Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Int Immunopharmacol ; 134: 112224, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38723370

RESUMEN

Immunotherapy is becoming increasingly important, but the overall response rate is relatively low in the treatment of gastric cancer (GC). The application of tumor mutational burden (TMB) in predicting immunotherapy efficacy in GC patients is limited and controversial, emphasizing the importance of optimizing TMB-based patient selection. By combining TMB and major histocompatibility complex (MHC) related hub genes, we established a novel TM-Score. This score showed superior performance for immunotherapeutic selection (AUC = 0.808) compared to TMB, MSI status, and EBV status. Additionally, it predicted the prognosis of GC patients. Subsequently, a machine learning model adjusted by the TM-Score further improved the accuracy of survival prediction (AUC > 0.8). Meanwhile, we found that GC patients with low TM-Score had a higher mutation frequency, higher expression of HLA genes and immune checkpoint genes, and higher infiltration of CD8+ T cells, CD4+ helper T cells, and M1 macrophages. This suggests that TM-Score is significantly associated with tumor immunogenicity and tumor immune environment. Notably, based on the RNA-seq and scRNA-seq, it was found that AKAP5, a key component gene of TM-Score, is involved in anti-tumor immunity by promoting the infiltration of CD4+ T cells, NK cells, and myeloid cells. Additionally, siAKAP5 significantly reduced MHC-II mRNA expression in the GC cell line. In addition, our immunohistochemistry assays confirmed a positive correlation between AKAP5 and human leukocyte antigen (HLA) expression. Furthermore, AKAP5 levels were higher in patients with longer survival and those who responded to immunotherapy in GC, indicating its potential value in predicting prognosis and immunotherapy outcomes. In conclusion, TM-Score, as an optimization of TMB, is a more precise biomarker for predicting the immunotherapy efficacy of the GC population. Additionally, AKAP5 shows promise as a therapeutic target for GC.

2.
Cell Biol Int ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38741282

RESUMEN

Polycystic ovary syndrome (PCOS) is the primary cause of female infertility with a lack of universal therapeutic regimen. Although osthole exhibits numerous pharmacological activities in treating various diseases, its therapeutic effect on PCOS is undiscovered. The present study found that application of osthole improved the symptoms of PCOS mice through preventing ovarian granulosa cells (GCs) production of more estrogen and alleviating the liberation of pro-inflammatory cytokine interleukin (IL)-1ß, IL-6, and tumor necrosis factor alpha. Meanwhile, osthole enhanced ovarian antioxidant capacity and alleviated intracellular reactive oxygen species (ROS) accumulation with a concurrent attenuation for oxidative stress, while intervention of antioxidant enzymic activity and glutathione (GSH) synthesis neutralized the salvation of osthole on GCs secretory disorder and chronic inflammation. Further analysis revealed that osthole restored the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and forkhead box O 1 (Foxo1) whose repression antagonized the amelioration of osthole on the insufficiency of antioxidant capacity and accumulation of ROS. Moreover, Nrf2 served as an intermedium to mediate the regulation of osthole on Foxo1. Additionally, osthole restricted the phosphorylation of IκBα and nuclear factor kappa B (NF-κB) subunit p65 by DHEA and weakened the transcriptional activity of NF-κB, but this effectiveness was abrogated by the obstruction of Nrf2 and Foxo1, whereas adjunction of GSH renewed the redemptive effect of osthole on NF-κB whose activation caused an invalidation of osthole in rescuing the aberration of GCs secretory function and inflammation response. Collectively, osthole might relieve the symptoms of PCOS mice via Nrf2-Foxo1-GSH-NF-κB pathway.

3.
Zhongguo Gu Shang ; 37(5): 438-44, 2024 May 25.
Artículo en Chino | MEDLINE | ID: mdl-38778525

RESUMEN

OBJECTIVE: To compare the clinical efficacy of intraoperative slide rail CT combined with C-arm X-ray assistance and just C-arm for percutaneous screw in the treatment of pelvic posterior ring injury. METHODS: A retrospective analysis was performed on the patient data of 76 patients with posterior pelvic ring injury admitted to the Department of Orthopedic Trauma from December 2018 to February 2022. Among them, 39 patients in the CT group were treated with C-arm combined with slide rail CT-assisted inline fixation including 23 males and 16 females with an average age of (44.98±7.33) years old;and the other 37 patients in the C-arm group were treated with intraline fixation treatment under only C-arm fluoroscopy including 24 males and 13 females with an average age of (44.37±10.82) years old. Among them, 42 patients with anterior ring fractures were treated with percutaneous inferior iliac spines with internal fixation (INFIX) or suprapubic support screws to fix the anterior pelvic ring. Postoperative follow-up time, operation time, complications of the two groups were compared. Results of Matta reduction criteria, Majed efficacy evaluation, the CT grading and the rate of secondary surgical revision were compared. RESULTS: The nailing time of (32.63±7.33) min in CT group was shorter than that of (52.95±10.64) min in C-arm group (t=-9.739, P<0.05). The follow-up time between CT group (11.97±1.86) months and C-arm group (12.03±1.71) months were not statistically significant(P>0.05). The postoperative complication rates between two groups were not statistically significant (χ2=0.159, P>0.05). Results of Matta reduction criteria (Z=2.79, P<0.05), Majeed efficacy evaluation(Z=2.79, P<0.05), CT grading (Z=2.83, P<0.05) in CT group were better than those in C-arm group(P<0.05); the secondary surgical revision rate in the CT group was significantly lower than that in the C-arm group (χ2=5.641, P<0.05). CONCLUSION: Compared with traditional C-arm fluoroscopy, intraoperative slide rail CT combined with C-arm assisted percutaneous sacroiliac joint screw placement surgery has the characteristics of short operation time, high accuracy and safety, and significant decrease in postoperative secondary revision rate, and is one of the effective methods for re-establishing the stability of the posterior ring of pelvic fracture.


Asunto(s)
Tornillos Óseos , Fijación Interna de Fracturas , Huesos Pélvicos , Articulación Sacroiliaca , Tomografía Computarizada por Rayos X , Humanos , Masculino , Femenino , Adulto , Estudios Retrospectivos , Persona de Mediana Edad , Huesos Pélvicos/lesiones , Huesos Pélvicos/cirugía , Huesos Pélvicos/diagnóstico por imagen , Articulación Sacroiliaca/cirugía , Articulación Sacroiliaca/lesiones , Fijación Interna de Fracturas/métodos , Fracturas Óseas/cirugía
4.
Biomol Biomed ; 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38761409

RESUMEN

Hashimoto's thyroiditis (HT) is a prevalent autoimmune disease. We investigated the relationship of peripheral blood long noncoding RNA-plasmacytoma variant translocation 1 (lncRNA-PVT1) and microRNA (miR)-146a levels with Th17/Treg-related cytokines in HT patients and their clinical significance. Correlations of lncRNA-PVT1 and miR-146a with Th17/Treg-related cytokines were analyzed, and its clinical value in diagnosing HT was assessed. Results showed reduced lncRNA-PVT1 and interleukin (IL)-10 levels and increased miR-146a and IL-17 levels in HT patients. lncRNA-PVT1 negatively interrelated with miR-146a, IL-17, IL-23 and IL-6, and positively interrelated with IL-10; miR-146a positively correlated with IL-17, IL-23 and IL-6, but negatively correlated with IL-10 in HT patients. The area under the curve (AUC) of lncRNA-PVT1 and miR-146a levels for diagnosing HT were 0.822 and 0.844, respectively (sensitivity 88.73% and 86.62%, specificity 67.02% and 69.15%, cut-off values 0.76 and 2.73), with their combined detections yielding a higher AUC. Patients with poorly expressed lncRNA-PVT1 and highly expressed miR-146a had elevated HT incidence. lncRNA-PVT1 and miR-146a levels were also found to be an independent influencing factor for HT occurrence. Our findings suggest that HT patients have low peripheral blood lncRNA-PVT1 expression and high miR-146a expression. lncRNA-PVT1 and miR-146a level changes were correlated with Th17/Treg cytokine imbalance and could be a potential diagnostic tool and independent influencing factor for HT.

5.
J Control Release ; 369: 642-657, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38575072

RESUMEN

Glioma is recognized as the most infiltrative and lethal form of central nervous system tumors and is known for its limited response to standard therapeutic interventions, high recurrence rate, and unfavorable prognosis. Recent progress in gene and immunotherapy presents a renewed sense of optimism in the treatment of glioblastoma. However, the barriers to overcome include the blood-brain barrier (BBB) and the blood-brain tumor barrier (BBTB), as well as the suppressive immune microenvironment. Overcoming these barriers remains a significant challenge. Here, we developed a lipid nanoparticle platform incorporating a dual-functional peptide (cholesterol-DP7-ACP-T7-modified DOTAP or DAT-LNP) capable of targeting glioma across the BBB and BBTB for brain tumor immunotherapy. This system was designed to achieve two key functions. First, the system could effectively penetrate the BBB during accumulation within brain tissue following intravenous administration. Second, this system enhances the maturation of dendritic cells, the polarization of M1 macrophages, and the activation of cytotoxic CD8+ T cells. This multifaceted approach effectively mitigates the immunosuppressive tumor microenvironment of glioma and promotes robust antitumor immune responses. Overall, the intravenous administration of the delivery system designed in this study demonstrates significant therapeutic potential for glioma and holds promising applications in the field of cancer immunotherapy.


Asunto(s)
Barrera Hematoencefálica , Neoplasias Encefálicas , Glioma , Inmunoterapia , Nanopartículas , ARN Interferente Pequeño , Barrera Hematoencefálica/metabolismo , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/inmunología , Animales , Glioma/terapia , Glioma/inmunología , Inmunoterapia/métodos , ARN Interferente Pequeño/administración & dosificación , Nanopartículas/administración & dosificación , Nanopartículas/química , Línea Celular Tumoral , Humanos , Ratones Endogámicos C57BL , Microambiente Tumoral , Ratones , Colesterol/química , Colesterol/administración & dosificación , Lípidos/química , Compuestos de Amonio Cuaternario , Ácidos Grasos Monoinsaturados
6.
Cancer Biol Ther ; 25(1): 2323768, 2024 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-38465861

RESUMEN

Double minutes (DMs), extrachromosomal gene fragments found within certain tumors, have been noted to carry onco- and drug resistance genes contributing to tumor pathogenesis and progression. After screening for SUMO-related molecule expression within various tumor sample and cell line databases, we found that SUMO-conjugating enzyme UBC9 has been associated with genome instability and tumor cell DM counts, which was confirmed both in vitro and in vivo. Karyotyping determined DM counts post-UBC9 knockdown or SUMOylation inhibitor 2-D08, while RT-qPCR and Western blot were used to measure DM-carried gene expression in vitro. In vivo, fluorescence in situ hybridization (FISH) identified micronucleus (MN) expulsion. Western blot and immunofluorescence staining were then used to determine DNA damage extent, and a reporter plasmid system was constructed to detect changes in homologous recombination (HR) and non-homologous end joining (NHEJ) pathways. Our research has shown that UBC9 inhibition is able to attenuate DM formation and lower DM-carried gene expression, in turn reducing tumor growth and malignant phenotype, via MN efflux of DMs and lowering NHEJ activity to increase DNA damage. These findings thus reveal a relationship between heightened UBC9 activity, increased DM counts, and tumor progression, providing a potential approach for targeted therapies, via UBC9 inhibition.


Asunto(s)
Aberraciones Cromosómicas , Daño del ADN , Humanos , Núcleo Celular , Hibridación Fluorescente in Situ
7.
Langmuir ; 40(11): 6026-6034, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38451161

RESUMEN

The photocatalytic transformation of carbon dioxide (CO2) into valuable chemicals is a challenging process that requires effective and selective catalysts. However, most polymer-based photocatalysts with electron donor-acceptor (D-A) structures are synthesized with a fixed D-A ratio by using expensive monomers. Herein, we report a simple strategy to prepare polyarene oxides (PAOs) with quinone structural units via oxidation treatment of polyarene (PA). The resultant PAOs show tunable D-A structures and electronic band positions depending on the degree of oxidation, which can catalyze the photoreduction of CO2 with water under visible light irradiation, generating CO as the sole carbonaceous product without H2 generation. Especially, the PAO with an oxygen content of 17.6% afforded the highest CO production rate of 161.9 µmol g-1 h-1. It is verified that the redox transformation between quinone and phenolic hydroxyl in PAOs achieves CO2 photoreduction coupled with water oxidation. This study provides a facile way to access conjugated polymers with a tunable D-A structure and demonstrates that the resultant PAOs are promising photocatalysts for CO2 reduction.

8.
J Clin Gastroenterol ; 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38457410

RESUMEN

BACKGROUND: Gastric structure recognition systems have become increasingly necessary for the accurate diagnosis of gastric lesions in capsule endoscopy. Deep learning, especially using transformer models, has shown great potential in the recognition of gastrointestinal (GI) images according to self-attention. This study aims to establish an identification model of capsule endoscopy gastric structures to improve the clinical applicability of deep learning to endoscopic image recognition. METHODS: A total of 3343 wireless capsule endoscopy videos collected at Nanfang Hospital between 2011 and 2021 were used for unsupervised pretraining, while 2433 were for training and 118 were for validation. Fifteen upper GI structures were selected for quantifying the examination quality. We also conducted a comparison of the classification performance between the artificial intelligence model and endoscopists by the accuracy, sensitivity, specificity, and positive and negative predictive values. RESULTS: The transformer-based AI model reached a relatively high level of diagnostic accuracy in gastric structure recognition. Regarding the performance of identifying 15 upper GI structures, the AI model achieved a macroaverage accuracy of 99.6% (95% CI: 99.5-99.7), a macroaverage sensitivity of 96.4% (95% CI: 95.3-97.5), and a macroaverage specificity of 99.8% (95% CI: 99.7-99.9) and achieved a high level of interobserver agreement with endoscopists. CONCLUSIONS: The transformer-based AI model can accurately evaluate the gastric structure information of capsule endoscopy with the same performance as that of endoscopists, which will provide tremendous help for doctors in making a diagnosis from a large number of images and improve the efficiency of examination.

9.
Adv Sci (Weinh) ; 11(14): e2308345, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38311577

RESUMEN

Peptides with suitable aggregation behavior and electrical properties are potential siRNA delivery vectors. However, identifying suitable peptides with ideal delivery and safety features is difficult owing to the variations in amino acid sequences. Here, a holistic program based on computer modeling and single-cell RNA sequencing (scRNA-seq) is used to identify ideal siRNA delivery peptides. Stage one of this program consists of a sequential screening process for candidates with ideal assembly and delivery ability; stage two is a cell subtype-level analysis program that screens for high in vivo tissue safety. The leading candidate peptide selected from a library containing 12 amino acids showed strong lung-targeted siRNA delivery capacity after hydrophobic modification. Systemic administration of these compounds caused the least damage to liver and lung tissues and has little impact on macrophage and neutrophil numbers. By loading STAT3 siRNA, strong anticancer effects are achieved in multiple models, including patient-derived xenografts (PDX). This screening procedure may facilitate the development of peptide-based RNA interference (RNAi) therapeutics.


Asunto(s)
Pulmón , Péptidos , Humanos , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Péptidos/metabolismo , Interferencia de ARN , Pulmón/metabolismo , Computadores
10.
J Agric Food Chem ; 72(6): 2963-2976, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38305024

RESUMEN

Polycystic ovarian syndrome (PCOS) is the major cause of infertility in reproductive women, but no universal drug is feasible. Although puerarin clinically treats cerebrovascular and cardiovascular diseases, its curative effect on PCOS remains elusive. The present study discovered that administration of puerarin restored estrous cycle of PCOS mice and diminished the number of cystic follicles with the concomitant recovery for circulating testosterone, LH and FSH levels, and LH/FSH ratio, indicating the therapeutic role of puerarin in PCOS. KEGG analysis of differential genes between PCOS and control revealed the enrichment in MAPK and calcium signaling pathway. Application of puerarin restricted the phosphorylation of ERK1/2 and JNK, whose activation neutralized the improvement of puerarin on the secretory function and apoptosis of ovarian granulosa cells (GCs). Meanwhile, puerarin alleviated the accumulation of cytosolic Ca2+ through restricting the opening of Ryr and Itpr channels, but this effectiveness was counteracted by the activatory ERK1/2 and JNK. Attenuation of cytosolic Ca2+ counteracted the antagonistic effects of ERK1/2 and JNK activation on puerarin's role in rescuing the calcineurin and Nfatc. Further analysis manifested that Mcu had been authenticated as a direct downstream target of Nfatc to mediate the amelioration of puerarin on mitochondrial Ca2+ uptake. Moreover, puerarin prevented the disorder of ATP content, mitochondrial membrane potential, and mitochondrial permeability transition pore opening through maintaining mitochondrial Ca2+ homeostasis. Collectively, puerarin might ameliorate the symptoms of PCOS mice through preventing mitochondrial dysfunction that is dependent on the maintenance of intracellular Ca2+ homeostasis after inactivation of ERK1/2 and JNK.


Asunto(s)
Isoflavonas , Enfermedades Mitocondriales , Síndrome del Ovario Poliquístico , Femenino , Humanos , Ratones , Animales , Síndrome del Ovario Poliquístico/tratamiento farmacológico , Síndrome del Ovario Poliquístico/genética , Síndrome del Ovario Poliquístico/metabolismo , Calcio/metabolismo , Células de la Granulosa , Hormona Folículo Estimulante/metabolismo , Hormona Folículo Estimulante/farmacología , Hormona Folículo Estimulante/uso terapéutico , Enfermedades Mitocondriales/metabolismo
11.
PLoS One ; 18(10): e0292673, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37883426

RESUMEN

BACKGROUND: Thoracic aortic aneurysm (TAA) occurs due to pathological aortal dilation, and both individuals with normal tricuspid aortic valves (TAV) or abnormal bicuspid aortic valves (BAV), the latter being a congenital condition, are at risk. However, some differences are present between TAA/BAV and TAA/TAV with respect to their pathophysiological processes and molecular mechanisms, but their exact nature is still mostly unknown. Therefore, it is necessary to elucidate TAA developmental differences among BAV vs. TAV patients. METHODS: Publically-available gene expression datasets, aortic tissue derived from TAA/BAV and TAA/TAV individuals, were analyzed by weighted gene co-expression network analysis (WGCNA) to identify gene modules associated with those conditions. Gene Ontology (GO) enrichment analysis was performed on those modules to identify the enriched genes within those modules, which were verified by Gene Set Variation Analysis (GSVA) on a dataset derived from aortic smooth muscle cell gene expression between TAA/TAV and TAV/BAV patients. Immune cell infiltration patterns were then analyzed by CIBERSORT, and a protein-protein interaction (PPI) network was constructed based on WGCNA and enrichment analysis results to identify hub genes, followed by validation via stepwise regression analysis. Three signatures most strongly associated with TAA/TAV were confirmed by receiver operating characteristic (ROC) and decision curve analyses (DCA) between prior-established training and testing gene sets. RESULTS: WGCNA delineated 2 gene modules being associated with TAA/TAV vs. TAA/BAV; both were enriched for immune-associated genes, such as those relating to immune responses, etc., under enrichment analysis. TAA/TAV and TAA/BAV tissues also had differing infiltrating immune cell proportions, particularly with respect to dendritic, mast and CD4 memory T cells. Identified three signatures, CD86, integrin beta 2 (ITGB2) and alpha M (ITGAM), as yielding the strongest associations with TAA/TAV onset, which was verified by areas under the curve (AUC) at levels approximating 0.8 or above under ROC analysis, indicating their predictive value for TAA/TAV onset. However, we did not examine possible confounding variables, so there are many alternative explanations for this association. CONCLUSIONS: TAA/TAV pathogenesis was found to be more associated with immune-related gene expression compared to TAA/BAV, and the identification of three strongly-associated genes could facilitate their usage as future biomarkers for diagnosing the likelihood of TAA/TAV onset vs. TAA/BAV, as well as for developing future treatments.


Asunto(s)
Aneurisma de la Aorta Torácica , Enfermedad de la Válvula Aórtica Bicúspide , Enfermedades de las Válvulas Cardíacas , Humanos , Válvula Tricúspide , Enfermedades de las Válvulas Cardíacas/complicaciones , Aneurisma de la Aorta Torácica/genética , Aneurisma de la Aorta Torácica/complicaciones , Válvula Aórtica/patología
12.
Adv Sci (Weinh) ; 10(31): e2207697, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37740439

RESUMEN

In situ vaccination is a desirable strategy for cancer immunotherapy due to its convenience and capacity to target tumor antigens. Here, an in situ nanovaccine based on a cationic peptide with cholesterol-modified, DP7-C, for cancer immunotherapy is rationally designed, and developed a cancer nanovaccine that is easy to preparate. The nanovaccine includes cocktail small interfering RNAs (siRNAs) and immunologic adjuvant CpG ODNs, has synergistic effect in the cancer treatment. This nanovaccine can induce tumor cell death, promote antigen presentation and relieve immune suppression in the tumor microenvironment (TME). Moreover, this nanovaccine is administered to CT26 (hot) and B16F10 (cold) tumor model mice, in which it targeted the primary tumors and induced systemic antitumor immunity to inhibit metastasis. It is validated that the nanovaccine can convert cold tumors into hot tumors. Furthermore, the nanovaccine increased the immune response to anti-PD-1 therapy by modulating the TME in both CT26- and B16F10-tumor-bearing mice. The siRNA cocktail/CpG ODN/self-assembling peptide nanovaccine is a simple and universal tool that can effectively generate specific tumor cell antigens and can be combined with immuno-oncology agents to enhance antitumor immune activity. The versatile methodology provides an alternative approach for developing cancer nanovaccines.


Asunto(s)
Inmunoterapia , Neoplasias , Ratones , Animales , Inmunoterapia/métodos , Neoplasias/terapia , Antígenos de Neoplasias , Adyuvantes Inmunológicos , Péptidos , Microambiente Tumoral
13.
Front Neurosci ; 17: 1247227, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37732308

RESUMEN

Introduction: Lobular giant motion detector (LGMD) neurons, renowned for their distinctive response to looming stimuli, inspire the development of visual neural network models for collision prediction. However, the existing LGMD-based models could not yet incorporate the invaluable feature of depth distance and still suffer from the following two primary drawbacks. Firstly, they struggle to effectively distinguish the three fundamental motion patterns of approaching, receding, and translating, in contrast to the natural abilities of LGMD neurons. Secondly, due to their reliance on a general determination process employing an activation function and fixed threshold for output, these models exhibit dramatic fluctuations in prediction effectiveness across different scenarios. Methods: To address these issues, we propose a novel LGMD-based model with a binocular structure (Bi-LGMD). The depth distance of the moving object is extracted by calculating the binocular disparity facilitating a clear differentiation of the motion patterns, after obtaining the moving object's contour through the basic components of the LGMD network. In addition, we introduce a self-adaptive warning depth-distance, enhancing the model's robustness in various motion scenarios. Results: The effectiveness of the proposed model is verified using computer-simulated and real-world videos. Discussion: Furthermore, the experimental results demonstrate that the proposed model is robust to contrast and noise.

14.
Adv Healthc Mater ; 12(30): e2301224, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37657086

RESUMEN

Severe burns threaten patient lives due to pain, inflammation, bacterial infection, and scarring. Most burn dressings that are commonly used perform a single function and are not well suited for the management of deep burns. Therefore, a multifunctional antimicrobial peptide- and stem cell-loaded macroporous hydrogel that can fight bacterial infection and regulate wound healing progression by temporally regulating cytokine production by internal stem cells is developed. The macroporous skeletal hydrogel is manufactured via the cryogenic gelation of hyaluronic acid (cryogel). Based on the oxidative polymerization reaction of dopamine, the antimicrobial peptide DP7 is immobilized on the surface of the cryogel (DA7CG). Placental mesenchymal stem cells (PMSCs) are then packaged inside the macroporous hydrogel (DA7CG@C). According to the results of in vitro and in vivo experiments, during the inflammatory phase, DP7 inhibits infection and modulates inflammation; during the proliferative phase, DA7CG@C accelerates the regeneration of skin, blood vessels, and hair follicles via internal stem cells; and during the remodeling phase, DA7CG@C contributes to extracellular matrix remodeling due to the ability of DP7 to regulate the paracrine secretion of PMSCs, synergistically promoting scar-free healing. DA7CG@C can participate in all phases of wound healing; therefore, it is a promising dressing for burn treatment.


Asunto(s)
Infecciones Bacterianas , Quemaduras , Infección de Heridas , Embarazo , Femenino , Humanos , Criogeles , Placenta , Cicatrización de Heridas/fisiología , Quemaduras/tratamiento farmacológico , Vendajes , Cicatriz , Inflamación , Péptidos Antimicrobianos
15.
Opt Express ; 31(17): 28541-28548, 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37710905

RESUMEN

Developing durable antireflection (AR) coatings with sapphire-like hardness and high transparency faces a significant challenge. Conventionally, achieving these requirements involves depositing thick, high-hardness nitride films. Here, we proposed an alternative approach that combines nanolaminate materials with optical design, overcoming the brittleness of thick nitride films. We selected Ta2O5/Si3N4 nanolaminates with similar refractive indices, improving tribological and optical performance through a unique optomechanical method. Our proposed AR coating exhibited a low reflectance of 0.8% (420-780 nm) and remarkable hardness of 22.8 GPa, and demonstrated the ability to withstand abrasion from steel wool up to 3,000 times on a glass substrate. This work successfully achieves a balance between hardness and toughness, opening new avenues for the development of highly durable coatings.

16.
Front Oncol ; 13: 1218056, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37601681

RESUMEN

Objectives: This study aimed to identify colorectal cancer (CRC)-associated phylogenetic and functional bacterial features by a large-scale metagenomic sequencing and develop a binomial classifier to accurately distinguish between CRC patients and healthy individuals. Methods: We conducted shotgun metagenomic analyses of fecal samples from a ZhongShanMed discovery cohort of 121 CRC and 52 controls and SouthernMed validation cohort of 67 CRC and 44 controls. Taxonomic profiling and quantification were performed by direct sequence alignment against genome taxonomy database (GTDB). High-quality reads were also aligned to IGC datasets to obtain functional profiles defined by Kyoto Encyclopedia of Genes and Genomes (KEGG). A least absolute shrinkage and selection operator (LASSO) classifier was constructed to quantify risk scores of probability of disease and to discriminate CRC from normal for discovery, validation, Fudan, GloriousMed, and HongKong cohorts. Results: A diverse spectrum of bacterial and fungi species were found to be either enriched (368) or reduced (113) in CRC patients (q<0.05). Similarly, metabolic functions associated with biosynthesis and metabolism of amino acids and fatty acids were significantly altered (q<0.05). The LASSO regression analysis of significant changes in the abundance of microbial species in CRC achieved areas under the receiver operating characteristic curve (AUROCs) of 0.94 and 0.91 in the ZhongShanMed and SouthernMed cohorts, respectively. A further analysis of Fudan, GloriousMed, and HK cohorts using the same classification model also demonstrated AUROC of 0.80, 0.78, and 0.91, respectively. Moreover, major CRC-associated bacterial biomarkers identified in this study were found to be coherently enriched or depleted across 10 metagenomic sequencing studies of gut microbiota. Conclusion: A coherent signature of CRC-associated bacterial biomarkers modeled on LASSO binomial classifier maybe used accurately for early detection of CRC.

17.
J Immunol ; 211(6): 932-943, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37556117

RESUMEN

Neoantigen vaccines have achieved good therapeutic effects in animal experiments and early clinical trials on certain malignant tumors. However, their overall objective effectiveness in clinical trials still needs to be improved. Low-efficiency dendritic cell (DC) migration (<5%) to lymph nodes is one of the factors that limits vaccine effectiveness. For neoantigen vaccines, improving the homing efficiency of DCs is expected to further improve the immunotherapeutic effect. In this study, we used α-d-glucose-1,6-biphosphate (α-d-Glu), a metabolite that successfully enhanced C57BL/6J mouse bone marrow-derived DC homing induced by neoantigen peptide, mRNA, and DC vaccines during the administration process and improved the antitumor effects in the mouse C57BL/6J model with a neoantigen vaccine. We clarified that α-d-Glu activated MAPK8IP1 by inhibiting the expression of microRNA-10a-5p, thereby activating the MAPK signaling pathway to promote DC homing. Excitingly, the efficiency of α-d-Glu in promoting DC migration is not weaker than that of PGE2, which is the gold standard used to promote DC migration in clinical trials of DC vaccines. Thus, this study lays the foundation for further enhancing the objective clinical response rate of neoantigen vaccines and overcoming the limitation of an insufficient clinical response rate for neoantigen vaccines caused by low DC homing efficiency.


Asunto(s)
Vacunas contra el Cáncer , Neoplasias , Animales , Ratones , Ratones Endogámicos C57BL , Antígenos de Neoplasias/metabolismo , Células Dendríticas
18.
Biol Reprod ; 109(3): 299-308, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37334936

RESUMEN

Melatonin is important for oocyte maturation, fertilization, early embryonic development, and embryo implantation, but less knowledge is available regarding its role in decidualization. The present study found that melatonin did not alter the proliferation of human endometrial stromal cells (ESCs), as well as cell cycle progress, but suppressed stromal differentiation after binding to the melatonin receptor 1B (MTNR1B), which was visualized in decidualizing ESCs. Further analysis evidenced that application of melatonin resulted in the diminishment for NOTCH1 and RBPJ expression. Supplementation of recombinant NOTCH1 protein (rNOTCH1) counteracted the impairment of stromal differentiation conferred by melatonin, while the addition of the NOTCH signaling pathway inhibitor DAPT aggravated the differentiation progress. Meanwhile, melatonin might restrain the expression and transcriptional activity of nuclear factor erythroid 2-related factor 2 (NRF2), whose blockage accelerated the fault of stromal differentiation under the context of melatonin, but this restraint was subsequently ameliorated by rNOTCH1. Forkhead box O 1 (FOXO1) was identified as a downstream target of melatonin in decidualization. Repression of NRF2 antagonized the retrieval of rNOTCH1 due to aberrant FOXO1 expression elicited by melatonin. Moreover, melatonin brought about the occurrence of oxidative stress accompanied by an obvious accumulation of intracellular reactive oxygen species and a significant reduction in glutathione (GSH) content, as well as enzymatic activities of glutathione peroxidase and glutathione reductase, whereas supplementation of rNOTCH1 improved the above-mentioned effects. Nevertheless, this improvement was disrupted by the blockage of NRF2 and FOXO1. Furthermore, addition of GSH rescued the defect of stromal differentiation by melatonin. Collectively, melatonin might impair endometrial decidualization by restraining the differentiation of ESCs dependent on NOTCH1-NRF2-FOXO1-GSH pathway after binding to the MTNR1B receptor.


Asunto(s)
Decidua , Melatonina , Femenino , Humanos , Embarazo , Decidua/metabolismo , Endometrio/metabolismo , Proteína Forkhead Box O1/metabolismo , Glutatión/metabolismo , Melatonina/farmacología , Melatonina/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Receptor Notch1/genética , Receptor Notch1/metabolismo , Células del Estroma/metabolismo
19.
Front Neurorobot ; 17: 1149675, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37152416

RESUMEN

In this paper, we propose a directionally selective fractional-order lobular giant motion detector (LGMD) visual neural network. Unlike most collision-sensing network models based on LGMDs, our model can not only sense collision threats but also obtain the motion direction of the collision object. Firstly, this paper simulates the membrane potential response of neurons using the fractional-order differential operator to generate reliable collision response spikes. Then, a new correlation mechanism is proposed to obtain the motion direction of objects. Specifically, this paper performs correlation operation on the signals extracted from two pixels, utilizing the temporal delay of the signals to obtain their position relationship. In this way, the response characteristics of direction-selective neurons can be characterized. Finally, ON/OFF visual channels are introduced to encode increases and decreases in brightness, respectively, thereby modeling the bipolar response of special neurons. Extensive experimental results show that the proposed visual neural system conforms to the response characteristics of biological LGMD and direction-selective neurons, and that the performance of the system is stable and reliable.

20.
Adv Sci (Weinh) ; 10(15): e2300116, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36950751

RESUMEN

The clinical efficacy of personalized cancer vaccines still needs to be improved due to their insufficient immune effect. The development of innovative adjuvants and lymph node-targeted delivery systems is the key to improving the clinical efficacy of personalized vaccines. However, there is still a lack of an adjuvant delivery system that is simple in preparation and capable of mass production and integrates adjuvant and lymph node targeted delivery functions. Here, this work reports that a simple dendrimer polypeptide (KK2DP7) nanoparticle enhances the immune efficacy of an OVA/neoantigen-based vaccine. Due to its multiple functions as a delivery vehicle, immune adjuvant, and facilitator of dendritic cell migration, KK2DP7 efficiently increases the efficiency of antigen uptake and cross-presentation by antigen-presenting cells (APCs) and delivers antigens to lymph nodes via APCs. Strikingly, the antitumor effect of KK2DP7/OVA is superior to that of commonly used adjuvants such as poly(I:C), CpG, and aluminum adjuvant combined with OVA. Furthermore, KK2DP7/OVA combined with anti-PD-1 antibody is able to prevent tumor recurrence in a postoperative recurrent tumor model. Thus, KK2DP7-based cancer vaccines alone or in combination with immune checkpoint blockade therapies to treat tumors or postoperative tumor recurrence are a powerful strategy to enhance antitumor immunity.


Asunto(s)
Vacunas contra el Cáncer , Dendrímeros , Humanos , Recurrencia Local de Neoplasia , Adyuvantes Inmunológicos , Inmunoterapia , Antígenos , Péptidos , Ganglios Linfáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...