Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
Int J Nanomedicine ; 19: 4181-4197, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38766656

RESUMEN

Purpose: The committed differentiation fate regulation has been a difficult problem in the fields of stem cell research, evidence showed that nanomaterials could promote the differentiation of stem cells into specific cell types. Layered double hydroxide (LDH) nanoparticles possess the regulation function of stem cell fate, while the underlying mechanism needs to be investigated. In this study, the process of embryonic stem cells (ESCs) differentiate to neural progenitor cells (NPCs) by magnesium aluminum LDH (MgAl-LDH) was investigated. Methods: MgAl-LDH with diameters of 30, 50, and 100 nm were synthesized and characterized, and their effects on the cytotoxicity and differentiation of NPCs were detected in vitro. Dot blot and MeRIP-qPCR were performed to detect the level of m6A RNA methylation in nanoparticles-treated cells. Results: Our work displayed that LDH nanoparticles of three different sizes were biocompatible with NPCs, and the addition of MgAl-LDH could significantly promote the process of ESCs differentiate to NPCs. 100 nm LDH has a stronger effect on promoting NPCs differentiation compared to 30 nm and 50 nm LDH. In addition, dot blot results indicated that the enhanced NPCs differentiation by MgAl-LDH was closely related to m6A RNA methylation process, and the major modification enzyme in LDH controlled NPCs differentiation may be the m6A RNA methyltransferase METTL3. The upregulated METTL3 by LDH increased the m6A level of Sox1 mRNA, enhancing its stability. Conclusion: This work reveals that MgAl-LDH nanoparticles can regulate the differentiation of ESCs into NPCs by increasing m6A RNA methylation modification of Sox1.


Asunto(s)
Diferenciación Celular , Nanopartículas , Células-Madre Neurales , Diferenciación Celular/efectos de los fármacos , Animales , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Ratones , Nanopartículas/química , Metilación/efectos de los fármacos , Hidróxidos/química , Hidróxidos/farmacología , Metiltransferasas/metabolismo , Metiltransferasas/genética , Tamaño de la Partícula , Células Madre Embrionarias/efectos de los fármacos , Células Madre Embrionarias/citología , Adenosina/farmacología , Adenosina/química , Adenosina/análogos & derivados , Hidróxido de Aluminio/química , Hidróxido de Aluminio/farmacología , Hidróxido de Magnesio/química , Hidróxido de Magnesio/farmacología
2.
J Ethnopharmacol ; 331: 118327, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38750987

RESUMEN

ETHNOPHARMACOLOGY RELEVANCE: Rohdea pachynema F.T.Wang & Tang (R. pachynema), is a traditional folk medicine used for the treatment of stomach pain, stomach ulcers, bruises, and skin infections in China. Some of the diseases may relate to microbial infections in traditional applications. However few reports on its antimicrobial properties and bioactive components. AIM OF THE STUDY: To identify its bioactive constituents against methicillin-resistant Staphylococcus aureus (MRSA) in vitro and in vivo, and its mechanism. MATERIALS AND METHODS: The anti-MRSA ingredient 6α-O-[ß-D-xylopyranosyl-(1 â†’ 3)-ß-D-quinovopyranosyl]-(25S)-5α-spirostan-3ß-ol (XQS) was obtained from R. pachynema by phytochemical isolation. Subsequently, XQS underwent screening using the broth microdilution method and growth inhibition curves to assess its antibacterial activity. The mechanism of XQS was evaluated by multigeneration induction, biofilm resistance assay, scanning electron microscopy, transmission electron microscopy, and metabolomics. Additionally, a mouse skin infection model was established in vivo. RESULTS: 26 compounds were identified from the R. pachynema, in which anti-MRSA spirostane saponin (XQS) was reported for the first time with a minimum inhibitory concentration (MIC) of 8 µg/mL. XQS might bind to peptidoglycan (PGN) of the cell wall, phosphatidylglycerol (PG), and phosphatidylethanolamine (PE) of the cell membrane, then destroying the cell wall and the cell membrane, resulting in reduced membrane fluidity and membrane depolarization. Furthermore, XQS affected MRSA lipid metabolism, amino acid metabolism, and ABC transporters by metabolomics analysis, which targeted cell walls and membranes causing less susceptibility to drug resistance. Furthermore, XQS (8 mg/kg) recovered skin wounds in mice infected by MRSA effectively, superior to vancomycin (8 mg/kg). CONCLUSIONS: XQS showed anti-MRSA bioactivity in vitro and in vivo, and its mechanism association with cell walls and membranes was reported for the first, which supported the traditional uses of R. pachynema and explained its sensitivity to MRSA.

3.
Eur J Med Chem ; 271: 116401, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38640870

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococci (VRE) cause more than 100,000 deaths each year, which need efficient and non-resistant antibacterial agents. SAR analysis of 162 flavonoids from the plant in this paper suggested that lipophilic group at C-3 was crucial, and then 63 novel flavonoid derivatives were designed and total synthesized. Among them, the most promising K15 displayed potent bactericidal activity against clinically isolated MRSA and VRE (MICs = 0.25-1.00 µg/mL) with low toxicity and high membrane selectivity. Moreover, mechanism insights revealed that K15 avoided resistance by disrupting biofilm and targeting the membrane, while vancomycin caused 256 times resistance against MRSA, and ampicillin caused 16 times resistance against VRE by the same 20 generations inducing. K15 eliminated residual bacteria in mice skin MRSA-infected model (>99 %) and abdominal VRE-infected model (>92 %), which was superior to vancomycin and ampicillin.


Asunto(s)
Antibacterianos , Flavonoides , Staphylococcus aureus Resistente a Meticilina , Pruebas de Sensibilidad Microbiana , Enterococos Resistentes a la Vancomicina , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Flavonoides/farmacología , Flavonoides/química , Flavonoides/síntesis química , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Enterococos Resistentes a la Vancomicina/efectos de los fármacos , Animales , Ratones , Relación Estructura-Actividad , Estructura Molecular , Relación Dosis-Respuesta a Droga , Infecciones Estafilocócicas/tratamiento farmacológico , Humanos
4.
ChemSusChem ; : e202400189, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38504639

RESUMEN

Due to the larger sizes and stronger positive polarity of Zn2+ than dominant univalent ions, Zn2+ sluggish diffusion within V2O5 host electrodes is an essential issue in developing aqueous zinc-ion batteries (ZIBs) of higher energy densities. Herein, a high-performance V2O5 cathode was developed through subtly synthesizing and tuning V2O5 with oxygen vacancies-enriched and elongated apical V=O1 bond by altering the gradient concentration of hydrazine hydrate in the gas-solid reaction system. This strategy can enhance both intrinsic and extrinsic conductivity to a large extent. The electrochemical testing demonstrated the oxygen vacancies-enriched and elongated apical V=O1 bond can not only increase the intrinsic electronic conductivity of V2O5, but also induce additional pseudocapacitance to enhance the Zn2+ diffusion kinetics. We used infrared spectroscopy and Raman spectroscopy to characterize the change in the bond length structure of V2O5. Simultaneously, the long-term cyclability (capacity retention of 76.9 % after 1200 cycles at 4.0 A g-1) and rate capabilities (218 mAh g-1 at 4.0 A g-1) are promoted as well. We believe that our work might shed light on the bond length engineering of V2O5 and provide insights for the reasonable designing of novel cathodes for practical rechargeable ZIBs.

5.
Small Methods ; : e2301283, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38509851

RESUMEN

Bone tissue defects present a major challenge in orthopedic surgery. Bone tissue engineering using multiple versatile bioactive materials is a potential strategy for bone-defect repair and regeneration. Due to their unique physicochemical and mechanical properties, biofunctional materials can enhance cellular adhesion, proliferation, and osteogenic differentiation, thereby supporting and stimulating the formation of new bone tissue. 3D bioprinting and physical stimuli-responsive strategies have been employed in various studies on bone regeneration for the fabrication of desired multifunctional biomaterials with integrated bone tissue repair and regeneration properties. In this review, biomaterials applied to bone tissue engineering, emerging 3D bioprinting techniques, and physical stimuli-responsive strategies for the rational manufacturing of novel biomaterials with bone therapeutic and regenerative functions are summarized. Furthermore, the impact of biomaterials on the osteogenic differentiation of stem cells and the potential pathways associated with biomaterial-induced osteogenesis are discussed.

6.
Heliyon ; 10(1): e22963, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38163185

RESUMEN

Zanthoxylum motuoense (Tibetan prickly ash, MTHJ), different from the Chinese prickly ash species, is distributed only in the Tibet. Now the chemical characterization and antibacterial activity of MTHJ extracts were analyzed for the first time. As a result, Schinifoline (12), γ-Fagarine (8), (2E,7E,9E)-6 S-Hydroxy-N-(2-methylpropyl)-11-oxo-2, 7, 9-Dodecatrienamide (6), and Neoechinulin A (17) were found to be the major different factors by untarget LC-MS metabolomics together with quantitative analysis on target. These four compounds were also the major antibacterial constituents. Then, the antimicrobial activity of MTHJ fractions was evaluated with colony forming units (CFU), fluorescence microscopy imaging, SEM and investigating the potential food preservation. Nutritional composition, colour and sensory evaluation of extract-treated samples were evaluated along storage time. The results suggested the MTHJ may be used for meat products preservation, and the scores were significantly higher for its unique flavor, which offered a promising choice for food safety, preservation and reducing foodborne illness.

7.
ACS Appl Mater Interfaces ; 16(6): 7152-7160, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38294350

RESUMEN

Severe CO2 emissions has posed an increasingly alarming threat, motivating the development of efficient CO2 capture materials, one of the key parts of carbon capture, utilization, and storage (CCUS). In this study, a series of metal-organic frameworks (MOFs) named Sc-X (X = S, M, L) were constructed inspired by recorded MOFs, Zn-BPZ-SA and MFU-4l-Li. The corresponding isoreticular double-interpenetrating MOFs (Sc-X-IDI) were subsequently constructed via the introduction of isoreticular double interpenetration. Grand canonical Monte Carlo (GCMC) simulations were adopted at 298 K and 0.1-1.0 bar to comprehensively evaluate the CO2 capture and separation performances in Sc-X and Sc-X-IDI, with gas distribution, isothermal adsorption heat (Qst), and van der Waals (vdW)/Coulomb interactions. It is showed that isoreticular double interpenetration significantly improved the interactions between adsorbed gases and frameworks by precisely modulating pore sizes, particularly observed in Sc-M and Sc-M-IDI. Specifically, the Qst and Coulomb interactions exhibited a substantial increase, rising from 28.38 and 22.19 kJ mol-1 in Sc-M to 43.52 and 38.04 kJ mol-1 in Sc-M-IDI, respectively, at 298 K and 1.0 bar. Besides, the selectivity of CO2 over CH4/N2 was enhanced from 55.36/107.28 in Sc-M to 3308.61/7021.48 in Sc-M-IDI. However, the CO2 capture capacity is significantly influenced by the pore size. Sc-M, with a favorable pore size, exhibits the highest capture capacity of 15.86 mmol g-1 at 298 K and 1.0 bar. This study elucidated the impact of isoreticular double interpenetration on the CO2 capture performance in MOFs.

8.
J Colloid Interface Sci ; 657: 83-90, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38035422

RESUMEN

The development of non-precious metal electrocatalysts for oxygen evolution reaction (OER) is crucial for generating large-scale hydrogen through water electrolysis. In this work, bimetal phosphides embedded in electrospun carbon nanofibers (P-FeNi/CNFs) were fabricated through a reliable electrospinning-carbonization-phosphidation strategy. The incorporation of P-FeNi nanoparticles within CNFs prevented them from forming aggregation and further improved their electron transfer property. The bimetal phosphides helped to weaken the adsorption of O intermediate, promoting the OER activity, which was confirmed by the theoretical results. The as-prepared optimized P-Fe1Ni2/CNFs catalyst exhibited very high OER electrocatalytic performance, which required very low overpotentials of just 239 and 303 mV to reach 10 and 1000 mA cm-2, respectively. It is superior to the commercial RuO2 and many other related OER electrocatalysts reported so far. In addition, the constructed alkaline electrolyzer based on the P-Fe1Ni2/CNFs catalyst and Pt/C delivered a cell voltage of 1.52 V at 10 mA cm-2, surpassing the commercial RuO2||Pt/C (1.61 V) electrolyzer. It also offered excellent alkaline OER performance in simulated seawater electrolyte. This demonstrated its potential for practical applications across a broad range of environmental conditions. Our work provides new ideas for the ration design of highly efficient non-precious metal-based OER catalysts for water electrolysis.

9.
Bioorg Med Chem ; 97: 117544, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-38071943

RESUMEN

It's urgent to discover new antibiotics along with the increasing emergence and dissemination of multidrug resistant (MDR) bacterial pathogens. In the present investigation, morusin exhibited rapid bactericidal activity against methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE) by targeting the phospholipid of bacterial inner membrane, increasing membrane rigidity and disrupting bacterial homeostasis together with the membrane permeability, which caused fundamental metabolic disorders. Furthermore, morusin can also accumulate ROS, suppress H2S production, and aggravate oxidative damage in bacteria. Importantly, morusin also inhibited the spread of wounds and reduced the bacterial burden in the mouse model of skin infection caused by MRSA. It's a chance to meet the challenge of existing antibiotic resistance and avoid the development of bacterial resistance, given the multiple targets of morusin.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Morus , Animales , Ratones , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana
10.
Res Vet Sci ; 166: 105080, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37952298

RESUMEN

This study aimed to investigate the effects of supplementing laying hen diets with Radix Isatidis Polysaccharide (RIPS) on egg quality, immune function, and intestinal health. The research was conducted using 288 Hyland Brown hens, which were randomly assigned to four dietary treatments: control (without RIPS), low dose (200 g/t), medium dose (500 g/t), and high dose (1000 g/t) of RIPS. Each dietary treatment was administered to eight replicates of nine hens for nine weeks. The results revealed that RIPS inclusion in diets significantly improved egg quality parameters such as egg shape index, yolk color, haugh unit, and protein height (P < 0.05). Additionally, RIPS supplementation enhanced immune function as evidenced by an alteration in serum biochemical parameters, an increase in the spleen index, and a decrease in the liver index. Further, an evaluation of intestinal health showed that RIPS fortified the intestinal barrier, thus increasing the population of beneficial intestinal bacteria and reducing the abundance of harmful ones. Such mechanisms promoted intestinal health, digestion, and nutrient absorption, ultimately leading to enhanced egg quality. In conclusion, supplementing laying hen diets with RIPS has been demonstrated to improve egg quality by boosting immunity and optimizing intestinal digestion and absorption.


Asunto(s)
Pollos , Suplementos Dietéticos , Animales , Femenino , Dieta/veterinaria , Inmunidad , Alimentación Animal/análisis
11.
Anal Methods ; 16(2): 276-283, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38113035

RESUMEN

A rapid fluorescence detection method was established for 3-monochloropropane-1,2-diol (3-MCPD). The detection system works based on the fluorescence quenching of pyrocatechol-polyethyleneimine (PCh-PEI) polymer by 3-MCPD. The fluorescence quenching ability of 3-MCPD for PCh-PEI polymer was measured at different pH and temperatures. Indeed, in the presence of 3-MCPD, the fluorescence intensity of PCh-PEI polymer solution was quenched best at 100 °C and pH 8.5. Also, the effect of different concentrations of 3-MCPD on the optical properties of the PCh-PEI polymer was examined. Under optimal experimental conditions, fluorescence detection was linear in a range of 0.08-2.0 mg per L 3-MCPD, with a calculated detection limit of 0.06 mg L-1 and a correlation coefficient of 0.9974. Concisely, the reported method has good sensitivity and can be used for the rapid detection of 3-MCPD contamination in food products.


Asunto(s)
alfa-Clorhidrina , alfa-Clorhidrina/análisis , Polietileneimina , Fluorescencia , Contaminación de Alimentos/análisis
12.
Adv Sci (Weinh) ; 10(35): e2304722, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37870186

RESUMEN

Chronic low back pain (LBP) caused by intervertebral disc (IVD) degradation is a serious socioeconomic burden that can cause severe disabilities. Addressing the underlying pathogenic mechanisms of IVD degeneration may inspire novel therapeutic strategy for LBP. Herein, hypoxic preconditioning improves both the biological function of MSCs in hostile microenvironments and enhances the production of small extracellular vesicles (sEVs) with desirable therapeutic functions. In vitro results reveal that hypoxic preconditional engineering sEVs (HP-sEVs) alleviate the inflammatory microenvironments of IVD degradation, enhance the proliferation of nucleus pulposus (NP) cells, and promote proteoglycan synthesis and collagen formation. Transcriptomic sequencing reveales the excellent therapeutic effects of HP-sEVs in promoting extracellular matrix regeneration through the delivery of microRNA(miR)-7-5p, which further suppresses p65 production and thus the inhibition of Cxcl2 production. Moreover, in vivo results further confirm the robust therapeutic role of HP-sEVs in promoting IVD regeneration through the same mechanism mediated by miR-7-5p delivery. In conclusion, this study provides a novel therapeutic strategy for treating IVD degradation and is thus valuable for understanding the mechanism-of-action of HP-sEVs in IVD regeneration associated with chronic lower back pain.


Asunto(s)
Vesículas Extracelulares , Degeneración del Disco Intervertebral , Disco Intervertebral , MicroARNs , Humanos , Vesículas Extracelulares/metabolismo , Disco Intervertebral/metabolismo , Degeneración del Disco Intervertebral/terapia , Degeneración del Disco Intervertebral/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , FN-kappa B/metabolismo , FN-kappa B/farmacología , FN-kappa B/uso terapéutico , Regeneración , Quimiocina CXCL2/metabolismo
13.
Phys Chem Chem Phys ; 25(43): 29951-29959, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37902067

RESUMEN

Carbon-based single atom catalysts (SACs) are attracting extensive attention in the CO2 reduction reaction (CO2RR) due to their maximal atomic utilization, easily regulated active center and high catalytic activity, in which the coordination environment plays a crucial role in the intrinsic catalytic activity. Taking NiN4 as an example, this study reveals that the introduction of different numbers of S atoms into N coordination (Ni-NxS4-x (x = 1-4)) results in outstanding structural stability and catalytic activity. Owing to the additional orbitals around -1.60 eV and abundant Ni dxz, dyz, dx2, and dz2 orbital occupation after S substitution, N,S coordination can effectively facilitate the protonation of adsorbed intermediates and thus accelerate the overall CO2RR. The CO2RR mechanisms for CO and HCOOH generation via two-electron pathways are systematically elucidated on NiN4, NiN3S1 and NiN2S2. NiN2S2 yields HCOOH as the most favorable product with a limiting potential of -0.24 V, surpassing NiN4 (-1.14 V) and NiN3S1 (-0.50 V), which indicates that the different S-atom substitution of NiN4 has considerable influence on the CO2RR performance. This work highlights NiN2S2 as a high-performance CO2RR catalyst to produce HCOOH, and demonstrates that N,S coordination is an effective strategy to regulate the performance of atomically dispersed electrocatalysts.

14.
Nat Commun ; 14(1): 6714, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37872171

RESUMEN

Layered double hydroxides are promising candidates for the electrocatalytic oxygen evolution reaction. Unfortunately, their catalytic kinetics and long-term stabilities are far from satisfactory compared to those of rare metals. Here, we investigate the durability of nickel-iron layered double hydroxides and show that ablation of the lamellar structure due to metal dissolution is the cause of the decreased stability. Inspired by the amino acid residues in photosystem II, we report a strategy using trimesic acid anchors to prepare the subsize nickel-iron layered double hydroxides with kinetics, activity and stability superior to those of commercial catalysts. Fundamental investigations through operando spectroscopy and theoretical calculations reveal that the superaerophobic surface facilitates prompt release of the generated O2 bubbles, and protects the structure of the catalyst. Coupling between the metals and coordinated carboxylates via C‒O‒Fe bonding prevents dissolution of the metal species, which stabilizes the electronic structure by static coordination. In addition, the uncoordinated carboxylates formed by dynamic evolution during oxygen evolution reaction serve as proton ferries to accelerate the oxygen evolution reaction kinetics. This work offers a promising way to achieve breakthroughs in oxygen evolution reaction stability and dynamic performance by introducing functional ligands with static and dynamic compatibilities.

15.
Bioorg Chem ; 141: 106836, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37774436

RESUMEN

Alzheimer's diseases (AD) and other infectious diseases caused by drug-resistance bacteria have posed a serious threat to human lives and global health. With the aim to search for human acetylcholinesterase (hAChE) inhibitors and antibacterial agents from medicinal plants, 16 phloroglucinol oligomers, including two new phloroglucinol monomers (1a and 1b), four new phloroglucinol dimers (3a, 3b, 4b, and 5a), six new phloroglucinol trimers (6a, 6b, 7a, 7b, 8a, and 8b), and two naturally occurring phloroglucinol monomers (2a and 2b), along with two known congeners (4a and 5b), were purified from the leaves of tropic Rhodomyrtus tomentosa. The structures and absolute configurations of these new isolates were unequivocally established by comprehensive analyses of their spectroscopic data (NMR and HRESIMS), ECD calculation, and single crystal X-ray diffraction. Structurally, 3a/3b shared a rare C-5' formyl group, whereas 6a/6b possessed a unique C-7' aromatic ring. In addition, 7a/7b and 8a/8b were rare phloroglucinol trimers with a bis-furan and a C-6' hemiketal group. Pharmacologically, the mixture of 3a and 3b showed the most potent human acetylcholinesterase (hAChE) inhibitory activity with an IC50 value of 1.21 ± 0.16 µM. The molecular docking studies of 3a and 3b in the hAChE binding sites were performed, displaying good agreement with the in vitro inhibitory effects. In addition, the mixture of 3a and 3b displayed the most significant anti-MRSA (methicillin-resistant Staphylococcus aureus) with MIC and MBC values of both 0.50 µg/mL, and scanning electron microscope (SEM) studies revealed that they could destroy the biofilm structures of MRSA. The findings provide potential candidates for the further development of anti-AD and anti-bacterial agents.


Asunto(s)
Antibacterianos , Inhibidores de la Colinesterasa , Staphylococcus aureus Resistente a Meticilina , Floroglucinol , Humanos , Acetilcolinesterasa , Antibacterianos/farmacología , Simulación del Acoplamiento Molecular , Estructura Molecular , Floroglucinol/análogos & derivados , Floroglucinol/química , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/farmacología , Extractos Vegetales/química
16.
Phys Chem Chem Phys ; 25(28): 18952-18959, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37409409

RESUMEN

Electrochemical CO2 reduction reaction (CO2RR) to high-value-added products is one of the most promising strategies for mitigating the greenhouse effect and energy shortage. Two-dimensional (2D) MXene materials are regarded as promising catalysts for electrocatalysis, and the boron-analogs of MXenes, 2D transition metal borides (MBenes), may exhibit superior CO2RR performance owing to their unique electronic properties. Herein, a novel 2D transition metal boride, MoB, is theoretically evaluated as a potential catalyst for the CO2RR by comparing it with traditional Mo2C. MoB shows metallic nature and exhibits excellent electrical conductivity. MoB can effectively activate CO2 with a larger interaction energy of -3.64 eV than that of Mo2C. Both density of states and charge difference density reveal a significant charge transfer from MoB to CO2. MoB shows higher catalytic selectivity due to its inhibited hydrogen evolution reaction and low reaction energy for the CO2RR. At potentials more negative than -0.62 V, the CO2RR on MoB becomes a high-throughput reaction process towards CH4. This work discovered that MoB exhibited comparable CO2RR performance to Mo2C and forecasted MBenes as promising catalysts for electrocatalysis.

17.
J Colloid Interface Sci ; 650(Pt B): 1361-1370, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37480651

RESUMEN

Excessive CO2 emissions have contributed to global environmental issues, driving the development of CO2 capture adsorbents. Among various candidates, metal-organic frameworks (MOFs) are considered the most promising due to their unique microporous structure. Herein, a series of partially interpenetrated MOFs named UPC-XX were built to investigate the continuous enhancement in CO2 capture performance via synergistic effects from functional group, pore size, and steric-hindrance using theoretical calculations. It's showed that the introduction of functional groups improved the structure polarity and created more adsorption sites, thus, enhanced CO2 capture capacity. The pore size modification augments the exposure of adsorption sites to mitigate the negative impact of pore space and surface area reduction caused by the introduction of functional groups, thereby further increasing the CO2 capture capacity. The steric-hindrance effect optimized the adsorption sites distribution, which hasn't been considered in the previous two regulation strategies, thus, further increased the CO2 capture capacity. The results underscore UPC-MOFs as outstanding adsorbent materials, among the UPC-MOFs, UPC-OSO3-steric exhibited the highest CO2 capture capacity of 12.69 mmol/g with selectivities of 1142.41 (CO2 over N2) and 507.42 (CO2 over CH4) at 1.0 bar, 298 K. And the synergistic effect mechanisms of functional group, structure size, and steric hindrance were elucidated through theoretical calculations analyzing pore characteristics, gas distribution, isosteric heat, and van der Waals/Coulomb interactions.

18.
Signal Transduct Target Ther ; 8(1): 245, 2023 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-37357239

RESUMEN

Spinal cord injury (SCI) remains a severe condition with an extremely high disability rate. The challenges of SCI repair include its complex pathological mechanisms and the difficulties of neural regeneration in the central nervous system. In the past few decades, researchers have attempted to completely elucidate the pathological mechanism of SCI and identify effective strategies to promote axon regeneration and neural circuit remodeling, but the results have not been ideal. Recently, new pathological mechanisms of SCI, especially the interactions between immune and neural cell responses, have been revealed by single-cell sequencing and spatial transcriptome analysis. With the development of bioactive materials and stem cells, more attention has been focused on forming intermediate neural networks to promote neural regeneration and neural circuit reconstruction than on promoting axonal regeneration in the corticospinal tract. Furthermore, technologies to control physical parameters such as electricity, magnetism and ultrasound have been constantly innovated and applied in neural cell fate regulation. Among these advanced novel strategies and technologies, stem cell therapy, biomaterial transplantation, and electromagnetic stimulation have entered into the stage of clinical trials, and some of them have already been applied in clinical treatment. In this review, we outline the overall epidemiology and pathophysiology of SCI, expound on the latest research progress related to neural regeneration and circuit reconstruction in detail, and propose future directions for SCI repair and clinical applications.


Asunto(s)
Axones , Traumatismos de la Médula Espinal , Humanos , Axones/patología , Axones/fisiología , Regeneración Nerviosa/genética , Traumatismos de la Médula Espinal/genética , Traumatismos de la Médula Espinal/terapia , Traumatismos de la Médula Espinal/patología , Neuronas/patología , Células Madre
19.
J Sep Sci ; 46(17): e2200843, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37349854

RESUMEN

Monoterpene indole alkaloids exhibit structural diversity in herbal resources and have been developed as promising drugs owing to their significant biological activities. Confidential identification and quantification of monoterpene indole alkaloids is the key to quality control of target plants in industrial production but has rarely been reported. In this study, quantitative performance of three data acquisition modes of ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry including full scan, auto-MS2 and target-MS2 , was evaluated and compared for specificity, sensitivity, linearity, precision, accuracy, and matrix effect using five monoterpene indole alkaloids (scholaricine, 19-epi-scholaricine, vallesamine, picrinine, and picralinal). Method validations indicated that target-MS2 mode showed predominant performance for simultaneous annotation and quantification of analytes, and was then applied to determine monoterpene indole alkaloids in Alstonia scholaris (leaves, barks) after extraction procedures optimization using Box-Behnken design of response surface methodology. The variations of A. scholaris monoterpene indole alkaloids in different plant parts, harvest periods, and post-handling processes, were subsequently investigated. The results indicated that target-MS2 mode could improve the quantitative capability of ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry for structure-complex monoterpene indole alkaloids in herbal matrices. Alstonia scholaris, monoterpene indole alkaloids, quadrupole time of flight mass spectrometry, qualitative and quantitative analysis, ultra-high-performance liquid chromatography.


Asunto(s)
Alstonia , Alcaloides de Triptamina Secologanina , Cromatografía Líquida de Alta Presión , Alstonia/química , Alcaloides Indólicos/química , Espectrometría de Masas/métodos , Monoterpenos
20.
ChemSusChem ; 16(17): e202300637, 2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37232090

RESUMEN

Single-atom catalysts (SACs) are promising electrocatalysts for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER), in which the coordination environment plays a crucial role in activating the intrinsic activity of the central metal. Taking the FeN4 SAC as a probe, this work investigates the effect of introducing S or P atoms into N coordination (FeSx N4-x and FePx N4-x (x=1-4)) on the electronic structure optimization of Fe center and its catalytic performance. Attributing to the optimal Fe 3d orbitals, FePN3 can effectively activate O2 and promote ORR with a low overpotential of 0.29 V, surpassing FeN4 and most reported catalysts. FeSN3 is beneficial to H2 O activation and OER, proceeding with an overpotential of 0.68 V, which is superior to FeN4 . Both FePN3 and FeSN3 exhibit outstanding thermodynamic and electrochemical stability with negative formation energies and positive dissolution potentials. Hence, the N,P and N,S co-coordination might provide better catalytic environment than regular N coordination for SACs in ORR and OER. This work demonstrates FePN3 /FeSN3 as high-performance ORR/OER catalysts and highlights N,P and N,S co-coordination regulation as an effective approach to fine tune high atomically dispersed electrocatalysts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...