Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 9(5): 6018-6024, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38343920

RESUMEN

Ice clouds affect the energy balance of the atmosphere through absorption, reflection, and scattering of solar radiation. We have developed a new experimental technique to simultaneously measure thin ice film extinction and its thickness (about 0.06-0.21 µm) by combining Brewster angle cavity ring-down spectroscopy and quartz crystal microbalance. The ice film serves as a proxy for ice clouds. Thin ice films were formed by water vapor deposition on a silica surface at 258 K. The average extinction cross sections of ice films were determined to be about 6.6 × 10-23, 8.1 × 10-23, 5.3 × 10-23, 5.6 × 10-23, 5.2 × 10-23, 5.1 × 10-23, and 3.9 × 10-23 cm2/molecule at wavelengths of 290, 300, 310, 320, 330, 340, and 350 nm at 258 K, respectively. Atmospheric implications of the results are discussed.

2.
Physiol Behav ; 271: 114342, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37673233

RESUMEN

Hormone supplementation is one of the common therapies for menopause-related disorders. Among different tools, the ovariectomy (OVX) rodents are widely accepted as an appropriate menopausal pain model. Our previous study has showed that OVX produces a significant pain facilitation in both acute pain and tonic pain, however, the underlying mechanisms remain unclear. In this study, we examined the effects of OVX treatment and estradiol (E2) supplementation on formalin-induced nociceptive responses, and explored the associated spinal mechanisms. Female Sprague-Dawley rats underwent bilateral OVX, and E2 supplementation was given subcutaneously from the 5th week after surgery (30 µg/day for 7 days). Our results showed that formalin-induced nociceptive behaviors did not differ between diestrus and proestrus stages of the estrous in intact rats. However, OVX exacerbated formalin-evoked inflammatory pain, especially in the late phase at 4-5 weeks but not 2 weeks post-surgery. E2 supplementation significantly reversed the OVX-triggered hyperalgesia. Double immunofluorescence staining revealed that both ERα and ERß in the spinal dorsal horn were co-labeled with the neuronal markers, but not with markers of astrocytes or microglia. The spinal ERα (but not ERß) expression significantly increased in the OVX group, which was reversed by E2 supplementation. Moreover, the OVX individuals showed an increased protein kinase B (AKT) level in lumbar spinal cord, and E2 supplementation diminished the AKT expression in OVX rats. Finally, intrathecal injection Wortmannin, an inhibitor for AKT signaling, effectively reduced the nociceptive behaviors in the late phase and the number of c-fos positive cells. Together, our findings indicate that E2 supplementation alleviates the OVX-induced hyperalgesia, which might be involved in spinal ERα and AKT mechanisms.

3.
Psychol Sci ; 34(5): 616-632, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37040450

RESUMEN

Social adversity not only causes severe psychological diseases but also may improve people's ability to learn and grow. However, the beneficial effects of social adversity are often ignored. In this study, we investigated whether and how social adversity affects learning and memory in a mouse social defeat stress (SDS) model. A total of 652 mice were placed in experimental groups of six to 23 mice each. SDS enhanced spatial, novelty, and fear memory with increased synaptosome associated protein 25 (SNAP-25) level and dendritic spine density in hippocampal neurons among young but not middle-aged mice. Chemogenetic inhibition of hippocampal CaMK2A+ neurons blocked SDS-induced enhancement of learning or memory. Knockdown of SNAP-25 or blockade of N-methyl-D-aspartate (NMDA) receptor subunit GluN2B in the hippocampus prevented SDS-induced learning memory enhancement in an emotion-independent manner. These findings suggest that social adversity promotes learning and memory ability in youths and provide a neurobiological foundation for biopsychological antifragility.


Asunto(s)
Derrota Social , Sinaptosomas , Animales , Ratones , Hipocampo , Aprendizaje por Laberinto/fisiología , Memoria/fisiología , Estrés Psicológico
4.
J Phys Chem Lett ; 10(17): 4863-4867, 2019 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-31407903

RESUMEN

Complex organic molecules, the hallmark of terrestrial life, are increasingly detected in exotic environments throughout the universe. Our studies probe the ion chemistry of these biomolecules. We report gas-phase reaction rate constants for five deprotonated nucleobases (adenine, cytosine, guanine, thymine, and uracil) reacting with the atomic species H, N, and O. Hydrogen atoms react at moderate rates via associative electron detachment. Oxygen atom reactions occur more rapidly, generating complex product distributions; reaction pathways include associative electron detachment, substitution of the hydrogen atom by an oxygen atom, and generation of OCN-. Nitrogen atoms do not react with the nucleobase anions. The reaction thermodynamics were investigated computationally, and reported product channels are exothermic. Many of the proposed products have been observed in various astrochemical environments. These reactions provide insight into chemical processes that may occur at the boundaries between diffuse and dense interstellar clouds and in complex extraterrestrial ionospheres.

5.
J Phys Chem A ; 123(13): 2586-2591, 2019 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-30848902

RESUMEN

Rate constants and product ions were determined for a series of anions reacting with singlet molecular oxygen O2 (a 1Δg) at thermal energy using an electrospray ionization-selected ion flow tube. The 20 naturally occurring amino acids were used to produce corresponding deprotonated anions; only [Cys-H]- and [Pro-H]- were found to be reactive with O2 (a 1Δg), generating OSCH2CH(NH2)CO2- + HO and C5H6NO2- + H2O2, respectively. The reaction of O2 (a 1Δg) with [Cys-H]- has a rate constant more than ten times larger than the reaction of O2 (a 1Δg) with [Pro-H]-. Furthermore, reactions of O2 (a 1Δg) with carboxylic acid and thiol anions were carried out to elucidate the reactivity of the sulfur-containing functional groups. Potential energy surfaces and overall reaction exothermicities were calculated for representative reactions using density functional theory. Reactions in which attack occurs at the sulfur produce HCSO- as an ionic product. Reactions of several carboxylic acid anions likely proceed through a hydroperoxide intermediate that is analogous to that calculated for reactions with amino acid anions at a higher collision energy. Overall, rate constants for reactions of carboxylic acid anions RC(O)O- were found to be smaller for larger R groups.

6.
Eur J Mass Spectrom (Chichester) ; 25(1): 82-85, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30189753

RESUMEN

The strategy of synthesizing diazeniumdiolates (X-N(O)=NO-) through the coexistence of nitric oxide and alkoxides (RO-) was introduced by Wilhelm Traube 120 years ago. Today, despite the wide use of diazeniumdiolate derivatives to release nitric oxide in the treatment of cancer, the first step of the reaction mechanism for diazeniumdiolate synthesis remains a mystery and is thought to be complex. We have studied the gas-phase reactions of nitric oxide with alkoxides at room temperature. An electron-coupled hydrogen transfer is observed, and the radical anion HNO- is the only ionic product in these reactions. HNO- can further react with nitric oxide to form N2O and HO-.

7.
Phys Chem Chem Phys ; 20(7): 4990-4996, 2018 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-29387840

RESUMEN

For many decades, astronomers have searched for biological molecules, including amino acids, in the interstellar medium; this endeavor is important for investigating the hypothesis of the origin of life from space. The space environment is complex and atomic species, such as nitrogen and oxygen atoms, are widely distributed. In this work, the reactions of eight typical deprotonated amino acids (glycine, alanine, cysteine, proline, aspartic acid, histidine, tyrosine, and tryptophan) with ground state nitrogen and oxygen atoms are studied by experiment and theory. These amino acid anions do not react with nitrogen atoms. However, the reactions of these ions with oxygen atoms show an intriguing variety of ionic products and the reaction rate constants are of the order of 10-10 cm3 s-1. Density functional calculations provide detailed mechanisms of the reactions, and demonstrate that spin conversion is essential for some processes. Our study provides important data and insights for understanding the kinetic and dynamic behavior of amino acids in space environments.

8.
Neurosci Bull ; 34(1): 64-73, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28612319

RESUMEN

Tetanic stimulation of the sciatic nerve (TSS) triggers long-term potentiation in the dorsal horn of the spinal cord and long-lasting pain hypersensitivity. CX3CL1-CX3CR1 signaling is an important pathway in neuronal-microglial activation. Nuclear factor κB (NF-κB) is a key signal transduction molecule that regulates neuroinflammation and neuropathic pain. Here, we set out to determine whether and how NF-κB and CX3CR1 are involved in the mechanism underlying the pathological changes induced by TSS. After unilateral TSS, significant bilateral mechanical allodynia was induced, as assessed by the von Frey test. The expression of phosphorylated NF-κB (pNF-κB) and CX3CR1 was significantly up-regulated in the bilateral dorsal horn. Immunofluorescence staining demonstrated that pNF-κB and NeuN co-existed, implying that the NF-κB pathway is predominantly activated in neurons following TSS. Administration of either the NF-κB inhibitor ammonium pyrrolidine dithiocarbamate or a CX3CR1-neutralizing antibody blocked the development and maintenance of neuropathic pain. In addition, blockade of NF-κB down-regulated the expression of CX3CL1-CX3CR1 signaling, and conversely the CX3CR1-neutralizing antibody also down-regulated pNF-κB. These findings suggest an involvement of NF-κB and the CX3CR1 signaling network in the development and maintenance of TSS-induced mechanical allodynia. Our work suggests the potential clinical application of NF-κB inhibitors or CX3CR1-neutralizing antibodies in treating pathological pain.


Asunto(s)
Receptor 1 de Quimiocinas CX3C/metabolismo , Hiperalgesia/metabolismo , Nervio Ciático/fisiología , Transducción de Señal/fisiología , Animales , Anticuerpos/uso terapéutico , Antioxidantes/uso terapéutico , Receptor 1 de Quimiocinas CX3C/inmunología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/uso terapéutico , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Hiperalgesia/etiología , Proteínas del Tejido Nervioso/metabolismo , Umbral del Dolor/fisiología , Estimulación Física/efectos adversos , Prolina/análogos & derivados , Prolina/uso terapéutico , Ratas , Ratas Sprague-Dawley , Médula Espinal/efectos de los fármacos , Médula Espinal/metabolismo , Tiocarbamatos/uso terapéutico , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/fisiología
9.
J Phys Chem Lett ; 8(23): 5725-5729, 2017 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-29116795

RESUMEN

Reactions of hydrogen atoms with small sulfur-containing anions, SCN-, CH3COS-, C6H5COS-, -SCH2COOH, C6H5S-, 2-HOOCC6H4S-, and related oxygen-containing anions, OCN-, CH3COO-, C6H5COO-, HOCH2COO-, C6H5O-, 2-HOOCC6H4O-, have been studied both experimentally and computationally. The experimental results show that associative electron detachment (AED) is the only channel for the reactions. The rate constants for reactions between sulfur-containing anions and H atoms are generally higher than for the related oxygen-containing anions with the exception of the reaction of SCN-. The generally higher reactivity of the sulfur anions contrasts with previous results where AED reactivity was found to correlate with reaction exothermicity. Density functional theory calculations indicate that the reaction enthalpies, the characteristics of the reaction potential energy surfaces, and other structural and electronic factors can influence the reaction rate constants. This study indicates that organic sulfur anions can be more reactive than related oxygen anions in the interstellar medium where hydrogen atoms are abundant.

10.
J Phys Chem A ; 121(19): 3655-3661, 2017 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-28467081

RESUMEN

The existence of heterocyclic aromatic anions in extraterrestrial environments, such as the upper atmosphere of Titan, has been recently confirmed by data from the Cassini spacecraft. Nitrogen and oxygen atoms are also common species in the ionospheres of planets and moons and in the interstellar medium. In the current work, we extend previous studies to explore the reactivity of five-membered ring aromatic anions that contain nitrogen, oxygen, or sulfur (deprotonated pyrrole, furan, and thiophene) with N and O atoms both experimentally and computationally. Furanide and thiophenide anions react with the N atom by associative electron detachment (AED). All three anions react with the O atom both by AED and by processes that form ionic products. The reaction of pyrrolide anion with the O atom generates only one ionic product C4H3NO-, corresponding to an O addition and H loss process. The corresponding process is observed as the major channel for the reaction of furanide anion with the O atom while other ionic products HCOO- and C2H- are also formed. The reaction of thiophenide with the O atom is more complex, and four ionic products are generated, of which three are sulfur-containing ions. The reaction mechanisms are studied theoretically by employing density functional theory calculations, and spin conversion is found to be critical for understanding some product distributions. This work provides insight into the rich gas-phase chemistry of aromatic ion-atom reactions, which are relevant to ionospheric and interstellar chemistry.

11.
J Chem Phys ; 144(21): 214304, 2016 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-27276954

RESUMEN

The likely existence of aromatic anions in many important extraterrestrial environments, from the atmosphere of Titan to the interstellar medium (ISM), is attracting increasing attention. Nitrogen and oxygen atoms are also widely observed in the ISM and in the ionospheres of planets and moons. In the current work, we extend previous studies to explore the reactivity of prototypical aromatic anions (deprotonated toluene, aniline, and phenol) with N and O atoms both experimentally and computationally. The benzyl and anilinide anions both exhibit slow associative electron detachment (AED) processes with N atom, and moderate reactivity with O atom in which AED dominates but ionic products are also formed. The reactivity of phenoxide is dramatically different; there is no measurable reaction with N atom, and the moderate reactivity with O atom produces almost exclusively ionic products. The reaction mechanisms are studied theoretically by employing density functional theory calculations, and spin conversion is found to be critical for understanding some product distributions. This work provides insight into the rich gas-phase chemistry of aromatic ion-atom reactions and their relevance to ionospheric and interstellar chemistry.

12.
J Phys Chem A ; 120(7): 992-9, 2016 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-26883792

RESUMEN

Dicyanamide [N(CN)2(-)] is a common anionic component of ionic liquids, several of which have shown hypergolic reactivity upon mixing with white-fuming nitric acid. In this study, we explore the thermochemistry of dicyanamide and its reactivity with nitric acid and other molecules to gain insight into the initial stages of the hypergolic phenomenon. We have developed and utilized an electrospray ion source for our selected ion flow tube (SIFT) to generate the dicyanamide anion. We have explored the general reactivity of this ion with several neutral molecules and atoms. Dicyanamide does not show reactivity with O2, H2SO4, H2O2, DBr, HCl, NH3, N2O, SO2, COS, CO2, CH3OH, H2O, CH4, N2, CF4, or SF6 (k < 1 × 10(-12) cm(3)/s); moreover, dicyanamide does not react with N atom, O atom, or electronically excited molecular oxygen (k < 5 × 10(-12) cm(3)/s), and our previous studies showed no reactivity with H atom. However, at 0.45 Torr helium, we observe the adduct of dicyanamide with nitric acid with an effective bimolecular rate constant of 2.7 × 10(-10) cm(3)/s. Intrinsically, dicyanamide is a very stable anion in the gas phase, as illustrated by its lack of reactivity, high electron-binding energy, and low proton affinity. The lack of reactivity of dicyanamide with H2SO4 gives an upper limit for the gas-phase deprotonation enthalpy of the parent compound (HNCNCN; <310 ± 3 kcal/mol). This limit is in agreement with theoretical calculations at the MP2/6-311++G(d,p) level of theory, finding that ΔH298 K(HNCNCN) = 308.5 kcal/mol. Dicyanamide has two different proton acceptor sites. Experimental and computational results indicate that it is lower in energy to protonate the terminal nitrile nitrogen than the central nitrogen. Although proton transfer to dicyanamide was not observed for any of the acidic molecules investigated here, the calculations on dicyanamide with one to three nitric acid molecules reveal that higher-order solvation can favor exothermic proton transfer. Furthermore, the formation of 1,5-dinitrobiuret, proposed to be the key intermediate during the hypergolic ignition of dicyanamide ionic liquids with nitric acid, is investigated by calculation of the reaction coordinate. Our results suggest that solvation dynamics of dicyanamide with nitric acid play an important role in hypergolic ignition and the interactions at the droplet/condensed-phase surface between the two hypergolic liquids are very important. Moreover, dicyanamide exists in the atmosphere of Saturn's moon, Titan; the intrinsic stability of dicyanamide strongly suggests that it may exist in molecular clouds of the interstellar medium, especially in regions where other stable carbon-nitrogen anions have been detected.

13.
J Am Chem Soc ; 137(33): 10700-9, 2015 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-26281019

RESUMEN

Azines are important in many extraterrestrial environments, from the atmosphere of Titan to the interstellar medium. They have been implicated as possible carriers of the diffuse interstellar bands in astronomy, indicating their persistence in interstellar space. Most importantly, they constitute the basic building blocks of DNA and RNA, so their chemical reactivity in these environments has significant astrobiological implications. In addition, N and O atoms are widely observed in the ISM and in the ionospheres of planets and moons. However, the chemical reactions of molecular anions with abundant interstellar and atmospheric atomic species are largely unexplored. In this paper, gas-phase reactions of deprotonated anions of benzene, pyridine, pyridazine, pyrimidine, pyrazine, and s-triazine with N and O atoms are studied both experimentally and computationally. In all cases, the major reaction channel is associative electron detachment; these reactions are particularly important since they control the balance between negative ions and free electron densities. The reactions of the azine anions with N atoms exhibit larger rate constants than reactions of corresponding chain anions. The reactions of azine anions with O atoms are even more rapid, with complex product patterns for different reactants. The mechanisms are studied theoretically by employing density functional theory; spin conversion is found to be important in determining some product distributions. The rich gas-phase chemistry observed in this work provides a better understanding of ion-atom reactions and their contributions to ionospheric chemistry as well as the chemical processing that occurs in the boundary layers between diffuse and dense interstellar clouds.

14.
Artículo en Inglés | MEDLINE | ID: mdl-26307694

RESUMEN

Bimolecular elimination reactions (E2) are fundamentally important processes in organic chemistry. Our current work focuses on a computational investigation of several interesting and unexpected experimental results previously obtained in our laboratory. In particular, we have examined the detailed mechanisms for generating CH(2)CHO(‒) from the reaction of HO(‒) + CH(3)CH(2)OCH(2)CH(2)OCH(3), the unusually large isotope effect (k(D)/k(H) = 5.5) for the reaction of NH(2)(‒) + CH(3)CH(2)OCH(2)CH(3), and the possible kinetic barriers in the reaction of H(‒) + CH(3)CH(2)OCH(2)CH(3). Moreover, we have explored the high site selectivity in the reaction of NH(2)(‒) + CH(3)CH(2)OC(CH(3))(3). In the HO(‒) + CH(3)CH(2)OCH(2)CH(2)OCH(3) reaction, three ion‒neutral encounter complexes were located and fully optimized. The corresponding transition states were confirmed during the first E2 hydrogen-transfer process and they all possess E1(cb)-like antiperiplanar conformations. The formation of loosely bonded CH(3)O(‒) and H(2)O moieties was found to be essential for the second E2-type hydrogen transfer, and an intriguing E1(cb)-like gauche transition state (CH(3)OH-Cα-Cß- OCHCH(2) dihedral = 40.9°) is located, which results in the formation of ionic CH(2)CHO(‒) and neutral CH(3)OH, H(2)O and C(2)H(4) products. The lowest kinetic barrier for the reaction of NH(2)(‒) + CH(3)CH(2)OCH(2)CH(3) is 5.3 kcal mol(‒1) (1 kcal mol(‒1) = 4.2 kJ mol(‒1)), which is 1.5 kcal mol(‒1) higher in energy than the lowest barrier for the reaction HO(‒) + CH(3)CH(2)OCH(2)CH(3). The higher kinetic barrier of the NH(2)(‒) + CH(3)CH(2)OCH(2)CH(3) reaction is consistent with the observation of a larger isotope effect. The lowest kinetic barrier for the reaction of H(‒) + CH(3)CH(2)OCH(2)CH(3) is +5.4 kcal mol(‒1), indicating that, although H(‒) is a strong base, this reaction cannot occur at room temperature, which agrees well with the experimental results. The high selectivity in the formation of CH(3)CH(2)O(‒) from the reaction of NH(2)(‒) + CH(3)CH(2)OC(CH(3))(3) is explained by an electrostatic potential analysis of the ether molecule. Thus, this computational study provides important insight into the detailed mechanisms of elimination reactions.

15.
J Phys Chem A ; 119(2): 334-43, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25559322

RESUMEN

A central focus of astrobiology is the determination of abiotic formation routes to important biomolecules. The dissociation mechanisms of these molecules lend valuable insights into their synthesis pathways. Because of the detection of organic anions in the interstellar medium (ISM), it is imperative to study their role in these syntheses. This work aims to experimentally and computationally examine deprotonated adenine and guanine dissociation in an effort to illuminate potential anionic precursors to purine formation. Collision-induced dissociation (CID) products and their branching fractions are experimentally measured using an ion trap mass spectrometer. Deprotonated guanine dissociates primarily by deammoniation (97%) with minor losses of carbodiimide (HNCNH) and/or cyanamide (NH2CN), and isocyanic acid (HNCO). Deprotonated adenine fragments by loss of hydrogen cyanide and/or isocyanide (HCN/HNC; 90%) and carbodiimide (HNCNH) and/or cyanamide (NH2CN; 10%). Tandem mass spectrometry (MS(n)) experiments reveal that deprotonated guanine fragments lose additional HCN and CO, while deprotonated adenine fragments successively lose HNC and HCN. Every neutral fragment observed in this study has been detected in the ISM, highlighting the potential for nucleobases such as these to form in such environments. Lastly, the acidity of abundant fragment ions is experimentally bracketed. Theoretical calculations at the B3LYP/6-311++G(d,p) level of theory are performed to delineate the mechanisms of dissociation and analyze the energies of reactants, intermediates, transition states, and products of these CID processes.


Asunto(s)
Protones , Purinas/química , Adenina/química , Aniones/química , Carbodiimidas/química , Simulación por Computador , Cianamida/química , Cianatos/química , Cianuros/química , Exobiología , Guanina/química , Cianuro de Hidrógeno/química , Modelos Químicos , Estructura Molecular , Espectrometría de Masas en Tándem
16.
J Phys Chem A ; 119(19): 4329-35, 2015 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-25506737

RESUMEN

We have studied the gas-phase reactions of CF(+) with 24 neutral species. Reaction rate constants and product branching fractions are measured at 298 K using a flowing afterglow-selected ion flow tube. Experimental work is supported by computational chemistry calculations to provide insight into the reactivity of classes of neutral molecules. Reactions of CF(+) with small triatomic species and oxygen-containing organic molecules produce the stable molecule CO. The product branching fractions are discussed, and the potential energy surfaces for a few representative reactions are examined. CF(+) is highly reactive with complex molecules and will likely be destroyed in dense environments in the interstellar medium. However, the lack of reactivity with small diatomic molecules will likely enable its survival in diffuse regions.

17.
Phys Chem Chem Phys ; 16(33): 17835-44, 2014 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-25036757

RESUMEN

Uracil is an essential biomolecule for terrestrial life, yet its prebiotic formation mechanisms have proven elusive for decades. Meteorites have been shown to contain uracil and the interstellar abundance of aromatic species and nitrogen-containing molecules is well established, providing support for uracil's presence in the interstellar medium (ISM). The ion chemistry of uracil may provide clues to its prebiotic synthesis and role in the origin of life. The fragmentation of biomolecules provides valuable insights into their formation. Previous research focused primarily on the fragmentation and reactivity of cations derived from uracil. In this study, we explore deprotonated uracil-5-carboxylic acid and its anionic fragments to elucidate novel reagents of uracil formation and to characterize the reactivity of uracil's anionic derivatives. The structures of these fragments are identified through theoretical calculations, further fragmentation, experimental acidity bracketing, and reactivity with several detected and potential interstellar species (SO2, OCS, CS2, NO, N2O, CO, NH3, O2, and C2H4). Fragmentation is achieved through collision induced dissociation (CID) in a commercial ion trap mass spectrometer, and all reaction rate constants are measured using a modification of this instrument. Experimental data are supported by theoretical calculations at the B3LYP/6-311++G(d,p) level of theory. Lastly, the astrochemical implications of the observed fragmentation and reaction processes are discussed.


Asunto(s)
Aniones/síntesis química , Modelos Químicos , Modelos Moleculares , Uracilo/química , Simulación por Computador , Ensayo de Materiales
18.
PLoS One ; 9(4): e94312, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24710472

RESUMEN

Decline in the ovarian hormones with menopause may influence somatosensory, cognitive, and affective processing. The present study investigated whether hormonal depletion alters the nociceptive, depressive-like and learning behaviors in experimental rats after ovariectomy (OVX), a common method to deplete animals of their gonadal hormones. OVX rats developed thermal hyperalgesia in proximal and distal tail that was established 2 weeks after OVX and lasted the 7 weeks of the experiment. A robust mechanical allodynia was also occurred at 5 weeks after OVX. In the 5th week after OVX, dilute formalin (5%)-induced nociceptive responses (such as elevating and licking or biting) during the second phase were significantly increased as compared to intact and sham-OVX females. However, chronic constriction injury (CCI) of the sciatic nerve-induced mechanical allodynia did not differ as hormonal status (e.g. OVX and ovarian intact). Using formalin-induced conditioned place avoidance (F-CPA), which is believed to reflect the pain-related negative emotion, we further found that OVX significantly attenuated F-CPA scores but did not alter electric foot-shock-induced CPA (S-CPA). In the open field and forced swimming test, there was an increase in depressive-like behaviors in OVX rats. There was no detectable impairment of spatial performance by Morris water maze task in OVX rats up to 5 weeks after surgery. Estrogen replacement retrieved OVX-induced nociceptive hypersensitivity and depressive-like behaviors. This is the first study to investigate the impacts of ovarian removal on nociceptive perception, negative emotion, depressive-like behaviors and spatial learning in adult female rats in a uniform and standard way.


Asunto(s)
Afecto , Depresión/etiología , Nocicepción , Ovariectomía/efectos adversos , Afecto/efectos de los fármacos , Animales , Conducta Animal , Depresión/fisiopatología , Miedo/efectos de los fármacos , Femenino , Formaldehído/farmacología , Hiperalgesia/fisiopatología , Hiperalgesia/psicología , Aprendizaje por Laberinto , Neuralgia/inducido químicamente , Neuralgia/fisiopatología , Neuralgia/psicología , Nocicepción/efectos de los fármacos , Ratas , Ratas Sprague-Dawley
19.
Brain Behav Immun ; 37: 220-30, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24362237

RESUMEN

Tetanic stimulation of the sciatic nerve (TSS) induces sciatic nerve injury and long-lasting pain hypersensitivity in rats, and spinal glial activation and proinflammatory cytokines releases are involved. In the present study, we showed that spinal interleukin (IL)-23 and its receptor, IL-23R, are crucial for the development of mechanical allodynia after TSS. In the spinal dorsal horn, both IL-23 and IL-23R are expressed in astrocytes, and this expression is substantially increased after TSS. Inhibition of IL-23 signaling attenuated TSS-induced allodynia and decreased the induction of glial fibrillary acidic protein (GFAP, an astrocytic marker). Conversely, intrathecally delivered IL-23 induced a persistent allodynia. Similar to IL-23 signaling, an increase in IL-18 and its receptor, IL-18R, as well as CX3CL1 and its receptor, CX3CR1, was simultaneously observed in the spinal dorsal horn after TSS. Interestingly, IL-18 and CX3CR1 were exclusively expressed in microglia, while IL-18R was mainly localized in astrocytes. In contrast, CX3CL1 was predominately expressed in neurons and secondarily in astrocytes. The functional inhibition of CX3CL1 and IL-18 signaling attenuated TSS-induced allodynia and suppressed IL-23 and IL-23R upregulation. Activation of CX3CR1 and IL-18R induced similar behavioral and biochemical changes to those observed after TSS. These results indicate that the interaction among CX3CL1, IL-18 and IL-23 signaling in the spinal cord plays a critical role in the development of allodynia. Thus, interrupting this chemokine-cytokine network might provide a novel therapeutic strategy for neuropathic pain.


Asunto(s)
Quimiocina CX3CL1/metabolismo , Hiperalgesia/metabolismo , Interleucina-18/metabolismo , Interleucina-23/metabolismo , Células del Asta Posterior/metabolismo , Receptores de Interleucina-18/metabolismo , Animales , Estimulación Eléctrica , Masculino , Ratas , Ratas Sprague-Dawley , Receptores de Interleucina/metabolismo , Nervio Ciático , Transducción de Señal , Regulación hacia Arriba
20.
J Chem Phys ; 139(19): 194313, 2013 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-24320332

RESUMEN

Both ceria (CeO2) and alumina (Al2O3) are very important catalyst support materials. Neutral binary oxide nanoclusters (NBONCs), CexAlyOz, are generated and detected in the gas phase and their reactivity with carbon monoxide (CO) and butane (C4H10) is studied. The very active species CeAlO4 (●) can react with CO and butane via O atom transfer (OAT) and H atom transfer (HAT), respectively. Other CexAlyOz NBONCs do not show reactivities toward CO and C4H10. The structures, as well as the reactivities, of CexAlyOz NBONCs are studied theoretically employing density functional theory (DFT) calculations. The ground state CeAlO4 (●) NBONC possesses a kite-shaped structure with an OtCeObObAlOt configuration (Ot, terminal oxygen; Ob, bridging oxygen). An unpaired electron is localized on the Ot atom of the AlOt moiety rather than the CeOt moiety: this Ot centered radical moiety plays a very important role for the reactivity of the CeAlO4 (●) NBONC. The reactivities of Ce2O4, CeAlO4 (●), and Al2O4 toward CO are compared, emphasizing the importance of a spin-localized terminal oxygen for these reactions. Intramolecular charge distributions do not appear to play a role in the reactivities of these neutral clusters, but could be important for charged isoelectronic BONCs. DFT studies show that the reaction of CeAlO4 (●) with C4H10 to form the CeAlO4H●C4H9 (●) encounter complex is barrierless. While HAT processes have been previously characterized for cationic and anionic oxide clusters, the reported study is the first observation of a HAT process supported by a ground state neutral oxide cluster. Mechanisms for catalytic oxidation of CO over surfaces of AlxOy∕MmOn or MmOn∕AlxOy materials are proposed consistent with the presented experimental and theoretical results.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...