Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 230
Filtrar
1.
Talanta ; 275: 126069, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38692042

RESUMEN

Lipid deposition has been considered one of the key factors in the occurrence of valvular heart disease (VHD) and a great potential target for the diagnosis of VHD. However, the development of lipid imaging technologies and efficient lipid specific probes is in urgent demand. In this work, we have prepared a lipid droplets (LDs) targeted fluorescence probe CPTM based on a push-pull electronic structure for the imaging of diseased aortic valves. CPTM showed obvious twisted intramolecular charge transfer (TICT) effect and its emission changed from 600 nm in water to 508 nm in oil. CPTM not only exhibited good biocompatibility and high photostability, but also impressive LDs specific imaging performance in human primary valvular interstitial cells and human diseased aortic valves. Moreover, the dynamic changes of intracellular LDs could be monitor in real-time after staining with CPTM. These results were expected to offer new ideals for the designing of novel LDs specific probes for further bioimaging applications.

2.
Biomed Mater ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740038

RESUMEN

Bacterial infections pose a serious threat to human health, with emerging antibiotic resistance, necessitating the development of new antibacterial agents. Cu2+and Ag+are widely recognized antibacterial agents with a low propensity for inducing bacterial resistance; however, their considerable cytotoxicity constrains their clinical applications. Rare-earth ions, owing to their unique electronic layer structure, hold promise as promising alternatives. However, their antibacterial efficacy and biocompatibility relative to conventional antibacterial agents remain underexplored, and the variations in activity across different rare-earth ions remain unclear. Here, we systematically evaluate the antibacterial activity of five rare-earth ions (Yb3+, Gd3+, Sm3+, Tb3+, and La3+) againstStaphylococcus aureusandPseudomonas aeruginosa, benchmarked against well-established antibacterial agents (Cu2+, Ag+) and the antibiotic norfloxacin. Cytotoxicity is also assessed via live/dead staining of fibroblasts after 24 h rare-earth ion exposure. Our findings reveal that rare-earth ions require higher concentrations to match the antibacterial effects of traditional agents but offer the advantage of significantly lower cytotoxicity. In particular, Gd3+demonstrates potent bactericidal efficacy against both planktonic and biofilm bacteria, while maintaining the lowest cytotoxicity toward mammalian cells. Moreover, the tested rare-earth ions also exhibited excellent antifungal activity againstCandida albicans. This study provides a critical empirical framework to guide the selection of rare-earth ions for biomedical applications, offering a strategic direction for the development of novel antimicrobial agents.

3.
J Control Release ; 369: 591-603, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38582336

RESUMEN

Ischemia stroke is one of the leading causes of death and disability worldwide. Owing to the limited delivery efficiency to the brain caused by the blood-brain barrier (BBB) and off-target effects of systemic treatment, it is crucial to develop an in situ drug delivery system to improve the therapeutic effect in ischemic stroke. Briefly, we report a multifunctional in situ hydrogel delivery system for the co-delivery of reactive oxygen species (ROS)-responsive nanoparticles loaded with atorvastatin calcium (DSPE-se-se-PEG@AC NPs) and ß-nerve growth factor (NGF), which is expected to remodel pathological microenvironment for improving cerebral ischemia injury. The in vitro results exhibited the multifunctional hydrogel scavenged oxygen-glucose deprivation (OGD)-induced free radical, rescued the mitochondrial function, and maintained the survival and function of neurons, hence reducing neuronal apoptosis and neuroinflammation, consequently relieving ischemia injury in hippocampal neurons cell line (HT22). In the rat ischemia stroke model, the hydrogel significantly minified cerebral infarction by regulating inflammatory response, saving apoptotic neurons, and promoting angiogenesis and neurogenesis. Besides, the hydrogel distinctly improved the rats' neurological deficits after cerebral ischemia injury over the long-term observation. In conclusion, the in-situ hydrogel platform has demonstrated promising therapeutic effects in both in vitro and in vivo studies, indicating its potential as a new and effective therapy.


Asunto(s)
Atorvastatina , Isquemia Encefálica , Hidrogeles , Ratas Sprague-Dawley , Animales , Hidrogeles/administración & dosificación , Isquemia Encefálica/tratamiento farmacológico , Masculino , Atorvastatina/administración & dosificación , Atorvastatina/uso terapéutico , Atorvastatina/farmacología , Línea Celular , Especies Reactivas de Oxígeno/metabolismo , Nanopartículas/administración & dosificación , Encéfalo/efectos de los fármacos , Encéfalo/patología , Encéfalo/metabolismo , Factor de Crecimiento Nervioso/administración & dosificación , Ratones , Neuronas/efectos de los fármacos , Neuronas/patología , Fármacos Neuroprotectores/administración & dosificación , Fármacos Neuroprotectores/uso terapéutico , Fármacos Neuroprotectores/farmacología , Ratas , Apoptosis/efectos de los fármacos , Polietilenglicoles/química , Polietilenglicoles/administración & dosificación , Sistemas de Liberación de Medicamentos , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Accidente Cerebrovascular Isquémico/patología
5.
J Gastrointest Oncol ; 15(1): 425-434, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38482241

RESUMEN

Background: Patients experiencing severe postoperative pain often show lower adherence to prescribed treatments, highlighting the clinical need for effective pain prediction and management strategies. This study aims to address this gap by identifying key risk factors associated with post-transarterial chemoembolization (TACE) pain and developing a predictive scoring system. Methods: We retrospectively analyzed data from liver cancer patients who underwent their first TACE procedure at our institution between January 2019 and December 2020. Pain levels were assessed using an 11-point numerical rating scale (NRS-11). Patients were randomly assigned to training and validation cohorts. In the training cohort, logistic regression was used to evaluate the correlation between various parameters and post-TACE pain, leading to the development of a risk prediction model. This model's performance was subsequently assessed in the validation cohort. Results: The study included 255 patients. Univariate analysis in the training cohort identified tumor number, size, microsphere volume, and operation time as factors associated with postoperative pain. These factors were included in a multivariate model, which demonstrated areas under the receiver operating characteristic (ROC) curve (AUCs) of 0.71 in the training cohort and 0.74 in the validation cohort for predicting moderate to severe pain. A nomogram was also developed for clinical application, categorizing patients with scores above 72.90 as high risk for moderate to severe pain. Conclusions: Our research successfully developed and validated a novel scoring system capable of predicting moderate to severe pain following initial TACE treatment. However, the study's predictive accuracy, as reflected by AUC values, suggests that further refinement and validation in larger, diverse cohorts are necessary to enhance its clinical utility. This work underscores the importance of predictive tools in improving postoperative pain management and patient outcomes.

6.
Int J Biol Macromol ; 266(Pt 2): 130715, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38462108

RESUMEN

With an aging population, the patients with valvular heart disease (VHD) are growing worldwide, and valve replacement is a primary choice for these patients with severe valvular disease. Among them, bioprosthetic heart valves (BHVs), especially BHVs trough transcatheter aortic valve replacement, are widely accepted by patients on account of their good hemodynamics and biocompatibility. Commercial BHVs in clinic are prepared by glutaraldehyde cross-linked pericardial tissue with the risk of calcification and thrombotic complications. In the present study, a strategy combines improved hemocompatibility and anti-calcification properties for BHVs has been developed based on a novel non-glutaraldehyde BHV crosslinker hexakis(hydroxymethyl)melamine (HMM) and the anticoagulant fucoidan. Besides the similar mechanical properties and enhanced component stability compared to glutaraldehyde crosslinked PP (G-PP), the fucoidan modified HMM-crosslinked PPs (HMM-Fu-PPs) also exhibit significantly enhanced anticoagulation performance with a 72 % decrease in thrombus weight compared with G-PP in ex-vivo shunt assay, along with the superior biocompatibility, satisfactory anti-calcification properties confirmed by subcutaneous implantation. Owing to good comprehensive performance of these HMM-Fu-PPs, this simple and feasible strategy may offer a great potential for BHV fabrication in the future, and open a new avenue to explore more N-hydroxymethyl compound based crosslinker with excellent performance in the field of biomaterials.


Asunto(s)
Anticoagulantes , Bioprótesis , Prótesis Valvulares Cardíacas , Polisacáridos , Polisacáridos/química , Polisacáridos/farmacología , Anticoagulantes/química , Anticoagulantes/farmacología , Animales , Coagulación Sanguínea/efectos de los fármacos , Humanos , Conejos , Ensayo de Materiales , Trombosis/prevención & control , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Reactivos de Enlaces Cruzados/química , Calcificación Fisiológica/efectos de los fármacos
7.
Regen Biomater ; 11: rbae003, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38414796

RESUMEN

Bioprosthetic heart valve (BHV) replacement has been the predominant treatment for severe heart valve diseases over decades. Most clinically available BHVs are crosslinked by glutaraldehyde (GLUT), while the high toxicity of residual GLUT could initiate calcification, severe thrombosis, and delayed endothelialization. Here, we construed a mechanically integrating robust hydrogel-tissue hybrid to improve the performance of BHVs. In particular, recombinant humanized collagen type III (rhCOLIII), which was precisely customized with anti-coagulant and pro-endothelialization bioactivity, was first incorporated into the polyvinyl alcohol (PVA)-based hydrogel via hydrogen bond interactions. Then, tannic acid was introduced to enhance the mechanical performance of PVA-based hydrogel and interfacial bonding between the hydrogel layer and bio-derived tissue due to the strong affinity for a wide range of substrates. In vitro and in vivo experimental results confirmed that the GLUT-crosslinked BHVs modified by the robust PVA-based hydrogel embedded rhCOLIII and TA possessed long-term anti-coagulant, accelerated endothelialization, mild inflammatory response and anti-calcification properties. Therefore, our mechanically integrating robust hydrogel-tissue hybrid strategy showed the potential to enhance the service function and prolong the service life of the BHVs after implantation.

8.
Artículo en Inglés | MEDLINE | ID: mdl-38376702

RESUMEN

The objective of this preclinical study was to evaluate the feasibility and safety of transcatheter endocardial alginate hydrogel injection (TEAi) in a large animal model, utilizing the high-stiffness XDROP® alginate hydrogel in combination with the dedicated EndoWings® catheter-based system. All swine (n = 9) successfully underwent TEAi without complications. Acute results from a subset of animals (n = 5) demonstrated the ability of the catheter to access a wide range of endomyocardial areas and achieve consecutive circumferential hydrogel distribution patterns within the mid-left ventricular wall. Histological examinations at 6 months (n = 4) demonstrated that the XDROP® remained localized within the cardiac tissue. In addition, serial echocardiographic imaging showed that XDROP® had no adverse impacts on LV systolic and diastolic functions. In conclusion, this innovative combination technology has the potential to overcome the translational barriers related to alginate hydrogel delivery to the myocardium.

10.
Nat Commun ; 15(1): 735, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38272886

RESUMEN

Drug-eluting stent implantation suppresses the excessive proliferation of smooth muscle cells to reduce in-stent restenosis. However, the efficacy of drug-eluting stents remains limited due to delayed reendothelialization, impaired intimal remodeling, and potentially increased late restenosis. Here, we show that a drug-free coating formulation functionalized with tailored recombinant humanized type III collagen exerts one-produces-multi effects in response to injured tissue following stent implantation. We demonstrate that the one-produces-multi coating possesses anticoagulation, anti-inflammatory, and intimal hyperplasia suppression properties. We perform transcriptome analysis to indicate that the drug-free coating favors the endothelialization process and induces the conversion of smooth muscle cells to a contractile phenotype. We find that compared to drug-eluting stents, our drug-free stent reduces in-stent restenosis in rabbit and porcine models and improves vascular neointimal healing in a rabbit model. Collectively, the one-produces-multi drug-free system represents a promising strategy for the next-generation of stents.


Asunto(s)
Reestenosis Coronaria , Stents Liberadores de Fármacos , Porcinos , Animales , Conejos , Reestenosis Coronaria/prevención & control , Stents , Colágeno , Cicatrización de Heridas
11.
Regen Biomater ; 11: rbad098, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38173770

RESUMEN

Valvular heart disease (VHD), clinically manifested as stenosis and regurgitation of native heart valve, is one of the most prevalent cardiovascular diseases with high mortality. Heart valve replacement surgery has been recognized as golden standard for the treatment of VHD. Owing to the clinical application of transcatheter heart valve replacement technic and the excellent hemodynamic performance of bioprosthetic heart valves (BHVs), implantation of BHVs has been increasing over recent years and gradually became the preferred choice for the treatment of VHD. However, BHVs might fail within 10-15 years due to structural valvular degeneration (SVD), which was greatly associated with drawbacks of glutaraldehyde crosslinked BHVs, including cytotoxicity, calcification, component degradation, mechanical failure, thrombosis and immune response. To prolong the service life of BHVs, much effort has been devoted to overcoming the drawbacks of BHVs and reducing the risk of SVD. In this review, we summarized and analyzed the research and progress on: (i) modification strategies based on glutaraldehyde crosslinked BHVs and (ii) nonglutaraldehyde crosslinking strategies for BHVs.

12.
Regen Biomater ; 11: rbad106, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38173768

RESUMEN

Recombinant collagen is a pivotal topic in foundational biological research and epitomizes the application of critical bioengineering technologies. These technological advancements have profound implications across diverse areas such as regenerative medicine, organ replacement, tissue engineering, cosmetics and more. Thus, recombinant collagen and its preparation methodologies rooted in genetically engineered cells mark pivotal milestones in medical product research. This article provides a comprehensive overview of the current genetic engineering technologies and methods used in the production of recombinant collagen, as well as the conventional production process and quality control detection methods for this material. Furthermore, the discussion extends to foresee the strides in physical transfection and magnetic control sorting studies, envisioning an enhanced preparation of recombinant collagen-seeded cells to further fuel recombinant collagen production.

13.
J Mater Chem B ; 12(5): 1168-1193, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38193143

RESUMEN

A biosensor is a device that reacts with the analyte to be analyzed, detects its concentration, and generates readable information, which plays an important role in medical diagnosis, detection of physiological indicators, and disease prevention. Nanomaterials have received increasing attention in the fabrication and improvement of biosensors due to their unique physicochemical and optical properties. In this paper, the properties of nanomaterials such as the size effect, optical and electrical properties, and their advantages in the field of biosensing are briefly summarized, and the application of nanomaterials can effectively improve the sensitivity and reduce the detection limit of biosensors. The advantages of commonly used nanomaterials such as gold nanoparticles (AuNPs), carbon nanotubes (CNTs), quantum dots (QDs), graphene, and magnetic nanobeads for biosensor applications are also reviewed. Besides, the two main types of biosensors using nanomaterials involved in their construction and their working principles are described, and the toxicity and biocompatibility of nanomaterials and the future direction of nanomaterial biosensors are discussed.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Nanoestructuras , Nanotubos de Carbono , Nanotubos de Carbono/química , Oro/química , Nanopartículas del Metal/química , Nanoestructuras/química
14.
J Control Release ; 365: 29-42, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37931807

RESUMEN

Myocardial infarction (MI) has become the primary cause of cardiovascular mortality, while the current treatment methods in clinical all have their shortcomings. Injectable biomaterials have emerged as a promising solution for cardiac tissue repair after MI. In this study, we designed a smart multifunctional carrier that could meet the treatment needs of different MI pathological processes by programmatically releasing different therapeutic substances. The carrier could respond to inflammatory microenvironment in the early stage of MI with rapid release of curcumin (Cur), and then sustained release recombinant humanized collagen type III (rhCol III) to treat MI. The rapid release of Cur reduced inflammation and apoptosis in the early stages, while the sustained release of rhCol III promoted angiogenesis and cardiac repair in the later stages. In vitro and in vivo results suggested that the multifunctional carrier could effectively improve cardiac function, promote the repair of infarcted tissue, and inhibit ventricular remodeling by reducing cell apoptosis and inflammation, and promoting angiogenesis in the different pathological processes of MI. Therefore, this programmed-release carrier provides a promising protocol for MI therapy.


Asunto(s)
Infarto del Miocardio , Humanos , Preparaciones de Acción Retardada/uso terapéutico , Infarto del Miocardio/terapia , Corazón , Remodelación Ventricular , Inflamación/tratamiento farmacológico
15.
Biomaterials ; 305: 122423, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38142470

RESUMEN

Superhydrophilic surfaces play an important role in nature. Inspired by this, scientists have designed various superhydrophilic materials that are widely used in the field of biomaterials, such as PEG molecular brushes and zwitterionic materials. However, superhydrophilic coatings with only anti-fouling properties do not satisfy the requirements for rapid reendothelialization of cardiovascular stent surfaces. Herein, a novel polyphenol superhydrophilic surface with passivated protein-adsorption properties was developed using two-electron oxidation of dopamine and polyphenols. This coating has a multiscale effects: 1) macroscopically: anti-fouling properties of superhydrophilic; 2) microscopically: protein adhesion properties of active groups (quinone-, amino-, hydroxyphenyl groups and aromatic ring). Polyphenols not only enhance the ability of coating to passivate protein-adsorption, but also make the coating have polyphenol-related biological functions. Therefore, the polyphenol and passivated protein-adsorption platform together maintain the stability of the scaffold microenvironment. This, in turn, provides favorable conditions for the growth of endothelial cells on the scaffold surface. In vivo implantation of the coated stents into the abdominal aorta resulted in uniform and dense endothelial cells covering the surface of the neointima. Moreover, new endothelial cells secreted large amounts of functional endothelial nitric oxide synthase like healthy endothelial cells. These results indicate that the polyphenol superhydrophilic coating potentially resists intra-stent restenosis and promotes surface reendothelialization. Hence, polyphenol superhydrophilic coatings with passivated protein-adsorption properties constructed by two-electron-assisted oxidation are a highly effective and versatile surface-modification strategy for implantable cardiovascular devices.


Asunto(s)
Electrones , Células Endoteliales , Stents , Dopamina , Materiales Biocompatibles Revestidos , Propiedades de Superficie
16.
Acta Biomater ; 175: 199-213, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38160859

RESUMEN

Wearable microneedle sensors for continuous glucose monitoring (CGM) have great potential for clinical impact by allowing access to large data sets to provide individualized treatment plans. To date, their development has been challenged by the accurate wide linear range tracking of interstitial fluid (ISF) glucose (Glu) levels. Here, we present a CGM platform consisting of a three-electrode microneedle electrochemical biosensor and a fully integrated radio-chemical analysis system. The long-term performance of the robust CGM on diabetic rats was achieved by electrodepositing Prussian blue (PB), and crosslinking glucose oxidase (GOx) and chitosan to form a 3D network using glutaraldehyde (GA). After redox by GOx, PB rapidly decomposes hydrogen peroxide and mediates charge transfer, while the 3D network and graphite powder provide enrichment and release sites for Glu and catalytic products, enabling a sensing range of 0.25-35 mM. Microneedle CGM has high sensitivity, good stability, and anti-interference ability. In diabetic rats, CGM can accurately monitor Glu levels in the ISF in real-time, which are highly consistent with levels measured by commercial Glu meters. These results indicate the feasibility and application prospects of the PB-based CGM for the clinical management of diabetes. STATEMENT OF SIGNIFICANCE: This study addresses the challenge of continuous glucose monitoring system design where the narrow linear range of sensing due to the miniaturization of sensors fails to meet the monitoring needs of clinical diabetic patients. This was achieved by utilizing a three-dimensional network of glutaraldehyde cross-linked glucose oxidase and chitosan. The unique topology of the 3D network provides a large number of sites for glucose enrichment and anchors the enzyme to the sensing medium and the conductive substrate through covalent bonding, successfully blocking the escape of the enzyme and the sensing medium and shortening the electron transfer and transmission path.


Asunto(s)
Técnicas Biosensibles , Quitosano , Diabetes Mellitus Experimental , Dispositivos Electrónicos Vestibles , Humanos , Ratas , Animales , Glucemia , Automonitorización de la Glucosa Sanguínea , Glucosa Oxidasa , Monitoreo Continuo de Glucosa , Glutaral , Glucosa
17.
ACS Appl Mater Interfaces ; 15(46): 53310-53317, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37947316

RESUMEN

Luminescent imaging has garnered significant attention for in vivo tracking of biomedical implants during and after surgery due to its human friendliness, affordability, and high sensitivity. However, conventional fluorescent probes are susceptible to background autofluorescence interference from living tissues, often resulting in poor signal-to-noise ratios. Herein, we report a background interference-free persistent luminescent implant (PLI) with excellent persistent luminescence (PL) performance, which can be clearly and long-term detected by an optical imaging system after implantation. Rechargeable near-infrared persistent luminescence nanoparticles (PLNPs) were prepared first via a simple hydrothermal approach and then modified by PEGylation to improve their hydrophilicity, biocompatibility, and compatibility with polymer substrates. The PEGylated PLNPs were facilely complexed into a polymer matrix to fabricate the PLI. The obtained PLIs can well inherit the PL properties of PLNPs, exhibiting good PL optical imaging performance without tissue autofluorescence interference. Furthermore, both PLNPs and PLIs possess good biocompatibility, and the addition of PLNPs has no negative impact on the biocompatibility of the polymer matrix. This work fully utilizes the luminescent properties of PLNPs and adapts this PL to the field of biomedical implant imaging, which provides new insight for designing biomedical imaging systems.


Asunto(s)
Luminiscencia , Nanopartículas , Humanos , Nanopartículas/química , Imagen Óptica , Colorantes Fluorescentes , Polímeros
18.
J Mater Chem B ; 11(45): 10793-10821, 2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-37910389

RESUMEN

Biomass, a renewable hydrocarbon, is one of the favorable sources of advanced carbon materials owing to its abundant resources and diverse molecular structures. Biomass-based two-dimensional carbon nanomaterials (2D-BC) have attracted extensive attention due to their tunable structures and properties, and have been widely used in the design and fabrication of electrochemical sensing platforms. This review embarks on the thermal conversion process of biomass from different sources and the synthesis strategy of 2D-BC materials. The affinity between 2D-BC structure and properties is emphasized. The recent progress in 2D-BC-based electrochemical sensors for health and environmental monitoring is also presented. Finally, the challenges and future development directions related to such materials are proposed in order to promote their further application in the field of electrochemical sensing.


Asunto(s)
Carbono , Nanoestructuras , Biomasa , Técnicas Electroquímicas/métodos , Nanoestructuras/química , Monitoreo del Ambiente
19.
ACS Nano ; 17(23): 23498-23511, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37971533

RESUMEN

Rapid endothelialization of cardiovascular materials can enhance the vascular remodeling performance. In this work, we developed a strategy for amyloid-like protein-assembly-mediated interfacial engineering to functionalize a biomimetic nanoparticle coating (BMC). Various groups (e.g., hydroxyl and carboxyl) on the BMC are responsible for chelating Zn2+ ions at the stent interface, similar to the glutathione peroxidase-like enzymes found in vivo. This design could reproduce the release of therapeutic nitric oxide gas (NO) and an aligned microenvironment nearly identical with that of natural vessels. In a rabbit abdominal aorta model, BMC-coated stents promoted vascular healing through rapid endothelialization and the inhibition of intimal hyperplasia in the placement sites at 4, 12, and 24 weeks. Additionally, better anticoagulant activity and immunomodulation in the BMC stents were also confirmed, and vascular healing was mainly dependent on cell signaling through the cyclic guanosine monophosphate-protein kinase G (cGMP-PKG) cascade. Overall, a metal-polypeptide-coated stent was developed on the basis of its detailed molecular mechanism of action in vascular remodeling.


Asunto(s)
Muramidasa , Nanopartículas , Animales , Conejos , Remodelación Vascular , Zinc , Materiales Biocompatibles Revestidos/farmacología , Stents , Compuestos Orgánicos
20.
Med Oncol ; 40(12): 339, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37875691

RESUMEN

To investigate the role of neuropilin1 (Nrp1) in glucose metabolism and proliferation of hepatocellular carcinoma (HCC) cells and to analyze its mechanism of action. The CRISPR gene knockout technique was used to knock out the Nrp1 gene in two HCC cell lines. The effect of Nrp1 on the proliferation of HCC cells was assessed in the CCK8 assay and plate cloning assay. The expression levels of glucose consumption, lactate production, and essential proteins of the glycolytic pathway were detected to explore the effect of Nrp1 on glucose metabolism in HCC cells. Using CoCl2 to revert the expression of hypoxia inducible factor-1α (HIF-1α), the role of HIF-1α in the pro-HCC cell metabolism of Nrp1 were demonstrated. The protein synthesis inhibitor CHX and proteasome inhibitor MG-132 was used to analyze the molecular mechanism of action of Nrp1 on HIF-1α. The Kaplan-Meier method was used to calculate survival rates and plot survival curves. Based on the CCK8 assay and plate cloning assay, we found that Nrp1 knockout significantly inhibited the proliferation of HCC cells. Nrp1 inhibitor suppressed lactate production and glucose consumption in HCC cells. Knockout of Nrp1 decreased the expression of glycolytic pathway-related proteins and HIF-1α protein. Furthermore, by joint use of CoCl2 and NRP1 knockout, we confirmed that reverting HIF-1α expression could reverse the effect of Nrp1 knockout on HCC cell metabolism in vitro. Mechanistically, Nrp1 showed a close correlation with the stability of HIF-1α protein in protein stability assay. Finally, we revealed that high expression of Nrp1 in HCC tissues was associated with poor overall survival and disease-free survival of the patients. Nrp1 accelerates glycolysis and promotes proliferation of HCC by regulating HIF-1α protein stability and through the VEGF/Nrp1/HIF-1α positive feedback loop.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Retroalimentación , Neuropilina-1/genética , Neuropilina-1/metabolismo , Proliferación Celular , Glucosa , Cobalto/farmacología , Cobalto/metabolismo , Lactatos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...