Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 244
Filtrar
1.
Plant Cell Environ ; 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38995178

RESUMEN

Phloretin has different glycosylation modes in plants. Phlorizin (phloretin 2'-O-glucoside) is one of the glycosylation products of phloretin, and accumulates abundantly in apple plants. However, it is still unclear whether phlorizin is more beneficial for apple plants compared with other glycosylation products of phloretin. We created transgenic apple plants with different glycosylation modes of phloretin. In transgenic plants, the accumulation of phlorizin was partly replaced by that of trilobatin (phloretin 4'-O-glucoside) or phloretin 3',5'-di-C-glycoside. Compared with wild type, transgenic plants with less phlorizin showed dwarf phenotype, larger stomatal size, higher stomatal density and less tolerance to drought stress. Transcriptome and phytohormones assay indicate that phlorizin might regulate stomatal development and behaviour via controlling auxin and abscisic acid signalling pathways as well as carbonic anhydrase expressions. Transgenic apple plants with less phlorizin also showed less resistance to spider mites. Apple plants may hydrolyse phlorizin to produce phloretin, but cannot hydrolyse trilobatin or phloretin 3',5'-di-C-glycoside. Compared with its glycosylation products, phloretin is more toxic to spider mites. These results suggest that the glycosylation of phloretin to produce phlorizin is the optimal glycosylation mode in apple plants, and plays an important role in apple resistance to stresses.

2.
Int Urol Nephrol ; 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38995525

RESUMEN

BACKGROUND: The progression of atherosclerosis in small and medium-sized vessels has been associated with Type 2 diabetes (T2D). However, the influence of T2D on postoperative vascular remodeling and arteriovenous fistula (AVF) maturation is inconclusive. Besides, hemodynamic changes of postoperative vessel are also associated with AVF maturation. This study is intended to investigate the link between T2D and the occurrence of AVF non-maturation, as well as to delve into the impact of postoperative vascular hemodynamic parameters in this process. METHODS: A total of 477 hemodialysis patients, with or without type 2 diabetes, underwent AVF creation at Beijing Haidian Hospital (Haidian Section of Pecking University Third Hospital) from August 2018 to March 2022 were collected, and were followed for 1-5 years. Logistic regression was applied to analyze the association of T2D, postoperative vascular hemodynamic parameters with the risk of AVF non-maturation. To verify the stability of the results, the sensitivity analyses were performed using propensity scores to match patients. We further investigated the regulatory role of the postoperative vascular hemodynamics. RESULTS: There were 173 patients with T2D and 304 patients without T2D in this study. The maturation rate in T2D and non-T2D group was 47.977% and 63.816%, respectively. The findings of logistic regression analysis suggested that T2D significantly increased the risk of AVF immaturity [OR 1.716 (1.019-2.890), P = 0.042]. Besides, T2D was associated with the restriction of postoperative vascular hemodynamic parameters changes, including with decreased diameter of forearm cephalic radial artery and dilation rate of radial artery. The result of logistic regression analysis indicated that cephalic vein diameter at 1-month [0.402 (0.237-0.681), P = 0.001] and cephalic vein diameter at 2-month [0.501 (0.355-0.708), P < 0.001] were independently correlated with AVF maturation. Besides, the results of sensitivity analysis were consistent with that of logistic regression analysis. Moreover, the mediating effects of cephalic vein diameter were significant. CONCLUSION: Our findings discovered that T2D significantly increased the risk of arteriovenous fistula non-maturation, which was mainly mediated by the changes of cephalic vein diameter.

3.
ACS Nano ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39054941

RESUMEN

Prolonging the residence time of drugs in the lumen and propelling them into deep lesions are highly desired for intraluminal drug administration. However, rapid drug efflux caused by dynamic intraluminal contents limits sustained drug concentrations, causing poor pharmaceutical absorption and reduced efficacy. Here, we combined theory and experiments to demonstrate a distinctive drug delivery strategy using clinically available medical ultrasound technology. Through ultrasound-induced in vivo dopamine polymerization and rapidly propelling high-energy shock waves, the resultant drug formulations can tolerate a variable intraluminal environment and penetrate deep mucosa. As a result, this ultrasound-mediated in situ adhesion and self-propelled technique signal a secure and universal strategy for the rapid coating of functional adhesion layers in vivo. Theoretically, this strategy is applicable to any hollow tissue, where ultrasound is accessible.

4.
Front Microbiol ; 15: 1424868, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38962128

RESUMEN

As a common foodborne pathogen, infection with L. monocytogenes poses a significant threat to human life and health. The objective of this study was to employ comparative genomics to unveil the biodiversity and evolutionary characteristics of L. monocytogenes strains from different regions, screening for potential target genes and mining novel target genes, thus providing significant reference value for the specific molecular detection and therapeutic targets of L. monocytogenes strains. Pan-genomic analysis revealed that L. monocytogenes from different regions have open genomes, providing a solid genetic basis for adaptation to different environments. These strains contain numerous virulence genes that contribute to their high pathogenicity. They also exhibit relatively high resistance to phosphonic acid, glycopeptide, lincosamide, and peptide antibiotics. The results of mobile genetic elements indicate that, despite being located in different geographical locations, there is a certain degree of similarity in bacterial genome evolution and adaptation to specific environmental pressures. The potential target genes identified through pan-genomics are primarily associated with the fundamental life activities and infection invasion of L. monocytogenes, including known targets such as inlB, which can be utilized for molecular detection and therapeutic purposes. After screening a large number of potential target genes, we further screened them using hub gene selection methods to mining novel target genes. The present study employed eight different hub gene screening methods, ultimately identifying ten highly connected hub genes (bglF_1, davD, menE_1, tilS, dapX, iolC, gshAB, cysG, trpA, and hisC), which play crucial roles in the pathogenesis of L. monocytogenes. The results of pan-genomic analysis showed that L. monocytogenes from different regions exhibit high similarity in bacterial genome evolution. The PCR results demonstrated the excellent specificity of the bglF_1 and davD genes for L. monocytogenes. Therefore, the bglF_1 and davD genes hold promise as specific molecular detection and therapeutic targets for L. monocytogenes strains from different regions.

5.
Exp Ther Med ; 28(3): 352, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39071899

RESUMEN

Hepatocellular carcinoma (HCC) is one of the most aggressive types of cancer. Although it has a high mortality rate, there is currently no effective treatment for HCC. Lenvatinib has traditionally been used as the first-line treatment for advanced HCC (aHCC); however, resistance to this therapy is common. It can be difficult to select effective second-line drugs to overcome lenvatinib resistance when treating aHCC. For patients with aHCC, poor treatment efficacy can result in patients missing the optimal treatment window and can lead to an irreversible situation. Lenalidomide has begun to be used to treat HCC; however, to the best of our knowledge, its efficacy in patients with lenvatinib-resistant HCC remains to be reported on in the literature. The present case report, to the best of our knowledge, describes the first case in the literature of a patient with lenvatinib-resistant aHCC who achieved a partial response after the treatment regimen was switched to lenalidomide. The present case report provides a promising novel route for the treatment of lenvatinib-resistant HCC.

6.
Biochem Pharmacol ; 227: 116456, 2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-39079582

RESUMEN

Furanodienone, a biologically active constituent of sesquiterpenes isolated from Rhizome Curcumae, has been reported to induce apoptosis in human colorectal cancer (CRC) cells by promoting the generation of reactive oxygen species (ROS). However, the source of ROS and how it manipulates apoptosis in CRC cells remains to be elucidated. Herein, we assessed the potential role of the well-known sources of intracellular ROS-mitochondrial electron transport chain and the nicotinamide adenine dinucleotide phosphate oxidases (NOXs), on furanodienone-induced cell death. The results indicated that furanodienone substantially increased the levels of mitochondrial ROS, which were subsequently eliminated by the general NOX inhibitor. Specifically, the nuclear factor kappa-B (NF-κB) translocation triggered a significant rise in the expression of NOX4, an isoform of the NOXs family, upon furanodienone treatment. Nevertheless, the specific NOX4 inhibitor GLX351322 attenuated cell apoptosis and mitochondrial ROS production. As a result, ROS burst induced by furanodienone suppressed the expression of peroxiredoxin1 (PRDX1), a redox signaling protein overexpressed in CRC cells, through a nuclear factor-erythroid-2-related factor 2 (Nrf2)-dependent pathway, thus amplifying the mitogen-activated protein kinases (MAPKs)/p53-mediated apoptotic signaling by increasing the p-p38, p-JNK levels, as well as the cleaved caspases -3, -8 and -9. In vivo experiments further confirmed the anti-proliferative impact of PRDX1 following furanodienone treatment. In summary, the study demonstrated that furanodienone-induced apoptosis in CRC cells is initiated by mitochondrial ROS derived from NOX4, which targeted the PRDX1 and activated the downstream MAPKs/p53-mediated caspase-dependent signaling pathway. Our findings may provide novel insights into the development of adjuvant drugs for CRC treatment and therapeutic applications.

7.
J Colloid Interface Sci ; 672: 392-400, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38848623

RESUMEN

The rational design and synthesis of carbon nanocages with highly complex porous structures are continuously facing challenges in the development of high-performance supercapacitors (SCs). The electrochemical performance characteristics of electrodes rely on their compositions and fabrication methods. Here, we propose a universal and efficient approach for the in-situ synthesis of zeolitic imidazolate framework-8 (ZIF-8) on porous carbonized wood, where the selective utilization of hexacarbonyl molybdenum protects the structural integrity of the ZIF-8 precursor, preventing collapse during thermal treatment. The subsequent pyrolysis process leads to the formation of small-sized molybdenum carbide (MoC) which are embedded in carbon nanocages (CN). The composite electrode consists of MoC/CN embedded in a porous carbonized wood (PCW), and it shows area-specific capacity of 9.7F cm-2 and 9.4 F cm-2 at 5 mA cm-2 and 30 mA cm-2, respectively. Subsequently, the symmetric supercapacitor, with two MoC/CN@PCW electrodes exhibits a areal specific capacitance of 2.7 F cm-2 at 5 mA cm-2. Moreover, this supercapacitor maintains an capacitance retention rate of 98.5 % after 12,000 discharge cycles. The supercapacitor exhibits a power density of 6.5 mW cm-2, resulting in an energy density of 0.864 mWh cm-2. Therefore, the utilization of wood-based electrodes holds promise for energy storage systems.

8.
J Vasc Access ; : 11297298241259520, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38884336

RESUMEN

A fibrin sheath with central venous occlusion is a common complication after central venous catheterization, and these patients often experience catheter dysfunction. A calcified fibrin sheath can cause a catheter to be stuck, and typically necessitates catheter removal or replacement. From another point of view, a calcified fibrin sheath can be seen in ultrasound and computed tomography, and the original fibrin sheath channel between the internal jugular vein and the atrium is unusually strong. When central vein occlusion occurs, the remnant calcified fibrin sheath of the internal jugular vein can be punctured under ultrasound guidance, allowing the guidewire to enter the atrium directly through the fibrin sheath. Here, we report a case in which we achieved easy recanalization of a long segment occluded superior vena cava by puncturing the remnant calcified fibrin sheath of the internal jugular vein.

9.
Neurosurg Rev ; 47(1): 285, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38907038

RESUMEN

To evaluate the utility of magnetic resonance imaging (MRI) histogram parameters in predicting O(6)-methylguanine-DNA methyltransferase promoter (pMGMT) methylation status in IDH-wildtype glioblastoma (GBM). From November 2021 to July 2023, forty-six IDH-wildtype GBM patients with known pMGMT methylation status (25 unmethylated and 21 methylated) were enrolled in this retrospective study. Conventional MRI signs (including location, across the midline, margin, necrosis/cystic changes, hemorrhage, and enhancement pattern) were assessed and recorded. Histogram parameters were extracted and calculated by Firevoxel software based on contrast-enhanced T1-weighted images (CET1). Differences and diagnostic performance of conventional MRI signs and histogram parameters between the pMGMT-unmethylated and pMGMT-methylated groups were analyzed and compared. No differences were observed in the conventional MRI signs between pMGMT-unmethylated and pMGMT-methylated groups (all p > 0.05). Compared with the pMGMT-methylated group, pMGMT-unmethylated showed a higher minimum, mean, Perc.01, Perc.05, Perc.10, Perc.25, Perc.50, and coefficient of variation (CV) (all p < 0.05). Among all significant CET1 histogram parameters, minimum achieved the best distinguishing performance, with an area under the curve of 0.836. CET1 histogram parameters could provide additional value in predicting pMGMT methylation status in patients with IDH-wildtype GBM, with minimum being the most promising parameter.


Asunto(s)
Neoplasias Encefálicas , Metilación de ADN , Glioblastoma , Isocitrato Deshidrogenasa , Imagen por Resonancia Magnética , Regiones Promotoras Genéticas , Humanos , Glioblastoma/genética , Glioblastoma/diagnóstico por imagen , Glioblastoma/patología , Imagen por Resonancia Magnética/métodos , Masculino , Femenino , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/patología , Persona de Mediana Edad , Regiones Promotoras Genéticas/genética , Adulto , Metilación de ADN/genética , Anciano , Isocitrato Deshidrogenasa/genética , Estudios Retrospectivos , O(6)-Metilguanina-ADN Metiltransferasa/genética
10.
Enzyme Microb Technol ; 179: 110456, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38754147

RESUMEN

In this study, the family GH10 xylanase AnXylA10 derived from Aspergillus niger JL15 strain was expressed in Pichia pastoris X33. The recombinant xylanase, reAnXylA10 exhibited optimal activity at 40 ℃ and pH 5.0. The hydrolysates generated from beechwood xylan using reAnXylA10 primarily consisted of xylobiose (X2) to xylohexaose (X6) and demonstrated remarkable antioxidant capacity. Furthermore, the rice xylanase inhibitory protein (riceXIP) was observed to competitively inhibit reAnXylA10, exhibiting an inhibition constant (Ki) of 140.6 nM. Molecular dynamics (MD) simulations of AnXylA10-riceXIP complex revealed that the α-7 helix (Q225-S238) of riceXIP intruded into the catalytic pocket of AnXylA10, thereby obstructing substrate access to the active site. Specifically, residue K226 of riceXIP formed robust interactions with E136 and E242, the two catalytic sites of AnXylA10, predominantly through high-occupied hydrogen bonds. Based on QTAIM, electron densities for the atom pairs K226riceXIP@HZ1-E136AnXylA10@OE2 and K226riceXIP@HZ3-E242AnXylA10@OE1 were determined to be 0.04628 and 0.02914 a.u., respectively. Binding free energy of AnXylA10-riceXIP complex was -59.0±7.6 kcal/mol, significantly driven by electrostatic and van der Waals forces. Gaining insights into the interaction between xylanase and its inhibitors, and mining the inhibition mechanism in depth, will facilitate the design of innovative GH10 family xylanases that are both highly efficient and resistant to inhibitors.


Asunto(s)
Antioxidantes , Aspergillus niger , Endo-1,4-beta Xilanasas , Proteínas Fúngicas , Glucuronatos , Oligosacáridos , Proteínas Recombinantes , Xilanos , Glucuronatos/metabolismo , Glucuronatos/química , Xilanos/metabolismo , Endo-1,4-beta Xilanasas/metabolismo , Endo-1,4-beta Xilanasas/genética , Endo-1,4-beta Xilanasas/química , Aspergillus niger/enzimología , Aspergillus niger/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Oligosacáridos/metabolismo , Antioxidantes/metabolismo , Antioxidantes/química , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/química , Simulación de Dinámica Molecular , Oryza , Fagus , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Madera , Pichia/genética , Pichia/metabolismo , Hidrólisis , Dominio Catalítico
11.
Acad Radiol ; 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38653597

RESUMEN

RATIONALE AND OBJECTIVES: To explore the feasibility of delta histogram parameters (including absolute delta histogram parameters (AdHP) and relative delta histogram parameters (RdHP)) in predicting the grade of meningioma and to further investigate whether delta histogram parameters correlate with the Ki-67 proliferation index. METHODS: 92 patients with meningioma who underwent MRI examination (including T1-weighted (T1) and contrast-enhanced T1-weighted images (T1C)) were enrolled in this retrospective study. A total of 46 low-grade cases formed the low-grade group (grade 1, LGM), and a total of 46 high-grade cases formed the high-grade group (38 grade 2, 8 grade 3, HGM). Histogram parameters (HP) of T1 and T1C were extracted. Subsequently, morphological MRI features, AdHP (AdHP=T1CHP-T1HP), and RdHP (RdHP=(T1CHP-T1HP)/T1HP) were recorded and compared, respectively. Binary logistic regression analysis was used to obtain combined performance of the significant parameters. Diagnostic performance was identified by ROC. Spearman's correlation coefficients were taken to assess the relationship between delta histogram parameters and the Ki-67 proliferation index. RESULTS: In morphological MRI features, HGM is more prone to lobulation and necrosis/cystic changes (all p < 0.05). In delta histogram parameters, HGM exhibits higher mean, Perc.01, Perc.25, Perc.50, Perc.75, Perc.99, SD, and variance of AdHP, maximum, mean, Perc.25, Perc.50, Perc.75, and Perc.99 of RdHP, compared to LGM (all p < 0.00357). The optimal predictive performance was obtained by combining morphological MRI features and delta histogram parameters with an AUC of 0.945. Significant correlations were observed between significant delta histogram parameters and the Ki-67 proliferation index (all p < 0.05). CONCLUSION: Delta histogram parameter is a promising potential biomarker, which may be helpful in noninvasive predicting the grade and proliferative activity of meningioma.

12.
Open Life Sci ; 19(1): 20220865, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38681728

RESUMEN

Pathogens detected by metagenomic next-generation sequencing (mNGS) and the laboratory blood culture flask method were compared to understand the advantages and clinical significance of mNGS assays in the etiological diagnosis of peritoneal dialysis-associated peritonitis (PDAP). The study involved a total of 37 patients from the hospital's peritoneal dialysis centre, six of whom were patients with non-peritoneal dialysis-associated peritonitis. Peritoneal dialysis samples were collected from the 37 patients, who were divided into two groups. One group's samples were cultured using conventional blood culture flasks, and the other samples underwent pathogen testing using mNGS. The results showed that the positive rate of mNGS was 96.77%, while that of the blood culture flask method was 70.97% (p < 0.05). A total of 29 pathogens were detected by mNGS, namely 24 bacteria, one fungus, and four viruses. A total of 10 pathogens were detected using the bacterial blood culture method, namely nine bacteria and one fungus. The final judgment of the PDAP's causative pathogenic microorganism was made by combining the clinical condition, response to therapy, and the whole-genome sequencing findings. For mNGS, the sensitivity was 96.77%, the specificity was 83.33%, the positive predictive value was 96.77%, and the negative predictive value was 83.33%. For the blood culture flask method, the sensitivity was 70.97%, the specificity was 100%, the positive predictive value was 100%, and the negative predictive value was 0%. In conclusion, mNGS had a shorter detection time for diagnosing peritoneal dialysis-related peritonitis pathogens, with a higher positive rate than traditional bacterial cultures, providing significant advantages in diagnosing rare pathogens.

14.
Angew Chem Int Ed Engl ; 63(24): e202400805, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38587996

RESUMEN

We here reported a highly stereoselective method for the synthesis of polysubstituted conjugated dienes from α-aryl α-diazo alkynyl ketones and pyrazole-substituted unsymmetric aminals under mild conditions, which was promoted by photo-irridation and involved with 1,6-dipolar intermediate and quadruple sigmatropic rearrangements, was successfully developed. In this transformation, the cleavage of four bonds and the recombination of five bonds were implemented in one operational step. This protocol provided a modular tool for constructing dienes from amines, pyrazoles and α-alkynyl-α-diazoketones in one-pot manner. The results of mechanistic investigation indicated that the plausible reaction path underwent the 1,6-sigmatropic rearrangement instead of the 1,5-sigmatropic rearrangement.

15.
Sleep Biol Rhythms ; 22(1): 85-91, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38476846

RESUMEN

The purpose of this study was to assess sleep quality in patients undergoing total hip arthroplasty (THA) from preoperatively to 12 weeks postoperatively and to establish a risk predictor for postoperative sleep disturbance to enable early care and intervention. A self-designed data collection form was used. Patients were assessed preoperatively and at 5 postoperative time points using visual analog scale (VAS) for pain, sleep quality and neuropsychological status with the following assessment tools: the Chinese versions of the Pittsburgh Sleep Quality Index (CPSQI), the Epworth Sleepiness Scale (CESS), the Zung Self-Rating Anxiety Scale (ZSAS) and the Epidemiological Studies Depression Scale (CESD). Univariate and multivariate logistic regression analysis was used for the identification of risk factors for postoperative sleep disturbance. The receiver operating characteristic (ROC) curve was plotted to evaluate the regression model. Of the 290 eligible patients, 193 (133 women) were included in the study. There was a 60.6% prevalence of preoperative sleep disturbance. The CPSQI score increased significantly at 2 weeks postoperatively compared to preoperative baseline, but appeared to decrease at 4 weeks postoperatively. Multivariate logistic regression analysis showed that pain (VAS score: OR = 1.202 [95% CI = 1.002-1.446, P < 0.05]), daytime sleepiness (CESS score: OR = 1.134 [95% CI = 1.015-1.267, P < 0.05]) and anxiety (ZSAS score: OR = 1.396 [95% CI = 1.184-1.645, P < 0.001]) were risk factors associated with postoperative sleep disturbance at 2 weeks. The ROC curve showed that the AUC was 0.762, the sensitivity was 83.19% and the specificity was 64.86%. Postoperative sleep disturbance is highly prevalent in the first 2 weeks after THA. The risk prediction model constructed according to the above factors has good discriminant ability for the risk prediction of sleep disturbance after THA. The use of this risk prediction model can improve the recognition of patients and medical providers and has good ability to guide clinical nursing observation and early screening of sleep disturbance after THA.

16.
New Phytol ; 242(3): 1238-1256, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38426393

RESUMEN

Biosynthesis of flavonoid aglycones and glycosides is well established. However, key genes involved in their catabolism are poorly understood, even though the products of hydrolysis and oxidation play important roles in plant resistance to biotic stress. Here, we report on catabolism of dihydrochalcones (DHCs), the most abundant flavonoids in domesticated apple and wild Malus. Two key genes, BGLU13.1 and PPO05, were identified by activity-directed protein purification. BGLU13.1-A hydrolyzed phlorizin, (the most abundant DHC in domesticated apple) to produce phloretin which was then oxidized by PPO05. The process differed in some wild Malus, where trilobatin (a positional isomer of phlorizin) was mainly oxidized by PPO05. The effects of DHC catabolism on apple resistance to biotic stresses was investigated using transgenic plants. Either directly or indirectly, phlorizin hydrolysis affected resistance to the phytophagous pest two-spotted spider mite, while oxidation of trilobatin was involved in resistance to the biotrophic fungus Podosphaera leucotricha. DHC catabolism did not affect apple resistance to necrotrophic pathogens Valsa mali and Erwinia amylovara. These results suggest that different DHC catabolism pathways play different roles in apple resistance to biotic stresses. The role of DHC catabolism on apple resistance appeared closely related to the mode of invasion/damage used by pathogen/pest.


Asunto(s)
Malus , Polifenoles , Malus/metabolismo , Florizina/metabolismo , Flavonoides/metabolismo , Estrés Fisiológico/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología
17.
Aging (Albany NY) ; 16(7): 5887-5904, 2024 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-38517396

RESUMEN

Acute kidney injury (AKI) is associated with immune cell activation and inflammation. However, the putative pathogenic mechanisms of this injury have not been thoroughly investigated. Natural killer (NK) cells play an important role in immune regulation; however, whether NK cells regulate AKI remains unclear. Cordyceps sinensis (CS), a modern Chinese patented medicine preparation, has been widely used in treating patients with chronic kidney disease (CKD) owing to its anti-inflammatory effects and maintenance of immune homeostasis. Whether 2'-deoxyadenosine, a major active component in CS, can ameliorate renal AKI by regulating immunity, particularly in NK cells, has not been reported. This study is the first to demonstrate how NK cells promote AKI by releasing perforin, interferon-gamma (IFN-γ) and other inflammatory factors in vivo and in vitro. Differential gene expression between AKI and normal tissues was assessed using bioinformatic analyses. Quantitative real-time PCR, western blotting, and immunohistochemical staining were used to detect target protein mRNA and protein expression. Levels of inflammatory factors were measured using enzyme-linked immunosorbent assay. We found the high doses of the 2'-deoxyadenosine treatment significantly alleviated FA-induced renal damage in vivo, and alleviated the NK cells of renal injury by activating the STING/IRF3 pathway to inhibit perforin release in vitro. The results showed that 2'-deoxyadenosine could mitigate AKI by downregulating the activity of NK cells (by decreasing the expressions of perforin and IFN-γ) and inhibiting the stimulator of interferon genes and phosphorylated IFN regulatory factor 3. This may provide valuable evidence supporting the clinical use of CS in treating patients with AKI.


Asunto(s)
Lesión Renal Aguda , Cordyceps , Factor 3 Regulador del Interferón , Células Asesinas Naturales , Proteínas de la Membrana , Perforina , Transducción de Señal , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/prevención & control , Células Asesinas Naturales/efectos de los fármacos , Células Asesinas Naturales/metabolismo , Animales , Cordyceps/química , Perforina/metabolismo , Factor 3 Regulador del Interferón/metabolismo , Ratones , Transducción de Señal/efectos de los fármacos , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Masculino , Interferón gamma/metabolismo , Ratones Endogámicos C57BL
18.
Trials ; 25(1): 166, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38439027

RESUMEN

BACKGROUND: Endovascular thrombectomy (EVT) is a standard treatment for acute ischemic stroke (AIS) with large vessel occlusion. Hypertension and increased blood pressure variability within the first 24 h after successful reperfusion are related to a higher risk of symptomatic intracerebral hemorrhage and higher mortality. AIS patients might suffer from ischemia-reperfusion injury following reperfusion, especially within 24 h. Dexmedetomidine (DEX), a sedative commonly used in EVT, can stabilize hemodynamics by inhibiting the sympathetic nervous system and alleviate ischemia-reperfusion injury through anti-inflammatory and antioxidative properties. Postoperative prolonged sedation for 24 h with DEX might be a potential pharmacological approach to improve long-term prognosis after EVT. METHODS: This single-center, open-label, prospective, randomized controlled trial will include 368 patients. The ethics committee has approved the protocol. After successful reperfusion (modified thrombolysis in cerebral infarction scores 2b-3, indicating reperfusion of at least 50% of the affected vascular territory), participants are randomly assigned to the intervention or control group. In the intervention group, participants will receive 0.1~1.0 µg/kg/h DEX for 24 h. In the control group, participants will receive an equal dose of saline for 24 h. The primary outcome is the functional outcome at 90 days, measured with the categorical scale of the modified Rankin Scale, ranging from 0 (no symptoms) to 6 (death). The secondary outcome includes (1) the changes in stroke severity between admission and 24 h and 7 days after EVT, measured by the National Institute of Health Stroke Scale (ranging from 0 to 42, with higher scores indicating greater severity); (2) the changes in ischemic penumbra volume/infarct volume between admission and 7 days after EVT, measured by neuroimaging scan; (3) the length of ICU/hospital stay; and (4) adverse events and the all-cause mortality rate at 90 days. DISCUSSION: This randomized clinical trial is expected to verify the hypothesis that postoperative prolonged sedation with DEX after successful reperfusion may promote the long-term prognosis of patients with AIS and may reduce the related socio-economic burden. TRIAL REGISTRATION: ClinicalTrials.gov NCT04916197. Prospectively registered on 7 June 2021.


Asunto(s)
Dexmedetomidina , Accidente Cerebrovascular Isquémico , Daño por Reperfusión , Accidente Cerebrovascular , Humanos , Accidente Cerebrovascular Isquémico/diagnóstico , Accidente Cerebrovascular Isquémico/cirugía , Dexmedetomidina/efectos adversos , Estudios Prospectivos , Reperfusión , Trombectomía/efectos adversos , Accidente Cerebrovascular/diagnóstico , Accidente Cerebrovascular/terapia , Daño por Reperfusión/etiología , Daño por Reperfusión/prevención & control , Pronóstico , Ensayos Clínicos Controlados Aleatorios como Asunto
19.
Small Methods ; : e2301554, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38485672

RESUMEN

Solar energy is a primary form of renewable energy, and photothermal conversion is a direct conversion process with tunable conversion efficiency. Among various kinds of photothermal conversion materials, porous organic polymers (POP) are widely investigated owing to their controllable molecular design, tailored porous structures, good absorption of solar light, and low thermal conductivity. A variety of POP, such as conjugated microporous polymers (CMP), covalent organic frameworks (COF), hyper-crosslinked porous polymers (HCP), polymers of intrinsic microporosity (PIM), porous ionic polymers (PIP), are developed and applied in photothermal conversion applications of seawater desalination, latent energy storage, and biomedical fields. In this review, a comprehensive overview of the recent advances in POP for photothermal conversion is provided. The micro molecular structure characteristics and macro morphology of POP are designed for applications such as seawater desalination, latent heat energy storage, phototherapy and photodynamic therapy, and drug delivery. Besides, a probe into the underlying mechanism of structural design for constructing POP with excellent photothermal conversion performance is methodicalized. Finally, the remaining challenges and prospective opportunities for the future development of POP for solar energy-driven photothermal conversion applications are elucidated.

20.
J Mater Chem B ; 12(10): 2537-2546, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38345306

RESUMEN

Disulfiram (DSF), a new potential anticancer drug, has been shown to exhibit anticancer activity dependent on the formation of CuET, the chelation product of DSF with Cu2+. However, the poor stability of DSF and insufficient physiological concentration of Cu2+ hinder its practical application. To achieve the co-delivery of DSF and Cu2+ while overcoming the inefficiency of single chemotherapy, in this study, a cascade nanoplatform, DSF/Ce6@ZIF-8@CuO2, was constructed by encapsulating DSF and chlorin e6 (Ce6, a photosensitizer) in zeolite imidazole framework-8 (ZIF-8, a nanocarrier) and then loading CuO2, which self-supplied H2O2/O2, onto DSF/Ce6@ZIF-8. By triggering the response of DSF/Ce6@ZIF-8@CuO2 to the acidic tumor microenvironment, encapsulated DSF, Ce6 and CuO2 were released to achieve multimodal synergistic treatment with enhanced DSF chemotherapy and chemodynamic/photodynamic therapy (CDT/PDT). In vitro and animal studies indicated that the designed DSF/Ce6@ZIF-8@CuO2 has strong tumor-inhibitory effects and provides a promising paradigm for designing smart nanoplatforms.


Asunto(s)
Neoplasias , Fotoquimioterapia , Animales , Microambiente Tumoral , Peróxido de Hidrógeno/farmacología , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Neoplasias/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA