Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 792
Filtrar
1.
Plants (Basel) ; 13(7)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38611484

RESUMEN

The B-box (BBX) gene family includes zinc finger protein transcription factors that regulate a multitude of physiological and developmental processes in plants. While BBX gene families have been previously determined in various plants, the members and roles of peanut BBXs are largely unknown. In this research, on the basis of the genome-wide identification of BBXs in three peanut species (Arachis hypogaea, A. duranensis, and A. ipaensis), we investigated the expression profile of the BBXs in various tissues and in response to salt and drought stresses and selected AhBBX6 for functional characterization. We identified a total of 77 BBXs in peanuts, which could be grouped into five subfamilies, with the genes from the same branch of the same subgroup having comparable exon-intron structures. In addition, a significant number of cis-regulatory elements involved in the regulation of responses to light and hormones and abiotic stresses were found in the promoter region of peanut BBXs. Based on the analysis of transcriptome data and qRT-PCR, we identified AhBBX6, AhBBX11, AhBBX13, and AhBBX38 as potential genes associated with tolerance to salt and drought. Silencing AhBBX6 using virus-induced gene silencing compromised the tolerance of peanut plants to salt and drought stresses. The results of this study provide knowledge on peanut BBXs and establish a foundation for future research into their functional roles in peanut development and stress response.

2.
Animals (Basel) ; 14(7)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38612311

RESUMEN

Duck egg production, like that of laying hens, follows a typical low-peak-low cycle, reflecting the dynamics of the reproductive system. Post-peak, some ducks undergo a cessation of egg laying, indicative of a regression process in the oviduct. Notably, the magnum, being the longest segment of the oviduct, plays a crucial role in protein secretion. Despite its significance, few studies have investigated the molecular mechanisms underlying oviduct regression in ducks that have ceased laying eggs. In this study, we conducted single-cell transcriptome sequencing on the magnum tissue of Shaoxing ducks at 467 days of age, utilizing the 10× Genomics platform. This approach allowed us to generate a detailed magnum transcriptome map of both egg-laying and ceased-laying ducks. We collected transcriptome data from 13,708 individual cells, which were then subjected to computational analysis, resulting in the identification of 27 distinct cell clusters. Marker genes were subsequently employed to categorize these clusters into specific cell types. Our analysis revealed notable heterogeneity in magnum cells between the egg-laying and ceased-laying ducks, primarily characterized by variations in cells involved in protein secretion and extracellular matrix (ECM)-producing fibroblasts. Specifically, cells engaged in protein secretion were predominantly observed in the egg-laying ducks, indicative of their role in functional albumen deposition within the magnum, a phenomenon not observed in the ceased-laying ducks. Moreover, the proportion of THY1+ cells within the ECM-producing fibroblasts was found to be significantly higher in the egg-laying ducks (59%) compared to the ceased-laying ducks (24%). Similarly, TIMP4+ fibroblasts constituted a greater proportion of the ECM-producing fibroblasts in the egg-laying ducks (83%) compared to the ceased-laying ducks (58%). These findings suggest a potential correlation between the expression of THY1 and TIMP4 in ECM-producing fibroblasts and oviduct activity during functional reproduction. Our study provides valuable single-cell insights that warrant further investigation into the biological implications of fibroblast subsets in the degeneration of the reproductive tract. Moreover, these insights hold promise for enhancing the production efficiency of laying ducks.

3.
Sci Rep ; 14(1): 8778, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627433

RESUMEN

With the continuous improvement of various armor protection technologies, the armor protection performance has increased significantly, and then the damage performance requirements of armor-piercing ammunition have also increased. In order to improve the penetration ability of the liner, a new three-layer liner structure is designed in this paper. The jet forming process was simulated by AUTODYN software. The mechanism of shaped jet forming of three-layer liner was studied. The reason why the penetration depth of three-layer liner was higher than that of ordinary liner was explained. The influence of three-layer liner on the propagation of detonation wave and the change of pressure when detonation wave acted on liner were found, which provided a new idea for improving the penetration depth of jet. The influence of liner material, cone angle and stand-off on jet forming and penetration was also studied by orthogonal optimization experiment, and the structural parameters with the best penetration performance were obtained. The results show that the pressure at the convergence point increases first and then decreases during the formation of the jet of the three-layer liner. The pressure at the convergence point when the three-layer liner material is from low impedance to high impedance from the outside to the inside is much larger than the pressure at the convergence point from high impedance to low impedance. When the three-layer liner material is Al 2024-Copper-Tantalum from the outside to the inside, the pressure at the convergence point of the three-layer liner at different times is higher than that of the double-layer liner and the single-layer liner. Reasonable matching of different impact impedance materials in the three-layer liner can greatly improve the pressure value of the detonation wave acting on the cone liner. The maximum pressure at the convergence point on the axis is 39.10 GPa, which is 22.00% higher than that of the double-layer liner at the convergence point, and 53.03% higher than that of the single-layer liner at the convergence point. The orthogonal design test scheme is simulated and analyzed. The penetration depth is taken as the observation index, and the range analysis is adopted. The results show that the material matching of the three-layer liner has the greatest influence on the depth of the jet penetrating the target plate, followed by the cone angle of the three-layer liner. Relatively speaking, the stand-off has the least influence on the result. Reasonable matching of materials with different impact impedances in the three-layer liner can maximize the penetration depth of the jet into the target plate.

4.
Quant Imaging Med Surg ; 14(4): 2884-2903, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38617145

RESUMEN

Background: Multi-echo chemical-shift-encoded magnetic resonance imaging (MRI) has been widely used for fat quantification and fat suppression in clinical liver examinations. Clinical liver water-fat imaging typically requires breath-hold acquisitions, with the free-breathing acquisition method being more desirable for patient comfort. However, the acquisition for free-breathing imaging could take up to several minutes. The purpose of this study is to accelerate four-dimensional free-breathing whole-liver water-fat MRI by jointly using high-dimensional deep dictionary learning and model-guided (MG) reconstruction. Methods: A high-dimensional model-guided deep dictionary learning (HMDDL) algorithm is proposed for the acceleration. The HMDDL combines the powers of the high-dimensional dictionary learning neural network (hdDLNN) and the chemical shift model. The neural network utilizes the prior information of the dynamic multi-echo data in spatial respiratory motion, and echo dimensions to exploit the features of images. The chemical shift model is used to guide the reconstruction of field maps, R2∗ maps, water images, and fat images. Data acquired from ten healthy subjects and ten subjects with clinically diagnosed nonalcoholic fatty liver disease (NAFLD) were selected for training. Data acquired from one healthy subject and two NAFLD subjects were selected for validation. Data acquired from five healthy subjects and five NAFLD subjects were selected for testing. A three-dimensional (3D) blipped golden-angle stack-of-stars multi-gradient-echo pulse sequence was designed to accelerate the data acquisition. The retrospectively undersampled data were used for training, and the prospectively undersampled data were used for testing. The performance of the HMDDL was evaluated in comparison with the compressed sensing-based water-fat separation (CS-WF) algorithm and a parallel non-Cartesian recurrent neural network (PNCRNN) algorithm. Results: Four-dimensional water-fat images with ten motion states for whole-liver are demonstrated at several R values. In comparison with the CS-WF and PNCRNN, the HMDDL improved the mean peak signal-to-noise ratio (PSNR) of images by 9.93 and 2.20 dB, respectively, and improved the mean structure similarity (SSIM) of images by 0.058 and 0.009, respectively, at R=10. The paired t-test shows that there was no significant difference between HMDDL and ground truth for proton-density fat fraction (PDFF) and R2∗ values at R up to 10. Conclusions: The proposed HMDDL enables features of water images and fat images from the highly undersampled multi-echo data along spatial, respiratory motion, and echo dimensions, to improve the performance of accelerated four-dimensional (4D) free-breathing water-fat imaging.

5.
Heliyon ; 10(7): e27794, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38560147

RESUMEN

The jet generated through PTFE based inert material liner has the characteristics of low energy, low density, and large aspect ratio, which can effectively achieve the "penetration without explosion" of explosive reactive armor. PTFE/Cu composite material liner with various densities is prepared, to research the roles of preparation procedure and density in the destroy effect of jet on reactive armor. Through numerical simulation research, it was found that there was no reaction at all in the explosive layer penetrated by the jet generated by the sinter liner molded, while the explosive layer penetrated by the jet generated through the hot-pressing sintering and extrusion molding liner experienced local reactions on the jet impact channel, and the overall explosive layer did not undergo any reaction. Through experimental verification, it has been proven that all three types of jets have achieved "penetration without explosion" on explosive reactive armor.

6.
Poult Sci ; 103(6): 103708, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38631230

RESUMEN

Meat production performance is the most important economic trait in broilers, and skeletal muscle, as the largest organ in animals, is directly related to meat production during embryonic and postnatal growth and development. N6-Methyladenosine (m6A) is a chemical modification occurs on RNA adenosine that has been reported to participate in a variety of biological processes in all species. However, there are still few reports on the regulatory role of muscle growth and development in poultry after birth. This study aims to reveal the distribution of m6A modification sites in chicken pectoralis major muscle after birth and find out the regulatory relationship between m6A and muscle development. As representatives of leaner (Xinghua chicken [XH]) and hypertrophic (White Recessive Rock chicken [WRR]) broilers, there are significant differences in body weight, muscle fiber diameter, and muscle fiber cross-sectional area between XH and WRR chickens. RNA sequencing detected a total of 397 differentially expressed genes (DEG) in the pectoralis major muscle of XH and WRR chicken, and these DEGs were mainly enriched in catalytic activity and metabolic pathways. MeRIP sequencing results showed that among all 6,476 differentially modified m6A peaks, about 90% peaks (5,823) were differentially down regulated in XH chickens. The joint analysis of the mRNA and MeRIP sequencing data found 145 DEGs with differential m6A peak, ALKBH5 as a m6A demethylase, was also included. The highly expression of ALKBH5 in the muscle tissue of poultry and differential expression between XH and WRR chickens suggest that ALKBH5 may play a crucial role in regulating muscle development. Our results revealed that there were significant differences in growth rate, body weight, muscle fiber diameter, and fiber cross-section area between WRR and XH chicken, as well as significant differences in m6A methylation level and muscle metabolism level.

7.
Front Pharmacol ; 15: 1372950, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38590638

RESUMEN

Bariatric surgeries are becoming more prevalent as obesity rates continue to rise. Being that it is an effective weight-loss procedure, it can induce significant anatomical, physiological, and metabolic alterations, which affect the pharmacokinetics of various medications. Cytochrome (CYP) P450 is a group of enzymes that are primarily responsible for metabolizing most medications. Bariatric surgery may affect CYP activity and consequently alter metabolism of various medications, and the resulting weight loss may influence the metabolism of various drugs. This study investigates the impact of bariatric surgery on which CYP enzymes are affected and their effects medications. Authors of this study did an extensive literature review and research in databases including PubMed and EMBASE. The evidence was gathered for medication efficacy influenced by enzyme fluctuations to advocate for further studies for patients that undergo bariatric surgery. The search was limited to English-language results and is deemed up to date as of September 2023. There are numerous studies that indicated alterations of the CYP enzyme activity, which affects the pharmacokinetics of medications used to treat acute and chronic conditions after bariatric surgery. There are various mechanisms involved in CYP enzyme activity leading to fluctuations and the clearance of medications and subsequently compromising the efficacy and safety of these agents. It is imperative to conduct more prospective randomized control studies with longer duration to guide clinicians on how to manage medications with various CYP activity for patients' post-bariatric surgery.

8.
Sensors (Basel) ; 24(7)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38610420

RESUMEN

This work proposes a highly sensitive sandwich heterostructure multimode optical fiber microbend sensor for heart rate (HR), respiratory rate (RR), and ballistocardiography (BCG) monitoring, which is fabricated by combining a sandwich heterostructure multimode fiber Mach-Zehnder interferometer (SHMF-MZI) with a microbend deformer. The parameters of the SHMF-MZI sensor and the microbend deformer were analyzed and optimized in detail, and then the new encapsulated method of the wearable device was put forward. The proposed wearable sensor could greatly enhance the response to the HR signal. The performances for HR, RR, and BCG monitoring were as good as those of the medically approved commercial monitors. The sensor has the advantages of high sensitivity, easy fabrication, and good stability, providing the potential for application in the field of daily supervision and health monitoring.

9.
J Appl Stat ; 51(5): 935-957, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38524793

RESUMEN

Profile monitoring is one of the most important topics for statistical process control. Traditional self-starting profile monitoring schemes generally use all historical observations to estimate parameters. Because of the rapid increase in the complexity of modern statistical processes, the practitioners often need to deal with massive datasets in process monitoring. However, when observations of each period are of large sample size and the computation is of high complexity, the traditional method is not economical and urgently needs a parameter update strategy. Under the framework of binary profile monitoring, this paper proposes a novel recursive update strategy based on the aggregated estimation equation (AEE) for massive datasets and designs a self-starting control chart accordingly. Numerical simulation verifies that the proposed method performs better in parameter estimation and process monitoring. In addition, we give the asymptotic property of the proposed monitoring statistic and illustrate our method's superiority by a real-data example.

10.
Genes (Basel) ; 15(3)2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38540407

RESUMEN

Chromatin remodelers are essential for regulating plant growth, development, and responses to environmental stresses. HIT4 (HEAT-INTOLERANT 4) is a novel stress-induced chromatin remodeling factor that has been less studied in abiotic stress and stress resistance, particularly in cotton. In this study, we conducted a comprehensive analysis of the members of the HIT4 gene family in Gossypium hirsutum using bioinformatics methods, including phylogenetic relationships, gene organization, transcription profiles, phylogenetic connections, selection pressure, and stress response. A total of 18 HIT4 genes were identified in four cotton species, with six HIT4 gene members in upland cotton. Based on the evolutionary relationships shown in the phylogenetic tree, the 18 HIT4 protein sequences were classified into four distinct subgroups. Furthermore, we conducted chromosome mapping to determine the genomic locations of these genes and visually represented the structural characteristics of HIT4 in G. hirsutum. In addition, we predicted the regulatory elements in HIT4 in G. hirsutum and conducted an analysis of repetitive sequences and gene collinearity among HIT4 in four cotton species. Moreover, we calculated the Ka/Ks ratio for homologous genes to assess the selection pressure acting on HIT4. Using RNA-seq, we explored the expression patterns of HIT4 genes in G. hirsutum and Gossypium barbadense. Through weighted gene co-expression network analysis (WGCNA), we found that GHHIT4_4 belonged to the MEblue module, which was mainly enriched in pathways such as DNA replication, phagosome, pentose and glucuronate interconversions, steroid biosynthesis, and starch and sucrose metabolism. This module may regulate the mechanism of upland cotton resistance to Verticillium wilt through DNA replication, phagosome, and various metabolic pathways. In addition, we performed heterologous overexpression of GH_D11G0591 (GHHIT4_4) in tobacco, and the results showed a significant reduction in disease index compared to the wild type, with higher expression levels of disease resistance genes in the transgenic tobacco. After conducting a VIGS (virus-induced gene silencing) experiment in cotton, the results indicated that silencing GHHIT4_4 had a significant impact, the resistance to Verticillium wilt weakened, and the internode length of the plants significantly decreased by 30.7% while the number of true leaves increased by 41.5%. qRT-PCR analysis indicated that GHHIT4_4 mainly enhanced cotton resistance to Verticillium wilt by indirectly regulating the PAL, 4CL, and CHI genes. The subcellular localization results revealed that GHHIT4_4 was predominantly distributed in the mitochondria and nucleus. This study offers preliminary evidence for the involvement of the GHHIT4_4 in cotton resistance to Verticillium wilt and lays the foundation for further research on the disease resistance mechanism of this gene in cotton.


Asunto(s)
Gossypium , Verticillium , Gossypium/metabolismo , Verticillium/genética , Filogenia , Resistencia a la Enfermedad/genética , Mapeo Cromosómico
11.
Mar Biotechnol (NY) ; 26(2): 380-388, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38483673

RESUMEN

Swimming is critical for fish survival, and little attention has been paid to the swimming performance of large yellow croaker, the largest farmed marine fish in China. To address this gap, we conducted a study to measure the critical swimming speed (Ucrit) of 1050 croaker in a designed swim test flume. Our findings shed light on the effects of group size, Ucrit test protocol, and recovery time on swimming performance. The water flow in the swim flume increased steadily and linearly. The linear fit equation was y = 2.89x + 1.79 with an R2 of 0.99. With the help of the swim flume, we found that group size, and the Ucrit test protocol had a significant effect on the Ucrit values, except for the recovery time: The Ucrit values obtained in the ramp-Ucrit test averaged 28.32 ± 6.11 cm.s-1, which was significantly lower than that obtained in the traditional Ucrit test of 32.75 ± 7.60 cm.s-1; The Ucrit value of a group size of 50 fish was 33.51 ± 5.96 cm.s-1, which was significantly higher than that of a group of 200 fish (28.49 ± 6.37 cm.s-1). These results provide insights into the swimming performance of large yellow croaker and can be used to standardize the swimming test protocols.


Asunto(s)
Perciformes , Natación , Animales , Natación/fisiología , Perciformes/fisiología , China , Explotaciones Pesqueras , Densidad de Población , Acuicultura/métodos
12.
Nat Commun ; 15(1): 2785, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38555347

RESUMEN

Topological materials with boundary (surface/edge/hinge) states have attracted tremendous research interest. Additionally, unconventional (obstructed atomic) materials have recently drawn lots of attention owing to their obstructed boundary states. Experimentally, Josephson junctions (JJs) constructed on materials with boundary states produce the peculiar boundary supercurrent, which was utilized as a powerful diagnostic approach. Here, we report the observations of boundary supercurrent in NiTe2-based JJs. Particularly, applying an in-plane magnetic field along the Josephson current can rapidly suppress the bulk supercurrent and retain the nearly pure boundary supercurrent, namely the magnetic field filtering of supercurrent. Further systematic comparative analysis and theoretical calculations demonstrate the existence of unconventional nature and obstructed hinge states in NiTe2, which could produce hinge supercurrent that accounts for the observation. Our results reveal the probable hinge states in unconventional metal NiTe2, and demonstrate in-plane magnetic field as an efficient method to filter out the bulk contributions and thereby to highlight the hinge states hidden in topological/unconventional materials.

13.
J Chem Phys ; 160(9)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38426522

RESUMEN

All-inorganic CsPbI2Br inverted perovskite solar cells (PSCs) have drawn increasing attention because of their outstanding thermal stability and compatible process with tandem cells. However, relatively low open circuit voltage (Voc) has lagged their progress far behind theoretical limits. Herein, we introduce phenylmethylammonium iodide and 4-trifluoromethyl phenylmethylammonium iodide (CFPMAI) on the surface of a CsPbI2Br perovskite film and investigate their passivation effects. It is found that CFPMAI with a -CF3 substituent significantly decreases the trap density of the perovskite film by forming interactions with the under-coordinated Pb2+ ions and effectively suppresses the non-radiative recombination in the resulting PSC. In addition, CFPMAI surface passivation facilitates the optimization of energy-level alignment at the CsPbI2Br perovskite/[6,6]-phenyl C61 butyric acid methyl ester interface, resulting in improved charge extraction from the perovskite to the charge transport layer. Consequently, the optimized inverted CsPbI2Br device exhibits a markedly improved champion efficiency of 14.43% with a Voc of 1.12 V, a Jsc of 16.31 mA/cm2, and a fill factor of 79.02%, compared to the 10.92% (Voc of 0.95 V) efficiency of the control device. This study confirms the importance of substituent groups on surface passivation molecules for effective passivation of defects and optimization of energy levels, particularly for Voc improvement.

14.
Sci Rep ; 14(1): 5380, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38438497

RESUMEN

The damage to the back of the target plate is a phenomenon that occurs when concrete is subjected to high-speed impact. In order to study the motion parameters of prefabricated spherical fragments penetrating finite thickness concrete targets at high speeds and the occurrence rules of concrete damage, as well as the impact of target back damage on the motion of fragments, experiments were conducted on 100 mm finite thickness concrete targets with prefabricated spherical fragments. The concrete model parameters in LS-DYNA were modified based on the residual velocity of fragments, and numerical simulations were conducted on the penetration of prefabricated fragments with different impact velocities and concrete target plates with different thicknesses. By analyzing the location of concrete target plate damage, the relationship between concrete thickness and concrete damage was obtained; Combining the motion parameters of fragment penetration process, the phenomenon of concrete collapse was linked to fragment motion, and the influence of concrete thickness on fragment motion parameters was analyzed. The results indicate that the thickness of the finite thickness concrete target plate and the penetration speed of fragments have a significant impact on the damage state of the target back, and further affect the motion change response stage during the penetration process of prefabricated fragments.

15.
Pharmacol Res Perspect ; 12(2): e1181, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38429943

RESUMEN

Our laboratory has shown that calpain-2 activation in the brain following acute injury is directly related to neuronal damage and the long-term functional consequences of the injury, while calpain-1 activation is generally neuroprotective and calpain-1 deletion exacerbates neuronal injury. We have also shown that a relatively selective calpain-2 inhibitor, referred to as C2I, enhanced long-term potentiation and learning and memory, and provided neuroprotection in the controlled cortical impact (CCI) model of traumatic brain injury (TBI) in mice. Using molecular dynamic simulation and Site Identification by Ligand Competitive Saturation (SILCS) software, we generated about 130 analogs of C2I and tested them in a number of in vitro and in vivo assays. These led to the identification of two interesting compounds, NA-112 and NA-184. Further analyses indicated that NA-184, (S)-2-(3-benzylureido)-N-((R,S)-1-((3-chloro-2-methoxybenzyl)amino)-1,2-dioxopentan-3-yl)-4-methylpentanamide, selectively and dose-dependent inhibited calpain-2 activity without evident inhibition of calpain-1 at the tested concentrations in mouse brain tissues and human cell lines. Like NA-112, NA-184 inhibited TBI-induced calpain-2 activation and cell death in mice and rats, both male and females. Pharmacokinetic and pharmacodynamic analyses indicated that NA-184 exhibited properties, including stability in plasma and liver and blood-brain barrier permeability, that make it a good clinical candidate for the treatment of TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Lesiones Encefálicas , Fármacos Neuroprotectores , Animales , Humanos , Masculino , Ratones , Ratas , Encéfalo/metabolismo , Lesiones Encefálicas/tratamiento farmacológico , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Calpaína/antagonistas & inhibidores , Neuroprotección , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/farmacología
16.
Int J Biol Macromol ; 266(Pt 1): 131106, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38552685

RESUMEN

The process of diabetic wound healing was influenced by the excessive proliferation of reactive oxygen species (ROS). Therefore, in the process of healing diabetic wounds, it was crucial to removing ROS. This study designed composited nanoparticles: KBP, consisted by Konjac glucomannan, bovine serum albumin, and Prussian blue. Then they were embedded in Konjac glucomannan and hydroxypropyl trimethylammonium chloride chitosan composite hydrogel (KH), The KBP@KH hydrogel finally achieved excellent efficacy in diabetic wound healing. The in vitro and in vivo experiments demonstrated that KPB nanoparticles exhibited favorable ROS scavenging capability and biosafety. The KBP@KH hydrogel not only effectively eliminated ROS from diabetic wounds, but also exhibited excellent wound adaptability. The KBP@KH hydrogel facilitated angiogenesis and suppressed the production of inflammatory factors. Overall, the KBP@KH hydrogel dressing was characterized by its user-friendly nature, safety, and high efficiency.


Asunto(s)
Antioxidantes , Diabetes Mellitus Experimental , Ferrocianuros , Hidrogeles , Mananos , Nanocompuestos , Especies Reactivas de Oxígeno , Albúmina Sérica Bovina , Cicatrización de Heridas , Cicatrización de Heridas/efectos de los fármacos , Animales , Ferrocianuros/química , Ferrocianuros/farmacología , Nanocompuestos/química , Especies Reactivas de Oxígeno/metabolismo , Albúmina Sérica Bovina/química , Mananos/química , Mananos/farmacología , Hidrogeles/química , Hidrogeles/farmacología , Antioxidantes/farmacología , Antioxidantes/química , Diabetes Mellitus Experimental/tratamiento farmacológico , Ratones , Vendajes , Ratas , Masculino , Quitosano/química , Quitosano/análogos & derivados , Quitosano/farmacología , Depuradores de Radicales Libres/farmacología , Depuradores de Radicales Libres/química , Bovinos , Humanos
17.
Anal Sci ; 40(4): 701-707, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38316711

RESUMEN

In this work, a novel zirconium phosphonate (ZrPR1R2) was prepared by decorating both the aminoethoxy- group (R1) and the carboxypropyl- group (R2) on the zirconium phosphate layers in order to manipulate further the immobilization of the peroxidase (POD), and an antioxidant biosensor with higher sensitivity was constructed by dropping the POD/ZrPR1R2 composite onto the glassy carbon electrode surface. The activity of the POD/ZrPR1R2 composite was detected by Uv-vis spectra. The direct electrochemical behavior, the electrocatalytic response to dissolved oxygen and hydrogen peroxide, as well as the ability to detect total antioxidant capacity in tea sample were investigated by the methods of cyclic voltammetry. The results indicated that the immobilization of POD in ZrPR1R2 nanosheets matrix enhanced the enzymatic activity, and achieved the fast and direct electron transfer between POD and glassy carbon electrode. Moreover, the POD/ZrPR1R2 composite modified electrode show the electrocatalytic response to hydrogen peroxide in the linear range of 8.8×10-8 to 8.8×10-7 mol L-1, with the detection limit of 3.3×10-8 mol L-1. Attributing to the sensitive response to dissolved oxygen, the total antioxidant capacity can be detected directly in the real tea water by this POD/ZrPR1R2 composite modified electrode.


Asunto(s)
Antioxidantes , Técnicas Biosensibles , Peroxidasa , Peróxido de Hidrógeno/análisis , Circonio , Carbono , Electrodos , Peroxidasas , Oxígeno , , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos
18.
Langmuir ; 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38320286

RESUMEN

All-inorganic perovskite solar cells (PSCs) have recently received increasing attention due to their outstanding thermal stability. However, the performance of these devices, especially for the devices with a p-i-n structure, is still inferior to that of the typical organic-inorganic counterparts. In this study, we introduce phenylammonium iodides with different side groups on the surface of the CsPbI2Br perovskite film and investigate their passivation effects. Our studies indicate that the 4-trifluoromethyl phenylammonium iodide (CFPA) molecule with the -CF3 side group effectively decreases the trap density of the perovskite film by forming interactions with the undercoordinated Pb2+ ions and significantly inhibits the nonradiative recombination in the derived PSC, leading to an enhanced open-circuit voltage (Voc) from 0.96 to 1.10 V after passivation. Also, the CFPA post-treatment enables better energy-level alignment between the conduction band minimum of CsPbI2Br perovskite and [6,6]-phenyl C61 butyric acid methyl ester, thereby enhancing the charge extraction from the perovskite to the charge transport layer. These combined benefits result in a significant enhancement of the power conversion efficiency from 11.22 to 14.37% for inverted CsPbI2Br PSCs. The device without encapsulation exhibits a degradation of only ≈4% after 1992 h in a N2 glovebox.

19.
Sleep Breath ; 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38413555

RESUMEN

PURPOSE: Diaphragmatic impairment has been reported in obstructive sleep apnea-hypopnea syndrome (OSAHS) patients. However, the risk factors of diaphragmatic dysfunction are unclear. This study was conducted to evaluate the diaphragmatic function and to investigate impact factors of ultrasonographic changes of the diaphragm in OSAHS patients. METHODS: This cross-sectional study recruited 150 snoring patients. All patients were divided into the control group (AHI < 5/h, n = 20), the mild-to-moderate OSAHS group (5/h ≤ AHI ≤ 30/h, n = 61), and the severe OSAHS group (AHI > 30/h, n = 69). Diaphragmatic thickness at function residual capacity (TFRC) and total lung capacity (TTLC) were measured by two-dimensional ultrasound, and the diaphragmatic excursion during tidal and deep breath was measured by M-mode ultrasound. The diaphragmatic thickening fraction (TF) was calculated. Spearman analysis and multiple linear stepwise regression analysis were conducted to analyze the impact factors of diaphragmatic function. RESULTS: TFRC in the control group, mild-to-moderate OSAHS group, and severe OSAHS group was 1.23 (1.10, 1.39) mm, 1.60 (1.43, 1.85) mm, and 1.90 (1.70, 2.25) mm; TTLC was 2.75 (2.53, 2.93) mm, 3.25 (2.90, 3.55) mm, and 3.60 (3.33, 3.90) mm, and TF was 119.23% (102.94, 155.97), 96.55% (74.34, 119.11), and 85.29% (60.68,101.22). There were across-group significant differences in TFRC, TTLC, and TF (P < 0.05). The oxygen desaturation index was the influencing factor of TFRC, TTLC, and TF (P < 0.05). CONCLUSION: The diaphragm is thickened and diaphragmatic contractility is decreased in OSAHS patients. Nocturnal intermittent hypoxia is a risk factor for diaphragmatic hypertrophy and impaired diaphragmatic contractility.

20.
J Craniofac Surg ; 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38349356

RESUMEN

OBJECTIVE: Depressed scarring is a common complication after incisional upper blepharoplasty and frequently contributes to patient dissatisfaction. Correcting this deformity presents a significant challenge for oculoplastic surgeons. This study aims to investigate the clinical effectiveness of employing the turnover orbicularis-septum composite flap technique in correcting depressed scars after double eyelid surgery. METHODS: This is a retrospective study of 118 patients who underwent revision blepharoplasty with depressed scar from November 2020 to February 2023. During the revision procedure, the adhesions of the original scar were meticulously dissected, and the residual orbital fat was thoroughly released. The orbicularis-septum composite flap was then inverted downward and smoothly laid over the depressed scar area to address the tissue deficit. After surgery, patient satisfaction was evaluated by assessing the improvement of the depressed scars and the shape of the double eyelid folds. RESULTS: Follow-up assessments were conducted over a period of 6 to 24 months postoperatively. The results were judged as fully satisfied in 78 cases (66.1%), basically satisfied in 32 cases (27.1%), and unsatisfied in 8 cases (6.8%). Among the unsatisfied patients, 5 patients complained of eyelid fold shallow or disappear, and 3 patients complained of asymmetry. All patients exhibited varying degrees of improvement in the depressed scars. CONCLUSIONS: The turnover orbicularis-septum composite flap technique provides an effective approach for the treatment of depressed scars with a high satisfaction rate.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...