Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 250
Filtrar
1.
Front Neurosci ; 18: 1395671, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38952922

RESUMEN

Evidence has demonstrated that exoskeleton robots can improve intestinal function in patients with spinal cord injury (SCI). However, the underlying mechanisms remain unelucidated. This study investigated the effects of exoskeleton-assisted walking (EAW) on intestinal function and intestinal flora structure in T2-L1 motor complete paraplegia patients. The results showed that five participants in the EAW group and three in the conventional group reported improvements in at least one bowel management index, including an increased frequency of bowel evacuations, less time spent on bowel management per day, and less external assistance (manual digital stimulation, medication, and enema usage). After 8 weeks of training, the amount of glycerol used in the EAW group decreased significantly (p <0.05). The EAW group showed an increasing trend in the neurogenic bowel dysfunction (NBD) score after 8 weeks of training, while the conventional group showed a worsening trend. Patients who received the EAW intervention exhibited a decreased abundance of Bacteroidetes and Verrucomicrobia, while Firmicutes, Proteobacteria, and Actinobacteria were upregulated. In addition, there were decreases in the abundances of Bacteroides, Prevotella, Parabacteroides, Akkermansia, Blautia, Ruminococcus 2, and Megamonas. In contrast, Ruminococcus 1, Ruminococcaceae UCG002, Faecalibacterium, Dialister, Ralstonia, Escherichia-Shigella, and Bifidobacterium showed upregulation among the top 15 genera. The abundance of Ralstonia was significantly higher in the EAW group than in the conventional group, and Dialister increased significantly in EAW individuals at 8 weeks. This study suggests that EAW can improve intestinal function of SCI patients in a limited way, and may be associated with changes in the abundance of intestinal flora, especially an increase in beneficial bacteria. In the future, we need to further understand the changes in microbial groups caused by EAW training and all related impact mechanisms, especially intestinal flora metabolites. Clinical trial registration: https://www.chictr.org.cn/.

2.
Sci Immunol ; 9(97): eadm7908, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38996009

RESUMEN

Infections and neurodegenerative diseases induce neuroinflammation, but affected individuals often show nonneural symptoms including muscle pain and muscle fatigue. The molecular pathways by which neuroinflammation causes pathologies outside the central nervous system (CNS) are poorly understood. We developed multiple models to investigate the impact of CNS stressors on motor function and found that Escherichia coli infections and SARS-CoV-2 protein expression caused reactive oxygen species (ROS) to accumulate in the brain. ROS induced expression of the cytokine Unpaired 3 (Upd3) in Drosophila and its ortholog, IL-6, in mice. CNS-derived Upd3/IL-6 activated the JAK-STAT pathway in skeletal muscle, which caused muscle mitochondrial dysfunction and impaired motor function. We observed similar phenotypes after expressing toxic amyloid-ß (Aß42) in the CNS. Infection and chronic disease therefore activate a systemic brain-muscle signaling axis in which CNS-derived cytokines bypass the connectome and directly regulate muscle physiology, highlighting IL-6 as a therapeutic target to treat disease-associated muscle dysfunction.


Asunto(s)
Encéfalo , COVID-19 , Músculo Esquelético , Transducción de Señal , Animales , Encéfalo/inmunología , Encéfalo/metabolismo , Transducción de Señal/inmunología , Ratones , Músculo Esquelético/inmunología , Músculo Esquelético/metabolismo , COVID-19/inmunología , Enfermedad Crónica , Interleucina-6/metabolismo , Interleucina-6/inmunología , Infecciones por Escherichia coli/inmunología , Especies Reactivas de Oxígeno/metabolismo , Especies Reactivas de Oxígeno/inmunología , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/inmunología , Proteínas de Drosophila/genética , SARS-CoV-2/inmunología , Drosophila melanogaster/inmunología , Péptidos beta-Amiloides/metabolismo , Humanos , Ratones Endogámicos C57BL
3.
Int J Biol Macromol ; : 133805, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38996885

RESUMEN

Successful oral insulin administration can considerably enhance the quality of life (QOL) of diabetes patients who must frequently take insulin injections. However, Oral insulin administration is seriously hampered by gastrointestinal enzymes, wide pH range, mucus and mucosal layers, which limit insulin oral bioavailability to ≤2 %. Herein, we developed a simple, inexpensive and safe dual ß-cyclodextrin/dialdehyde glucan-coated keratin nanoparticle (ß-CD-K-IN-DG). The resulted ß-CD-K-IN-DG not only gave the ultra-high insulin loading (encapsulation efficiency (98.52 %)), but also protected insulin from acid and enzymatic degradation. This ß-CD-K-IN-DG had a notable hypoglycemic effect, there was almost 80 % insulin release after 4 h of incubation under hyperglycemic conditions. Ex vivo results confirmed that ß-CD-K-IN-DG possessed high mucus-penetration ability. Transepithelial transport and uptake mechanism studies revealed that bypass transport pathway and endocytosis promoted ß-CD-K-IN-DG entered intestinal epithelial cells, thus increased the bioavailability of insulin (12.27 %). The improved stability of insulin during in vivo transport implied that ß-CD-K-IN-DG might be a potential tool for the effective oral insulin administration.

4.
Environ Technol ; : 1-13, 2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-38972296

RESUMEN

ABSTRACTThe release of supersaturated total dissolved gas (STDG) from dams has been linked to the development of gas bubble disease, which can ultimately result in the death of fish. In order to minimize the impact of STDG on aquatic ecology, the effect of aeration on mass transfer at the air-liquid interface is taken into account. This paper selects four commonly used aerators to carry out indoor aeration tower experiments under different aeration conditions (aeration aperture, aeration water depth, and aeration volume), exploring aerators that can efficiently promote STDG release. The results indicated that the diaphragm aerator was found to have the greatest effect on STDG release, followed by corundum and spin mix aerator. In contrast, a pinhole aerator was found to have the least beneficial impact on STDG release. The increase in the release coefficient for the diaphragm aerator in comparison to the pinhole aerator is 32%. A prediction model for the aeration system was developed based on the mass transfer mechanism at the gas-liquid interface. The parameters in the model were determined using experimental data, which effectively improved the model's prediction accuracy. The findings of this study may serve as a reference point for the selection of the most suitable aerator in the actual engineering of STDG mitigation by aeration technology.

5.
Anal Chem ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39012837

RESUMEN

Two-photon fluorescence lifetime microscopy (TP-FLIM) is a powerful quantitative imaging technique that characterizes and analyzes the structure and function of biological samples through a combination of intensity and lifetime imaging. Because TP-FLIM is independent of the fluorescence signal intensity and the fluorophore concentration, it is widely used in high-throughput, high-content drug screening and clinical diagnostics. Second harmonic generation (SHG) imaging technology has the advantages of high spatial resolution and imaging depth inherent to nonlinear optical imaging. Second harmonics often appear in noncentrosymmetric structures. Collagen tissue in biological organisms is a good example of these structures, showing strong harmonic effects. Therefore, SHG has been widely used for imaging of specific tissue structure imaging. TP-FLIM technology is highly sensitive for quantitatively detecting changes in microenvironments. The objective of this study is to examine pathological pulmonary fibrosis slices using a combined approach of TP-FLIM and SHG technology. The fluorescence lifetime data of pulmonary collagen fibers are analyzed by using phasor plot analysis methods, and normal collagen fibers and fibrotic collagen fibers are distinguished by calculating the aspect ratio from the SHG images formed by the collagen fibers. Our study provides a new method for a deeper understanding of the pathological mechanisms and clinical diagnosis of pulmonary fibrosis and other collagen fiber-related disorders.

6.
Front Mol Neurosci ; 17: 1400927, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38756705

RESUMEN

Valeriana jatamansi Jones (VJJ), renowned for its extensive history in traditional Chinese medicine and ethnomedicine within China, is prevalently utilized to alleviate ailments such as epigastric distension and pain, gastrointestinal disturbances including food accumulation, diarrhea, and dysentery, as well as insomnia and other diseases. Moreover, the Iridoid-rich fraction derived from Valeriana jatamansi Jones (IRFV) has demonstrated efficacy in facilitating the recuperation of motor functions after spinal cord injury (SCI). This study is aimed to investigate the therapeutic effect of IRFV on SCI and its underlying mechanism. Initially, a rat model of SCI was developed to assess the impact of IRFV on axonal regeneration. Subsequently, employing the PC12 cell model of oxidative damage, the role and mechanism of IRFV in enhancing axonal regeneration were explored using the phosphoinositide-3-kinase (PI3K)/protein kinase B (Akt) signaling pathway inhibitor LY294002. Ultimately, the same inhibitor was administered to SCI rats to confirm the molecular mechanism through which IRFV promotes axonal regeneration by activating the PI3K/Akt signaling pathway. The results showed that IRFV significantly enhanced motor function recovery, reduced pathological injury, and facilitated axonal regeneration in SCI rats. In vitro experiments revealed that IRFV improved PC12 cell viability, augmented axonal regeneration, and activated the PI3K/Akt signaling pathway. Notably, the inhibition of this pathway negated the therapeutic benefits of IRFV in SCI rats. In conclusion, IRFV promote promotes axonal regeneration and recovery of motor function after SCI through activation of the PI3K/Akt signaling pathway.

7.
Plant Physiol Biochem ; 212: 108761, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38805756

RESUMEN

Abnormal pollination from chance events or hybridization between species leads to unusual embryo development, resulting in fruit abortion. To elucidate the mechanism underlying fruit abortion, we conducted a comprehensive analysis of the transcriptome and hormone profiles in aborting fruits (AF) derived from an interspecific cross between the peach cultivar 'Huangjinmi 3' and the Prunus mume cultivar 'Jiangmei', as well as in normal-seeded fruits (NF) resulting from an intraspecific cross of 'Huangjinmi 3' with the 'Manyuanhong' peach cultivars. Growth of AF was inhibited during the exponential growth phase, with up-regulation of oxidative stress related genes and down-regulation of DNA replication and cell cycle genes. Accumulation of the tissue growth-related hormones auxin and cytokinin was reduced in AF, while levels of the growth inhibiting hormone abscisic acid (ABA) were higher compared to NF. The increased ABA concentration aligned with down-regulation of the ABA catabolism gene CYP707A2, which encodes abscisic acid 8'-hydroxylase. Correlation analysis showed ABA could explain the maximum proportion of differently expressed genes between NF and AF. We also showed that expression of KIRA1-LIKE1 (PpeKIL1), a peach ortholog of the Arabidopsis KIRA1 gene, was up-regulated in AF. PpeKIL1 promotes senescence or delays normal growth in tobacco and Arabidopsis, and its promoter activity increases with exogenous ABA treatment. Our study demonstrates a candidate mechanism where ABA induces expression of PpeKIL1, which further blocks normal fruit growth and triggers fruit abscission.


Asunto(s)
Ácido Abscísico , Frutas , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Prunus persica , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Frutas/crecimiento & desarrollo , Frutas/genética , Frutas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Prunus persica/genética , Prunus persica/metabolismo , Prunus persica/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/metabolismo
8.
Diagn Pathol ; 19(1): 61, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38641621

RESUMEN

BACKGROUND AND OBJECTIVE: EBUS-TBNA has emerged as an important minimally invasive procedure for the diagnosis and staging of lung cancer. Our objective was to evaluate the effect of different specimen preparation from aspirates on the diagnosis of lung cancer. METHODS: 181 consecutive patients with known or suspected lung cancer accompanied by hilar / mediastinal lymphadenopathy underwent EBUS-TBNA from January 2019 to December 2022. Specimens obtained by EBUS-TBNA were processed by three methods: Traditional smear cytology of aspirates (TSC), liquid-based cytology of aspirates (LBC) and histopathology of core biopsies. RESULTS: EBUS-TBNA was performed in 181 patients on 213 lymph nodes, the total positive rate of the combination of three specimen preparation methods was 80.7%. The diagnostic positive rate of histopathology was 72.3%, TSC was 68.1%, and LBC was 65.3%, no significant differences was observed (p = 0.29); however, statistically significant difference was noted between the combination of three preparation methods and any single specimen preparation methods (p = 0.002). The diagnostic sensitivity of histopathology combined with TSC and histopathology combined with LBC were 96.5 and 94.8%, the specificity was 95.0% and 97.5%, the PPV was 98.8% and 99.4%, the NPV was 86.4% and 81.2%, the diagnostic accuracy was 96.2% and 95.3%, respectively; The sensitivity and accuracy of above methods were higher than that of single specimen preparation, but lower than that of combination of three preparation methods. CONCLUSION: When EBUS-TBNA is used for the diagnosis and staging of lung cancer, histopathology combined with TSC can achieve enough diagnostic efficiency and better cost-effectiveness.


Asunto(s)
Neoplasias Pulmonares , Linfadenopatía , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/patología , Mediastino/diagnóstico por imagen , Biopsia por Aspiración con Aguja Fina Guiada por Ultrasonido Endoscópico/métodos , Ganglios Linfáticos/patología , Linfadenopatía/patología , Broncoscopía/métodos , Estadificación de Neoplasias , Estudios Retrospectivos
9.
J Pharm Anal ; 14(3): 371-388, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38618245

RESUMEN

Zearalenone (ZEN) is a mycotoxin that extensively contaminates food and feed, posing a significant threat to public health. However, the mechanisms behind ZEN-induced intestinal immunotoxicity remain unclear. In this study, Sprague-Dawley (SD) rats were exposed to ZEN at a dosage of 5 mg/kg/day b.w. for a duration of 14 days. The results demonstrated that ZEN exposure led to notable pathological alterations and immunosuppression within the intestine. Furthermore, ZEN exposure caused a significant reduction in the levels of apolipoprotein E (ApoE) and liver X receptor (LXR) (P < 0.05). Conversely, it upregulated the levels of myeloid-derived suppressor cells (MDSCs) markers (P < 0.05) and decreased the presence of 27-hydroxycholesterol (27-HC) in the intestine (P < 0.05). It was observed that ApoE or LXR agonists were able to mitigate the immunosuppressive effects induced by ZEN. Additionally, a bioinformatics analysis highlighted that the downregulation of ApoE might elevate the susceptibility to colorectal, breast, and lung cancers. These findings underscore the crucial role of the 27-HC/LXR/ApoE axis disruption in ZEN-induced MDSCs proliferation and subsequent inhibition of T lymphocyte activation within the rat intestine. Notably, ApoE may emerge as a pivotal target linking ZEN exposure to cancer development.

10.
Neural Netw ; 176: 106324, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38657421

RESUMEN

Generalized zero-shot learning (GZSL) aims to recognize both seen and unseen classes, while only samples from seen classes are available for training. The mainstream methods mitigate the lack of unseen training data by simulating the visual unseen samples. However, the sample generator is actually learned with just seen-class samples, and semantic descriptions of unseen classes are just provided to the pre-trained sample generator for unseen data generation, therefore, the generator would have bias towards seen categories, and the unseen generation quality, including both precision and diversity, is still the main learning challenge. To this end, we propose a Prototype-Guided Generation for Generalized Zero-Shot Learning (PGZSL), in order to guide the sample generation with unseen knowledge. First, unseen data generation is guided and rectified in PGZSL by contrastive prototypical anchors with both class semantic consistency and feature discriminability. Second, PGZSL introduces Certainty-Driven Mixup for generator to enrich the diversity of generated unseen samples, while suppress the generation of uncertain boundary samples as well. Empirical results over five benchmark datasets show that PGZSL significantly outperforms the SOTA methods in both ZSL and GZSL tasks.


Asunto(s)
Aprendizaje Automático , Humanos , Redes Neurales de la Computación , Semántica , Algoritmos
11.
Clin Chim Acta ; 558: 118784, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38588788

RESUMEN

BACKGROUND: Plasma amyloid-ß (Aß), phosphorylated tau-181 (p-tau181), neurofilament light (NfL) and glial fibrillary acidic protein (GFAP) potentially aid in the diagnosis of neurodegenerative dementias. We aim to conduct a comprehensive comparison between different biomarkers and their combination, which is lacking, in a multicenter Chinese dementia cohort consisting of Alzheimer's disease (AD), frontotemporal dementia (FTD), and progressive supranuclear palsy (PSP). METHODS: We enrolled 92 demented patients [64 AD, 16 FTD, and 12 PSP with dementia] and 20 healthy controls (HC). Their plasma Αß, p-tau181, NfL, and GFAP were detected by highly sensitive-single molecule immunoassays. Αß pathology in patients was measured by cerebrospinal fluid or/and amyloid positron emission tomography. RESULTS: All plasma biomarkers tested were significantly altered in dementia patients compared with HC, especially Aß42/Aß40 and NfL showed significant performance in distinguishing AD from HC. A combination of plasma Aß42/Aß40, p-tau181, NfL, and GFAP could discriminate FTD or PSP well from HC and was able to distinguish AD and non-AD (FTD/PSP). CONCLUSIONS: Our results confirmed the diagnostic performance of individual plasma biomarkers Aß42/Aß40, p-tau181, NfL, and GFAP in Chinese dementia patients and noted that a combination of these biomarkers may be more accurate in identifying FTD/PSP patients and distinguishing AD from non-AD dementia.


Asunto(s)
Péptidos beta-Amiloides , Biomarcadores , Proteínas tau , Humanos , Biomarcadores/sangre , Masculino , Femenino , Anciano , Estudios de Cohortes , Proteínas tau/sangre , Proteínas tau/líquido cefalorraquídeo , Péptidos beta-Amiloides/sangre , Persona de Mediana Edad , Demencia/sangre , Demencia/diagnóstico , Proteínas de Neurofilamentos/sangre , Demencia Frontotemporal/sangre , Demencia Frontotemporal/diagnóstico , Demencia Frontotemporal/líquido cefalorraquídeo , Enfermedad de Alzheimer/sangre , Enfermedad de Alzheimer/diagnóstico , Proteína Ácida Fibrilar de la Glía/sangre , Proteína Ácida Fibrilar de la Glía/líquido cefalorraquídeo
12.
Nat Commun ; 15(1): 2488, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38509071

RESUMEN

Homotypic membrane fusion of the endoplasmic reticulum (ER) is mediated by dynamin-like GTPase atlastin (ATL). This fundamental process relies on GTP-dependent domain rearrangements in the N-terminal region of ATL (ATLcyto), including the GTPase domain and three-helix bundle (3HB). However, its conformational dynamics during the GTPase cycle remain elusive. Here, we combine single-molecule FRET imaging and molecular dynamics simulations to address this conundrum. Different from the prevailing model, ATLcyto can form a loose crossover dimer upon GTP binding, which is tightened by GTP hydrolysis for membrane fusion. Furthermore, the α-helical motif between the 3HB and transmembrane domain, which is embedded in the surface of the lipid bilayer and self-associates in the crossover dimer, is required for ATL function. To recycle the proteins, Pi release, which disassembles the dimer, activates frequent relative movements between the GTPase domain and 3HB, and subsequent GDP dissociation alters the conformational preference of the ATLcyto monomer for entering the next reaction cycle. Finally, we found that two disease-causing mutations affect human ATL1 activity by destabilizing GTP binding-induced loose crossover dimer formation and the membrane-embedded helix, respectively. These results provide insights into ATL-mediated homotypic membrane fusion and the pathological mechanisms of related disease.


Asunto(s)
Proteínas de Drosophila , Humanos , Proteínas de Drosophila/metabolismo , Fusión de Membrana/fisiología , GTP Fosfohidrolasas/metabolismo , Hidrólisis , Guanosina Trifosfato/metabolismo
13.
Adv Sci (Weinh) ; 11(20): e2307129, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38493497

RESUMEN

Recently mapped transcriptomic landscapes reveal the extent of heterogeneity in cancer-associated fibroblasts (CAFs) beyond previously established single-gene markers. Functional analyses of individual CAF subsets within the tumor microenvironment are critical to develop more accurate CAF-targeting therapeutic strategies. However, there is a lack of robust preclinical models that reflect this heterogeneity in vitro. In this study, single-cell RNA sequencing datasets acquired from head and neck squamous cell carcinoma tissues to predict microenvironmental and cellular features governing individual CAF subsets are leveraged. Some of these features are then incorporated into a tunable hyaluronan-based hydrogel system to culture patient-derived CAFs. Control over hydrogel degradability and integrin adhesiveness enabled derivation of the predominant myofibroblastic and inflammatory CAF subsets, as shown through changes in cell morphology and transcriptomic profiles. Last, using these hydrogel-cultured CAFs, microtubule dynamics are identified, but not actomyosin contractility, as a key mediator of CAF plasticity. The recapitulation of CAF heterogeneity in vitro using defined hydrogels presents unique opportunities for advancing the understanding of CAF biology and evaluation of CAF-targeting therapeutics.


Asunto(s)
Fibroblastos Asociados al Cáncer , Hidrogeles , Microambiente Tumoral , Hidrogeles/química , Humanos , Microambiente Tumoral/genética , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/patología , Bioingeniería/métodos , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/patología , Neoplasias de Cabeza y Cuello/metabolismo
14.
Eur J Pharm Biopharm ; 197: 114221, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38378097

RESUMEN

The development of PFS requires a detailed understanding of the forces occurring during the drug administration process and patient's capability. This research describes an advanced mathematic injection force model that consisting hydrodynamic force and friction force. The hydrodynamic force follows the basic law of Hagen-Poiseuille but refines the modeling approach by delving into specific properties of drug viscosity (Newtonian and Shear-thinning) and syringe shape constant, while the friction force was accounted from empty barrel injection force. Additionally, we take actual temperature of injection into consideration, providing more accurate predication. The results show that the derivation of the needle dimension constant and the rheological behavior of the protein solutions are critical parameters. Also, the counter pressure generated by the tissue has been considered in actual administration to address the issue of the inaccuracies of current injection force evaluation preformed in air, especially when the viscosity of the injected drug solution is below 9.0 cP (injecting with 1 mL L PFS staked with 29G ½ inch needle). Human factor studies on patients' capability against medication viscosity filled the gap in design space of PFS drug product and available viscosity data in very early phase.


Asunto(s)
Fenómenos Mecánicos , Jeringas , Humanos , Viscosidad , Inyecciones , Preparaciones Farmacéuticas
15.
Sci Total Environ ; 919: 170937, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38360305

RESUMEN

Neonicotinoids are broad-spectrum and highly effective insecticides that work by affecting neural activity in insects. Neonicotinoids are systemic pesticides that are absorbed by plants, transported, and accumulated in plant tissues, including nectar and pollen. Currently, there is a lack of a comprehensive assessment of the level of neonicotinoid contamination and the associated health risks to non-targeted organisms in commercial honey and pollen produced in China. This study collected 160 batches of honey and 26 batches of pollen from different regions and plant sources in China, analyzed the residue patterns of neonicotinoid pesticides, and comprehensively evaluated the exposure risks to non-targeted organisms including bees (adults and larvae) and humans. Furthermore, this study addresses this imperative by establishing a high-throughput, rapid, and ultra-sensitive indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) based on broad-spectrum monoclonal antibodies to detect and quantify neonicotinoids, with validation conducted using the LC-MS/MS method. The findings indicated that 59.4 % of honey samples contained at least one of eight neonicotinoids, and the ic-ELISA rapid detection and calculation method could detect all the samples containing neonicotinoids. Additionally, the dietary risk assessment for humans and honeybees indicates that the consumption of a specific quantity of honey may not pose a health risk to human due to neonicotinoid intake. However, the Risk Quotient values for imidacloprid to adult bees and bee larvae, as well as clothianidin to bee larvae, were determined to be 2.22, 5.03, and 1.01, respectively-each exceeding 1. This highlights the elevated risk of acute toxicity posed by imidacloprid and clothianidin residues to honey bees. The study bears significant implications for the safety evaluation of non-targeted organisms in the natural food chain. Moreover, it provides scientific guidance for protecting the diversity and health of the ecosystem.


Asunto(s)
Ecosistema , Guanidinas , Insecticidas , Tiazoles , Humanos , Abejas , Animales , Cromatografía Liquida , Espectrometría de Masas en Tándem , Neonicotinoides/toxicidad , Neonicotinoides/análisis , Nitrocompuestos/análisis , Insecticidas/toxicidad , Insecticidas/análisis , Polen/química , Plantas , Medición de Riesgo
16.
Circ Res ; 134(2): 203-222, 2024 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-38166414

RESUMEN

BACKGROUND: Angiogenesis, which plays a critical role in embryonic development and tissue repair, is controlled by a set of angiogenic signaling pathways. As a TF (transcription factor) belonging to the basic helix-loop-helix family, HEY (hairy/enhancer of split related with YRPW motif)-1 (YRPW motif, abbreviation of 4 highly conserved amino acids in the motif) has been identified as a key player in developmental angiogenesis. However, the precise mechanisms underlying HEY1's actions in angiogenesis remain largely unknown. Our previous studies have suggested a potential role for posttranslational SUMOylation in the dynamic regulation of vascular development and organization. METHODS: Immunoprecipitation, mass spectrometry, and bioinformatics analysis were used to determine the biochemical characteristics of HEY1 SUMOylation. The promoter-binding capability of HEY1 was determined by chromatin immunoprecipitation, dual luciferase, and electrophoretic mobility shift assays. The dimerization pattern of HEY1 was determined by coimmunoprecipitation. The angiogenic capabilities of endothelial cells were assessed by CCK-8 (cell counting kit-8), 5-ethynyl-2-deoxyuridine staining, wound healing, transwell, and sprouting assays. Embryonic and postnatal vascular growth in mouse tissues, matrigel plug assay, cutaneous wound healing model, oxygen-induced retinopathy model, and tumor angiogenesis model were used to investigate the angiogenesis in vivo. RESULTS: We identified intrinsic endothelial HEY1 SUMOylation at conserved lysines by TRIM28 (tripartite motif containing 28) as the unique E3 ligase. Functionally, SUMOylation facilitated HEY1-mediated suppression of angiogenic RTK (receptor tyrosine kinase) signaling and angiogenesis in primary human endothelial cells and mice with endothelial cell-specific expression of wild-type HEY1 or a SUMOylation-deficient HEY1 mutant. Mechanistically, SUMOylation facilitates HEY1 homodimer formation, which in turn preserves HEY1's DNA-binding capability via recognition of E-box promoter elements. Therefore, SUMOylation maintains HEY1's function as a repressive TF controlling numerous angiogenic genes, including RTKs and Notch pathway components. Proangiogenic stimuli induce HEY1 deSUMOylation, leading to heterodimerization of HEY1 with HES (hairy and enhancer of split)-1, which results in ineffective DNA binding and loss of HEY1's angiogenesis-suppressive activity. CONCLUSIONS: Our findings demonstrate that reversible HEY1 SUMOylation is a molecular mechanism that coordinates endothelial angiogenic signaling and angiogenesis, both in physiological and pathological milieus, by fine-tuning the transcriptional activity of HEY1. Specifically, SUMOylation facilitates the formation of the HEY1 transcriptional complex and enhances its DNA-binding capability in endothelial cells.


Asunto(s)
Células Endoteliales , Sumoilación , Animales , Humanos , Ratones , Angiogénesis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , ADN/metabolismo , Células Endoteliales/metabolismo
17.
Sci China Life Sci ; 67(2): 230-257, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38212460

RESUMEN

The endoplasmic reticulum (ER), which is composed of a continuous network of tubules and sheets, forms the most widely distributed membrane system in eukaryotic cells. As a result, it engages a variety of organelles by establishing membrane contact sites (MCSs). These contacts regulate organelle positioning and remodeling, including fusion and fission, facilitate precise lipid exchange, and couple vital signaling events. Here, we systematically review recent advances and converging themes on ER-involved organellar contact. The molecular basis, cellular influence, and potential physiological functions for ER/nuclear envelope contacts with mitochondria, Golgi, endosomes, lysosomes, lipid droplets, autophagosomes, and plasma membrane are summarized.


Asunto(s)
Retículo Endoplásmico , Aparato de Golgi , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Membrana Celular/metabolismo , Mitocondrias/metabolismo , Lisosomas/metabolismo , Endosomas/metabolismo
18.
Int J Legal Med ; 138(3): 833-838, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38197924

RESUMEN

A 28-year-old woman collapsed in her home, and her companion rushed to call emergency services. Upon arrival, a physician performed CPR and endotracheal intubation, successfully restoring her voluntary heart rhythm. However, while en route to the hospital, ventricular fibrillation recurred. Despite the restoration of her voluntary rhythm through electrical defibrillation, she remained in a comatose state, which eventually led to multiple organ failures. Family members revealed that she had a 2-month history of taking diet pills. Histological examination revealed cardiomyocyte necrosis, contraction band necrosis, interstitial hemorrhage, collagen deposition, interstitial fiber proliferation, and myofiber remodeling. Analysis of blood and urine using GC-MS and LC-MS detected sibutramine and its primary metabolites, M1 and M2, which were consistent with the composition of the medication she was taking. The deceased was in good health with no underlying heart disease. The above information confirmed that the cause of her death was sibutramine.


Asunto(s)
Ciclobutanos , Cardiopatías , Humanos , Femenino , Adulto , Choque Cardiogénico/inducido químicamente , Ciclobutanos/efectos adversos
19.
Discov Oncol ; 15(1): 6, 2024 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-38184514

RESUMEN

BACKGROUND: Cyclin-dependent kinase-2 (CDK-2) is an important regulatory factor in the G1/S phase transition. CDK-2 targeting has been shown to suppress the viability of multiple cancers. However, the exploration and application of a CDK-2 inhibitor in the treatment of glioblastoma are sparse. METHODS: We synthesized P129 based on isolongifolanone, a natural product with anti-tumor activity. Network pharmacology analysis was conducted to predict the structural stability, affinity, and pharmacological and toxicological properties of P129. Binding analysis and CETSA verified the ability of P129 to target CDK-2. The effect of P129 on the biological behavior of glioma cells was analyzed by the cell counting kit-8, colony formation, flow cytometry, and other experiments. Western blotting was used to detect the expression changes of proteins involved in the cell cycle, cell apoptosis, and epithelial-mesenchymal transition. RESULTS: Bioinformatics analysis and CETSA showed that P129 exhibited good intestinal absorption and blood-brain barrier penetrability together with high stability and affinity with CDK-2, with no developmental toxicity. The viability, proliferation, and migration of human glioma cells were significantly inhibited by P129 in a dose- and time-dependent manner. Flow cytometry and western blotting analyses showed G0/G1 arrest and lower CDK-2 expression in cells treated with P129 than in the controls. The apoptotic ratio of glioma cells increased significantly with increasing concentrations of P129 combined with karyopyknosis and karyorrhexis. Apoptosis occurred via the mitochondrial pathway. CONCLUSION: The pyrazole ring-containing isolongifolanone derivate P129 exhibited promising anti-glioma activity by targeting CDK-2 and promoting apoptosis, indicating its potential importance as a new chemotherapeutic option for glioma.

20.
J Nanobiotechnology ; 22(1): 1, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38167129

RESUMEN

Successful oral insulin administration can considerably enhance the quality of life (QOL) of diabetes patients who must frequently take insulin injections. Oral insulin administration, on the other hand, is seriously hampered by gastrointestinal enzymes, wide pH range, mucus and mucosal layers, which limit insulin oral bioavailability to ≤ 2%. Therefore, a large number of technological solutions have been proposed to increase the oral bioavailability of insulin, in which polymeric nanoparticles (PNPs) are highly promising for oral insulin delivery. The recently published research articles chosen for this review are based on applications of PNPs with strong future potential in oral insulin delivery, and do not cover all related work. In this review, we will summarize the controlled release mechanisms of oral insulin delivery, latest oral insulin delivery applications of PNPs nanocarrier, challenges and prospect. This review will serve as a guide to the future investigators who wish to engineer and study PNPs as oral insulin delivery systems.


Asunto(s)
Insulina , Nanopartículas , Humanos , Sistemas de Liberación de Medicamentos/métodos , Calidad de Vida , Polímeros , Administración Oral , Portadores de Fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...