical vegetation zonation. Our results showed that annual GPP and ET displayed a significant increasing trend between 2001 and 2020, whereas WUE showed a weak decreasing trend. Spatially, GPP and WUE decreased with increasing elevation. Analyzing the WUE of mountainous ecosystems as a unified whole may not precisely capture the reactions of vegetation to severe rainfall occurrences. In fact, across different vegetation belts in mountainous areas, there exists a negative correlation between WUE and R0.1, and a positive correlation with CDD. In terms of meteorological factors, the temporal variation of GPP was primarily associated with vapor pressure deficit (VPD) and temperature (Ta), while those of ET was mainly related to soil water content (SWC). WUE was affected by a combination of meteorological factors and had a certain degree of variation between different altitude intervals. These findings contribute to a better understanding and prediction of the relationship between extreme rainfall climate and water­carbon coupling in mountainous areas.

11.
PeerJ ; 12: e17538, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38912051

RESUMEN

Background: Gynostemma pentaphyllum (Thunb.) Makino, a well-known edible and medicinal plant, has anti-aging properties and is used to treataging-associated conditions such as diabetes, metabolic syndrome, and cardiovascular diseases. Gypenosides (GYPs) are the primary constituents of G. pentaphyllum. Increasing evidence indicates that GYPs are effective at preserving mitochondrial homeostasis and preventing heart failure (HF). This study aimed to uncover the cardioprotective mechanisms of GYPs related to mitochondrial regulation. Methods: The bioactive components in GYPs and the potential targets in treating HF were obtained and screened using the network pharmacology approach, followed by drug-disease target prediction and enrichment analyses. The pharmacological effects of GYPs in cardioprotection, mitochondrial function, mitochondrial quality control, and underlying mechanisms were further investigated in Doxorubicin (Dox)-stimulated H9c2 cardiomyocytes. Results: A total of 88 bioactive compounds of GYPs and their respective 71 drug-disease targets were identified. The hub targets covered MAPK, EGFR, PI3KCA, and Mcl-1. Enrichment analysis revealed that the pathways primarily contained PI3K/Akt, MAPK, and FoxO signalings, as well as calcium regulation, protein phosphorylation, apoptosis, and mitophagy process. In Dox-stimulated H9c2 rat cardiomyocytes, pretreatment with GYPs increased cell viability, enhanced cellular ATP content, restored basal oxygen consumption rate (OCR), and improved mitochondrial membrane potential (MMP). Furthermore, GYPs improved PINK1/parkin-mediated mitophagy without influencing mitochondrial fission/fusion proteins and the autophagic LC3 levels. Mechanistically, the phosphorylation of PI3K, Akt, GSK-3ß, and the protein level of Mcl-1 was upregulated by GYP treatment. Conclusion: Our findings reveal that GYPs exert cardioprotective effects by rescuing the defective mitophagy, and PI3K/Akt/GSK-3ß/Mcl-1 signaling is potentially involved in this process.


Asunto(s)
Cardiotónicos , Glucógeno Sintasa Quinasa 3 beta , Gynostemma , Mitofagia , Proteína 1 de la Secuencia de Leucemia de Células Mieloides , Miocitos Cardíacos , Fosfatidilinositol 3-Quinasas , Extractos Vegetales , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Gynostemma/química , Mitofagia/efectos de los fármacos , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Transducción de Señal/efectos de los fármacos , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Cardiotónicos/farmacología , Extractos Vegetales/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Animales , Ratas , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Línea Celular
12.
J Mol Cell Biol ; 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38777743

RESUMEN

Spindlin1 (SPIN1) is a unique multivalent histone modification reader that plays a role in ribosomal RNA transcription, chromosome segregation, and tumorigenesis. However, the function of the extended N-terminal region of SPIN1 has remained unclear. Here, we discovered that SPIN1 can form phase-separated and liquid-like condensates both in vitro and in vivo through its N-terminal intrinsically disordered region (IDR). The phase separation of SPIN1 recruits the histone methyltransferase MLL1 to the same condensates and enriches the H3K4 methylation marks. This process also facilitates the binding of SPIN1 to H3K4me3 and activates tumorigenesis-related genes. Moreover, SPIN1-IDR enhances the genome-wide chromatin binding of SPIN1 and facilitates its localization to genes associated with the MAPK signaling pathway. These findings provide new insights into the biological function of the IDR in regulating SPIN1 activity and reveal a previously unrecognized role of SPIN1-IDR in histone methylation readout. Our study uncovers the crucial role of appropriate biophysical properties of SPIN1 in facilitating gene expression and links phase separation to tumorigenesis, which provides a new perspective for understanding the function of SPIN1.

13.
J Cosmet Dermatol ; 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38803042

RESUMEN

BACKGROUND: Patients with hypertrophic scarring tend to experience recurrence after treatment, which often occurs in areas of the body with high skin tension. AIMS: To evaluate better treatments aimed at reducing the risk of scar recurrence in areas of high skin tension. METHODS: Patients were randomly divided into the following three treatment groups: botulinum toxin type A (BTA) via dual-plane micro-drop injections, triamcinolone acetonide (TAC) suspension, and CO2 via fractional CO2 laser. Interventions were implemented in all three groups once a month for three consecutive sessions. After the final treatment, scarring was evaluated at 1, 3, 6, 12, and 24 months using the Patient and Observer Scar Assessment Scale (POSAS). RESULTS: The 3-month POSAS score for each scar indicator in the treatment groups was significantly lower than that in the preoperative groups (p < 0.001). The scar score in the TAC group decreased at 3 months and increased thereafter. For other groups, the scar score continually decreased at all time points according to the Patient Scar Assessment Scale. Based on the Observer Scar Assessment Scale, the scar score continuously decreased at all time points in the BTA group; in the TAC group, it decreased at 1 month and increased thereafter; and in the CO2 group, the scar score decreased at 3 months and subsequently stabilized. CONCLUSIONS: All three treatment methods were effective. However, the BTA group experienced a reduced risk of scar recurrence and maintained long-term treatment effects.

14.
Nat Commun ; 15(1): 3783, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710722

RESUMEN

General, catalytic and enantioselective construction of chiral α,α-dialkyl indoles represents an important yet challenging objective to be developed. Herein we describe a cobalt catalyzed enantioselective anti-Markovnikov alkene hydroalkylation via the remote stereocontrol for the synthesis of α,α-dialkyl indoles and other N-heterocycles. This asymmetric C(sp3)-C(sp3) coupling features high flexibility in introducing a diverse set of alkyl groups at the α-position of chiral N-heterocycles. The utility of this methodology has been demonstrated by late-stage functionalization of drug molecules, asymmetric synthesis of bioactive molecules, natural products and functional materials, and identification of a class of molecules exhibiting anti-apoptosis activities in UVB-irradiated HaCaT cells. Ligands play a vital role in controlling the reaction regioselectivity. Changing the ligand from bi-dentate L6 to tridentate L12 enables CoH-catalyzed Markovnikov hydroalkylation. Mechanistic studies disclose that the anti-Markovnikov hydroalkylation involves a migratory insertion process while the Markovnikov hydroalkylation involves a MHAT process.

15.
Transl Oncol ; 45: 101958, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38663220

RESUMEN

Bladder cancer is one of the most common malignancies of the urinary tract and a prevalent cancer worldwide, still requiring efficient therapeutic agents and approaches. 20-Hydroxyecdysone (20-HE), a steroid hormone, can be found in insects and few plants and mediate numerous biological events to control the progression of varying diseases; however, its impacts on bladder cancer remain unclear. In the study, we found that 20-HE treatments effectively inhibited the viability and proliferation of bladder cancer cells and induced apoptosis by activating Caspase-3. The migratory and invasive potential of bladder cancer cells was markedly repressed by 20-HE in a dose-dependent manner. The inhibitory effects of 20-HE on bladder cancer were confirmed in an established xenograft mouse model, as indicated by the markedly reduced tumor growth rates and limited lung and lymph node metastasis. High-throughput RNA sequencing was performed to explore dysregulated genes in bladder cancer cells after 20-HE treatment. We identified ubiquitin-specific protease 21 (USP21) as a key deubiquitinating enzyme for bladder cancer progression and a positive correlation between USP21 and nuclear factor-κB (NF-κB)/p65 in patients. Furthermore, 20-HE treatments markedly reduced USP21 expression, NF-κB/p65 mRNA, stability and phosphorylated NF-κB/p65 expression levels in bladder cancer cells, which were validated in animal tumor tissues. Mechanistic studies showed that USP21 directly interacted with and stabilized p65 by deubiquitinating its K48-linked polyubiquitination in bladder cancer cells, which could be abolished by 20-HE treatment, contributing to p65 degradation. Finally, we found that USP21 overexpression could not only facilitate the proliferation, migration, and invasion of bladder cancer cells, but also significantly eliminated the suppressive effects of 20-HE on bladder cancer. Notably, 20-HE could still perform its anti-tumor role in bladder cancer when USP21 was knocked down with decreased NF-κB/p65 expression and activation, revealing that USP21 suppression might not be the only way for 20-HE during bladder cancer treatment. Collectively, all our results clearly demonstrated that 20-HE may function as a promising therapeutic strategy for bladder cancer treatment mainly through reducing USP21/p65 signaling expression.

16.
Sensors (Basel) ; 24(8)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38676176

RESUMEN

In the field of robotic automation, achieving high position accuracy in robotic vision systems (RVSs) is a pivotal challenge that directly impacts the efficiency and effectiveness of industrial applications. This study introduces a comprehensive modeling approach that integrates kinematic and joint compliance factors to significantly enhance the position accuracy of a system. In the first place, we develop a unified kinematic model that effectively reduces the complexity and error accumulation associated with the calibration of robotic systems. At the heart of our approach is the formulation of a joint compliance model that meticulously accounts for the intricacies of the joint connector, the external load, and the self-weight of robotic links. By employing a novel 3D rotary laser sensor for precise error measurement and model calibration, our method offers a streamlined and efficient solution for the accurate integration of vision systems into robotic operations. The efficacy of our proposed models is validated through experiments conducted on a FANUC LR Mate 200iD robot, showcasing notable improvements in the position accuracy of robotic vision system. Our findings contribute a framework for the calibration and error compensation of RVS, holding significant potential for advancements in automated tasks requiring high precision.

17.
Small ; : e2402438, 2024 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-38644689

RESUMEN

The simple and low-cost construction of a 3D network structure is an ideal way to prepare high-performance electromagnetic wave (EMW) absorption materials. Herein, a series of carbon skeleton/carbon nanotubes/Ni3ZnC0.7 composites (CS/CNTs/Ni3ZnC0.7) are successfully prepared by in situ growth of Ni3ZnC0.7 and CNTs on 3D melamine sponge carbon. With the increase of precursor, Ni3ZnC0.7 nanoparticles nucleate and catalyze the generation of CNTs on the surface of the carbon skeleton. The minimum reflection loss (RL) value of the S60min composite (loading time of 60 min) reaches -86.6 dB at 1.6 mm and effective absorption bandwidth (EAB, RL≤-10 dB) is up to 9.3 GHz (8.7-18 GHz). The 3D network sponge carbon with layered micro/nanostructure and hollow skeleton promotes multiple reflection and absorption mechanisms of incident EMW. The N-doping and defects can be equivalent to an electric dipole, providing dipole polarization to increase dielectric relaxation. The uniform Ni3ZnC0.7 nanoparticles and CNTs play a key role in dissipating electromagnetic energy, blocking heat transfer, and enhancing the mechanical properties of the skeleton. Fortunately, the composite displays a quite low thermal conductivity of 0.09075 W m·K-1 and good flexibility, which can provide insulation and quickly recover to its original state after being stressed.

18.
Chemosphere ; 355: 141834, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38565376

RESUMEN

Membrane fouling caused by the organics-coated particles was the main obstacle for the highly efficient shale gas produced water (SGPW) treatment and recycling. In this study, a novel hybrid electrocoagulation (EC) and E-peroxone process coupled with UF (ECP-UF) process was proposed to examine the efficacy and elucidate the mechanism for UF fouling mitigation in assisting SGPW reuse. Compared to the TMP (transmembrane pressure) increase of -15 kPa in the EC-UF process, TMP in ECP-UF system marginally increased to -1.4 kPa for 3 filtration cycles under the current density of 15 mA/cm2. Both the total fouling index and hydraulically irreversible fouling index of the ECP-UF process were significantly lower than those of EC-UF process. According to the extended Derjaguin-Landau-Verwey-Overbeek theory, the potential barriers was the highest for ECP-UF processes due to the substantial increase of the acid-base interaction energy in ECP-UF process, which was well consistent with the TMP and SEM results. Turbidity and TOC of ECP-UF process were 63.6% and 45.8% lower than those of EC-UF process, respectively. According to the MW distribution, the variations of compounds and their relative contents were probably due to the oxidation and decomposing products of the macromolecular organics. The number of aromatic compound decreased, while the number of open-chain compounds (i.e., alkenes, alkanes and alcohols) increased in the permeate of ECP-UF process. Notably, the substantial decrease in the relative abundance of di-phthalate compounds was attributed to the high reactivity of these compounds with ·OH. Mechanism study indicated that ECP could realize the simultaneous coagulation, H2O2 generation and activation by O3, facilitating the enhancement of ·OH and Alb production and therefore beneficial for the improved water quality and UF fouling mitigation. Therefore, the ECP-UF process emerges as a high-efficient and space-saving approach, yielding a synergistic effect in mitigating UF fouling for SGPW recycling.


Asunto(s)
Ultrafiltración , Purificación del Agua , Gas Natural , Peróxido de Hidrógeno , Membranas Artificiales , Purificación del Agua/métodos , Electrocoagulación
19.
iScience ; 27(5): 109678, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38660411

RESUMEN

The liver is the main organ associated with metabolism. In our previous studies, we identified that the metabolic enzymes malate dehydrogenase 1 (MDH1) and isocitrate dehydrogenase 1 (IDH1) were differentially expressed in ALF. The aim of this study was to explore the changes in the acetylation of MDH1 and IDH1 and the therapeutic effect of histone deacetylase (HDAC) inhibitor in acute liver failure (ALF). Decreased levels of many metabolites were observed in ALF patients. MDH1 and IDH1 were decreased in the livers of ALF patients. The HDAC inhibitor ACY1215 improved the expression of MDH1 and IDH1 after treatment with MDH1-siRNA and IDH1-siRNA. Transfection with mutant plasmids and adeno-associated viruses, identified MDH1 K118 acetylation and IDH1 K93 acetylation as two important sites that regulate metabolism in vitro and in vivo.

20.
Sci Total Environ ; 927: 172269, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38583607

RESUMEN

Despite the extensive research conducted on plant-soil-water interactions, the understanding of the role of plant water sources in different plant successional stages remains limited. In this study, we employed a combination of water isotopes (δ2H and δ18O) and leaf δ13C to investigate water use patterns and leaf water use efficiency (WUE) during the growing season (May to September 2021) in Hailuogou glacier forefronts in China. Our findings revealed that surface soil water and soil nutrient gradually increased during primary succession. Dominant plant species exhibited a preference for upper soil water uptake during the peak leaf out period (June to August), while they relied more on lower soil water sources during the post-leaf out period (May) or senescence (September to October). Furthermore, plants in late successional stages showed higher rates of water uptake from uppermost soil layers. Notably, there was a significant positive correlation between the percentage of water uptake by plants and available soil water content in middle and late stages. Additionally, our results indicated a gradual decrease in WUE with progression through succession, with shallow soil moisture utilization negatively impacting overall WUE across all succession stages. Path analysis further highlighted that surface soil moisture (0- 20 cm) and middle layer nutrient availability (20- 50 cm) played crucial roles in determining WUE. Overall, this research emphasizes the critical influence of water source selection on plant succession dynamics while elucidating underlying mechanisms linking succession with plant water consumption.


Asunto(s)
Ecosistema , Cubierta de Hielo , Suelo , Agua , China , Suelo/química , Plantas , Hojas de la Planta , Monitoreo del Ambiente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA