Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 179
Filtrar
1.
Talanta ; 276: 126227, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38733935

RESUMEN

Fatty liver disease affects at least 25 percent of the population worldwide and is a severe metabolic syndrome. Viscosity is closely related to fatty liver disease, so it is urgent to develop an effective tool for monitoring viscosity. Herein, a NIR fluorescent probe called MBC-V is developed for imaging viscosity, consisting of dimethylaniline and malonitrile-benzopyran. MBC-V is non-fluorescent in low viscosity solutions due to intramolecular rotation. In high viscosity solution, the intramolecular rotation of MBC-V is suppressed and the fluorescence is triggered. MBC-V has long emission wavelength at 720 nm and large Stokes shift about 160 nm. Moreover, MBC-V can detect changes in cell viscosity in fatty liver cells, and can image the therapeutic effects of drug in fatty liver cells. By taking advantage of NIR emission, MBC-V can be used as an imaging tool for fatty liver disease and a way to evaluate the therapeutic effect of drug for fatty liver disease.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38587654

RESUMEN

PURPOSE: This study is to evaluate the correlation between retrobulbar perfusion deficits and glaucomatous visual field defects. METHODS: Eighty-four patients with glaucoma and 17 normal subjects serving as controls were selected. Color Doppler imaging (CDI) was used to measure the changes in blood flow parameters in the retrobulbar ophthalmic artery (OA), central retinal artery (CRA), and short posterior ciliary arteries (SPCAs). Visual field testing was performed using a Humphrey perimeter, categorizing the visual field deficits into four stages according to the Advanced Glaucoma Intervention Study (AGIS) scoring method. Subsequently, the correlation of retrobulbar hemodynamic parameter alterations among glaucomatous patients with varying visual field defects was examined. RESULTS: The higher the visual field stage, the lower the peak systolic velocity (PSV) of the OA, CRA, and SPCAs in glaucomatous patients. The CRA had the highest sensitivity to changes in its PSV. The PSV of the temporal SPCA (TSPCA-PSV) was lower in advanced glaucoma than in early-stage glaucoma. The PSVs of the OA, CRA, and TSPCA, as well as the resistance index of the CRA (CRA-RI), were positively correlated with the visual field index and the mean deviation. Except for that of OA, the PSV of the retrobulbar vessels was negatively correlated with the pattern standard deviation (PSD). The OA-PSV and end-diastolic velocity (EDV) of the CRA and TSPCA were lower in patients with superior visual field defects than in those with inferior visual field defects. CONCLUSIONS: Greater severity of visual field defects corresponded to poorer retrobulbar blood flow in glaucomatous patients. Patients suffered significant perfusion impairments in the CRA at the early stage, accompanied by SPCA perfusion disorder at the advanced stage. The presence of a bow-shaped defect in the superior or inferior region of the visual field in moderate-stage glaucoma was closely correlated with retrobulbar vascular EDV. TRIAL REGISTRATION: ChiCTR2200059048 (2022-04-23).

3.
Cell Biol Toxicol ; 40(1): 24, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38653919

RESUMEN

Elongin B (ELOB), a pivotal element in the ELOB/c-Cullin2/5-SOCS-box E3 ubiquitin-protein ligase complex, plays a significant role in catalyzing the ubiquitination and subsequent degradation of a broad spectrum of target proteins. Notably, it is documented to facilitate these processes. However, the regulatory role of ELOB in breast cancer remains ambiguous. In this study, through bio-informatic analysis of The Cancer Genome Atlas and Fudan University Shanghai Cancer Center database, we demonstrated that ELOB was over-expressed in breast cancer tissues and was related to unfavorable prognosis. Additionally, pathway enrichment analysis illustrated that high expression of ELOB was associated with multiple cancer promoting pathways, like cell cycle, DNA replication, proteasome and PI3K - Akt signaling pathway, indicating ELOB as a potential anticancer target. Then, we confirmed that both in vivo and in vitro, the proliferation of breast cancer cells could be significantly suppressed by the down-regulation of ELOB. Mechanically, immunoprecipitation and in vivo ubiquitination assays prompted that, as the core element of Cullin2-RBX1-ELOB E3 ligase (CRL2) complex, ELOB regulated the ubiquitination and the subsequent degradation of oncoprotein p14/ARF. Moreover, the anticancer efficacy of erasing ELOB could be rescued by simultaneous knockdown of p14/ARF. Finally, through analyzing breast cancer tissue microarrays and western blot of patient samples, we demonstrated that the expression of ELOB in tumor tissues was elevated in compared to adjacent normal tissues. In conclusion, ELOB is identified to be a promising innovative target for the drug development of breast cancer by promoting the ubiquitination and degradation of oncoprotein p14/ARF.


Asunto(s)
Neoplasias de la Mama , Proliferación Celular , Elonguina , Ubiquitinación , Humanos , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Neoplasias de la Mama/genética , Femenino , Elonguina/metabolismo , Elonguina/genética , Animales , Línea Celular Tumoral , Proliferación Celular/genética , Progresión de la Enfermedad , Ratones Desnudos , Ratones , Regulación Neoplásica de la Expresión Génica , Transducción de Señal , Ratones Endogámicos BALB C , Células MCF-7 , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
4.
Invest Ophthalmol Vis Sci ; 65(3): 10, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38466291

RESUMEN

Purpose: This study aimed to investigate the role of the long non-coding RNA (lncRNA) NEAT1 in corneal epithelial wound healing in mice. Methods: The central corneal epithelium of wild-type (WT), MALAT1 knockout (M-KO), NEAT1 knockout (N-KO), and NEAT1 knockdown (N-KD) mice was scraped to evaluate corneal epithelial and nerve regeneration rates. RNA sequencing of the corneal epithelium from WT and N-KO mice was performed 24 hours after debridement to determine the role of NEAT1. Quantitative PCR (qPCR) and ELISA were used to confirm the bioinformatic analysis. The effects of the cAMP signaling pathway were evaluated in N-KO and N-KD mice using SQ22536, an adenylate cyclase inhibitor. Results: Central corneal epithelial debridement in N-KO mice significantly promoted epithelial and nerve regeneration rates while suppressing inflammatory cell infiltration. Furthermore, the expression of Atp1a2, Ppp1r1b, Calm4, and Cngb1, which are key components of the cAMP signaling pathway, was upregulated in N-KO mice, indicative of its activation. Furthermore, the cAMP pathway inhibitor SQ22536 reversed the accelerated corneal epithelial wound healing in both N-KO and N-KD mice. Conclusions: NEAT1 deficiency contributes to epithelial repair during corneal wound healing by activating the cAMP signaling pathway, thereby highlighting a potential therapeutic strategy for corneal epithelial diseases.


Asunto(s)
Enfermedades de la Córnea , Lesiones de la Cornea , Epitelio Corneal , Animales , Ratones , Córnea , Canales Catiónicos Regulados por Nucleótidos Cíclicos , Proteínas del Tejido Nervioso , ATPasa Intercambiadora de Sodio-Potasio , Cicatrización de Heridas
5.
Radiol Case Rep ; 19(4): 1624-1628, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38333901

RESUMEN

Hemimasticatory spasm is a very rare disorder of the trigeminal nerve characterized by paroxysmal involuntary contraction of the jaw-closing muscles. Although its cause is not fully known, vascular compression of the trigeminal nerve is thought to be involved. Magnetic resonance imaging (MRI) can indicate continuing vascular compression for hemimasticatory spasm. Here, we report a case of hemimasticatory spasm that was caused by single venous compression of the trigeminal nerve root on MRI and was confirmed by microvascular decompression surgery.

6.
JACC Cardiovasc Interv ; 17(1): 46-56, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38199753

RESUMEN

BACKGROUND: Coronary angiography-derived radial wall strain (RWS) is a newly developed index that can be readily accessed and describes the biomechanical features of a lesion. OBJECTIVES: The authors sought to investigate the association of RWS with fractional flow reserve (FFR) and high-risk plaque (HRP), and their relative prognostic implications. METHODS: We included 484 vessels (351 patients) deferred after FFR measurement with available RWS data and coronary computed tomography angiography. On coronary computed tomography angiography, HRP was defined as a lesion with both minimum lumen area <4 mm2 and plaque burden ≥70%. The primary outcome was target vessel failure (TVF), a composite of target vessel revascularization, target vessel myocardial infarction, or cardiac death. RESULTS: The mean FFR and RWSmax were 0.89 ± 0.07 and 11.2% ± 2.5%, respectively, whereas 27.7% of lesions had HRP, 15.1% had FFR ≤0.80. An increase in RWSmax was associated with a higher risk of FFR ≤0.80 and HRP, which was consistent after adjustment for clinical or angiographic characteristics (all P < 0.05). An increment of RWSmax was related to a higher risk of TVF (HR: 1.23 [95% CI: 1.03-1.47]; P = 0.022) with an optimal cutoff of 14.25%. RWSmax >14% was a predictor of TVF after adjustment for FFR or HRP components (all P < 0.05) and showed a direct prognostic effect on TVF, not mediated by FFR ≤0.80 or HRP in the mediation analysis. When high RWSmax was added to FFR ≤0.80 or HRP, there were increasing outcome trends (all P for trend <0.001). CONCLUSIONS: RWS was associated with coronary physiology and plaque morphology but showed independent prognostic significance.


Asunto(s)
Reserva del Flujo Fraccional Miocárdico , Humanos , Angiografía Coronaria , Resultado del Tratamiento , Corazón , Angiografía por Tomografía Computarizada
7.
Curr Mol Med ; 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38213136

RESUMEN

OBJECTIVE: To explore the effect of nuclear factor erythroid 2-related factor 2 (Nrf 2) on microglial inflammatory response and proliferation after spinal cord injury (SCI) through the glyceraldehyde phosphate dehydrogenase (GAPDH) / Seven in absentia homolog 1 (Siah 1) signaling pathway. METHODS: Human microglia HMC3 was induced by lipopolysaccharide (LPS) to establish a SCI cell model. Microglia morphology after LPS stimulation was observed by transmission electron microscope (TEM), and cellular Nrf2, GAPDH/Siah1 pathway expression and cell viability were determined. Subsequently, the Nrf2 overexpression plasmid was transfected into microglia to observe changes in cell viability and GAPDH/Siah1 pathway expression. RESULTS: Microglia, mostly amoeba-like, were found to have enlarged cell bodies after LPS stimulation, with an increased number of cell branches, highly expressed Nrf2, GAPDH and Siah1, and decreased cell viability (P<0.05). Up-regulating Nrf2 inhibited the GAPDH/Siah1 axis, decreased inflammatory responses, and enhanced activity in post-SCI microglia (P<0.05). CONCLUSION: Up-regulating Nrf2 expression can reverse the inflammatory reaction of microglia after LPS stimulation and enhance their activity by inhibiting the GAPDH/Siah1 axis.

8.
Bioresour Technol ; 395: 130399, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38286165

RESUMEN

The utilization of biomass char was hindered by the low gasification activity due to thick ring structures and unclear gasification mechanism. Herein, the mechanism was elucidated by experimental and DFT to improve the activity. The results demonstrated that temperature increased the gasification activity but did not changed the order of gasification activity of samples. Pressure dominated the position of the highest point of instantaneous CH4 yield, and high pressure enhanced carbon conversion by 81.72 % and 7.32 times. Moreover, KNi exhibited an uppermost catalytic activity with the instantaneous CH4 yield 1.89 times higher than that of raw char at 750 °C. The formation of the CxNi structure lowered the activation barrier for the ring opening reaction. Possible transformation pathways of Ni species were as follows: Ni(NO3)2·6H2O â†’ NiO â†’ Ni. KNi changed the reaction pathways and the most energy-consuming step. The study could shed light on the hydrogasification reaction mechanism.


Asunto(s)
Dióxido de Carbono , Elementos de Transición , Dióxido de Carbono/química , Carbono , Temperatura , Catálisis , Biomasa
9.
Bioresour Technol ; 393: 130171, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38086460

RESUMEN

The study reports the economic and sustainable syntheses of a lignin-based porous carbon (LPC) for CO2 capture application. The pH values of hydrothermal solution affected the polymerization and aromatization of spheroidization, with morphological changes from blocky to microsphere. In addition, the reliable mechanisms of CO2 adsorption were proposed by combining experiments with Gaussian16 simulations based on DFT. The electrostatic attraction of oxygen-containing functional groups and the diffusivity resistance of CO2 in the pores are the key factors for the CO2 adsorption. ​The carboxyl groups have the strongest electrostatic attraction to CO2. LPC-pH 1 has the highest carboxyl group content, possessing a CO2 adsorption capacity of up to 5.10 mmol/g at 0℃, 1 bar. Furthermore, CO2 diffusion resistance became a main factor as the adsorption temperature increases. The innovative combination of quantum chemical calculations and microscopic properties provides a viable pathway for an insight into the future control of lignin-based carbon formation.


Asunto(s)
Dióxido de Carbono , Lignina , Dióxido de Carbono/química , Lignina/química , Adsorción , Porosidad , Microesferas , Concentración de Iones de Hidrógeno
10.
Int J Biol Macromol ; 257(Pt 1): 128536, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38061522

RESUMEN

CpG oligodeoxynucleotides (ODNs) strongly activate the immune system after binding to toll-like receptor 9 (TLR9) in lysosome, which demonstrated significant potential in cancer immunotherapy. However, their therapeutic efficacy is limited by drawbacks such as rapid degradation and poor cellular uptake. Although encouraging progress have been made on developing various delivery systems for CpG ODNs, safety risks of the synthetic nanocarriers as well as the deficient CpG ODNs release within lysosome remain big obstacles. Herein, we developed a novel nanovector for lysosome-targeted CpG ODNs delivery and enhanced cancer immunotherapy. Natural glycogen was simply aminated (NH2-Gly) through grafting with diethylenetriamine (DETA), which was spherical in shape with diameter of approximately 40 nm. NH2-Gly possessed good biocompatibility. Cationic NH2-Gly complexed CpG ODNs well and protected them from nuclease digestion. NH2-Gly significantly enhanced the cellular uptake of CpG ODNs. Efficient CpG ODNs release was observed in the presence of α-glucosidase that mimicking the environment of lysosome. Consequently, NH2-Gly/CpG complexes triggered potent antitumor immunity and effectively inhibit the tumor growth without causing any toxic effect or tissue damages. This work highlights the promise of glycogen for lysosome-targeted on-command delivery of CpG ODNs, which brings new hope for precision cancer immunotherapy.


Asunto(s)
Adyuvantes Inmunológicos , Neoplasias , Humanos , Adyuvantes Inmunológicos/farmacología , Oligodesoxirribonucleótidos/farmacología , Oligodesoxirribonucleótidos/química , Lisosomas , Inmunoterapia , Neoplasias/tratamiento farmacológico
11.
J Colloid Interface Sci ; 658: 90-99, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38100979

RESUMEN

The electrochemical properties of corn starch (CS)-based hydrothermal carbon microsphere (CMS) electrode materials for supercapacitor are closely related to their structures. Herein, cetyltrimethyl ammonium bromide (CTAB) was used as a soft template to form the corn starch (CS)-based carbon microspheres with radial hollow structure in the inner and middle layers by hydrothermal and sol-gel method. Due to the introduction of multi-layer hollow structure of carbon microsphere, more micropores were produced during CO2 activation, which increased the specific surface area and improved the capacitance performance. Compared to commercial activated carbon, the four different morphologies of corn starch CMS had better electrochemical performances. Consequently, the proposed CO2-(CTAB)-CS-CS exhibits a high discharge specific capacitance of 242.5F/g at 1 A/g in three-electrode system with 6 M KOH electrolyte, better than commercial activated carbon with 208.5F/g. Moreover, excellent stability is achieved for CO2-(CTAB)-CS-CS with approximately 97.14 % retention of the initial specific capacitance value after 10,000 cycles at a current density of 2 A/g, while the commercial activated carbon has 86.96 % retention. This implies that the corn starch-based multilayer hollow CMS could be a promising electrode material for high-performance supercapacitors.

12.
Anal Chim Acta ; 1285: 342024, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38057061

RESUMEN

As a basic parameter of the intracellular microenvironment, viscosity is closely related to the development of cancer. Thus, it is necessary to utilize a sensitive tool to visualize the viscosity in tumor cells and mice, which is helpful for the diagnosis of cancer. Herein, a novel dual-modal probe (IX-V) that has a near-infrared fluorescence (NIRF) and photoacoustic (PA) response to viscosity is synthesized. In low viscosity media, the probe has no fluorescence. With the increase of viscosity, the fluorescence is produced in the near-infrared region due to the inhibition of the TICT process. At the same time, the probe shows different photoacoustic (PA) signals in different viscosity media. Most notably, the viscosity in tumor cells has been imaged successfully by the application of IX-V, and the probe can effectively distinguish cancer cells from normal cells co-cultured in one dish by the difference of fluorescence intensity. In addition, the probe has been used for dual-modal imaging (NIRF and PA) of viscosity in tumor mice, which provides a tool for exploring the relationship between viscosity and diseases. That is to say, IX-V can achieve complementary imaging effects and has great application prospects in the tumor diagnosis.


Asunto(s)
Colorantes Fluorescentes , Neoplasias , Ratones , Animales , Viscosidad , Línea Celular Tumoral , Fluorescencia , Imagen Óptica/métodos , Neoplasias/diagnóstico por imagen
13.
Small ; : e2309107, 2023 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-38145322

RESUMEN

Synthesis of upconversion nanoparticles (UCNPs)-metal halide perovskites (MHPs) heterostructure is garnered immense attentions due to their unparalleled photophysical properties. However, the obvious difference in their structural forms makes it a huge challenge. Herein, hexagonal ß-NaYF4 and hexagonal Cs4 PbBr6 are filtrated to construct the UCNP/MHP heterostructural luminescent material. The similarity in their crystal structures facilitate the heteroepitaxial growth of Cs4 PbBr6 on the surface of ß-NaYF4 NPs, leading to the formation of high-quality ß-NaYF4 :Yb,Tm/Cs4 PbBr6 core/shell nanocrystals (NCs). Interestingly, this heterostructure endows the core/shell NCs with typically narrow-band green emission centered at 524 nm under 980 nm excitation, which should be attributed to the Förster resonance energy transfer (FRET) from Tm3+ to Cs4 PbBr6 . It is noteworthy that the FRET efficiency of ß-NaYF4 :Yb,Tm/Cs4 PbBr6 core/shell NCs (58.33%) is much higher than that of the physically mixed sample (1.84%). In addition, the reduced defect density, lattice anchoring effect, as well as diluted ionic bonding proportion induced by the core/shell structure further increase the excellent water-resistance and thermal cycling stability of Cs4 PbBr6 . These findings open up a new way to construct UCNP/MHP heterostructure with better multi-code luminescence performance and stability and promote its wide optoelectronic applications.

14.
Anal Chem ; 95(48): 17559-17567, 2023 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-37994418

RESUMEN

Cysteine is an important biological thiol and is closely related to cancer. It remains a challenge to develop a probe that can provide long-term fluorescence detection and imaging of Cys in cells as well as in living organisms. Here, a solid-state fluorophore HTPQ is combined with an acrylate group to construct a solid-state fluorescent probe HTPQC for Cys recognition. The fluorescence of the probe is quenched when the photoinduced electron transfer (PET) process is turned on and the excited-state intramolecular proton transfer (ESIPT) process is turned off. In the presence of Cys, an obvious solid-state fluorescence signal can be observed. The double quenching mechanism makes the probe HTPQC have the advantages of high sensitivity, good selectivity, and high contrast of biological imaging. Due to low cytotoxicity, the probe HTPQC can be used to detect exogenous and endogenous Cys in living cells and is capable of imaging over long periods of time. By making full use of long wavelengths, the probe can be applied for the detection of Cys levels in tumor mice and equipped with the ability to conduct long-term imaging in vivo.


Asunto(s)
Cisteína , Colorantes Fluorescentes , Humanos , Animales , Ratones , Colorantes Fluorescentes/toxicidad , Células HeLa , Compuestos de Sulfhidrilo , Protones
15.
Analyst ; 148(22): 5724-5730, 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37840316

RESUMEN

Although hydrogen sulfide (H2S) is a well-known toxic gas, its vital role as a gas transmitter in various physiological and pathological processes of living systems cannot be ignored. Relevant investigations indicate that endogenous H2S is involved in the development of ulcerative colitis pathology and is overexpressed in ulcerative colitis, and hence can be considered as an ulcerative colitis biomarker. Herein, an isophorone-xanthene-based NIR fluorescent probe (IX-H2S) was constructed to image H2S. Owing to its large conjugated structure, the probe exhibits a near-infrared emission wavelength of 770 nm with a large Stokes shift (186 nm). Moreover, IX-H2S has excellent selectivity for the detection of H2S without interference from other analytes including thiols. In addition, the probe has been successfully applied not only in fluorescence imaging of endogenous and exogenous H2S in living cells, but also in imaging of H2S in normal and ulcerative colitis mice. Encouraged by the eminent performance, IX-H2S is expected to be a potent "assistant" for the diagnosis of ulcerative colitis.


Asunto(s)
Colitis Ulcerosa , Sulfuro de Hidrógeno , Humanos , Ratones , Animales , Colorantes Fluorescentes/toxicidad , Colorantes Fluorescentes/química , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/diagnóstico , Células HeLa , Mitocondrias , Imagen Óptica
16.
Molecules ; 28(19)2023 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-37836623

RESUMEN

The catalytic gasification of petroleum coke with different ratios of K2CO3 was investigated by a thermogravimetric analyzer (TGA) using the non-isothermal method. The initial, peak, and final gasification temperatures of the petroleum coke decreased greatly as the amount of K2CO3 increased, and the catalytic reaction became saturated at a concentration of K+ higher than 5 mmol/g; with the further increase in catalyst; the gasification rate varied slightly, but no inhibition effect was observed. The vaporization of the catalyst was confirmed during the gasification at high temperatures. The structural evolution of the residual coke with different carbon conversions was examined by X-ray diffraction (XRD), Raman spectroscopy, and N2 adsorption analyses during gasification with and without the catalyst. The results showed that the carbon crystallite structure of the residual coke varied in the presence of the catalyst. As the carbon conversion increased, the structure of the residual coke without the catalyst became more ordered, and the number of aromatic rings decreased, while the graphitization degree of the residual coke in the presence of the catalyst decreased. Meanwhile, the surface area and pore volume of petroleum coke increased in the gasification process of the residual coke, irrespective of the presence of the catalyst. However, the reactivity of the residual coke did not change much with the variation in the carbon and pore structure during the reaction.

17.
Int J Biol Macromol ; 253(Pt 3): 126998, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37729981

RESUMEN

CpG oligodeoxynucleotides (CpG ODNs) activate immune system and show strong potential in cancer immunotherapy. However, therapeutic efficacy of CpG ODNs is hampered due to rapid nuclease degradation and insufficient cellular uptake. Delivery of CpG ODNs into antigen presenting cells (APCs) is vital to enhance their therapeutic efficacy. Herein, we developed a super-convenient yet efficient strategy for macrophage-targeted delivery of CpG ODNs and synergistically enhanced cancer immunotherapy. Aminated yeast ß-D-glucan (NH2-Glu) was simply synthesized through functionalization of ß-D-glucan with DETA, which exhibited a dendrimer-like shape with size of about 80 nm. NH2-Glu complexed negatively-charged CpG ODNs. The as-prepared NH2-Glu/CpG complexes were positively charged, uniformly dispersed and exhibited good stability against nuclease degradation. Due to the specific recognition with dectin-1 expressed on macrophages, NH2-Glu/CpG complexes targeted macrophage and exhibited significantly enhanced cellular uptake due to dectin-1-mediated endocytosis. NH2-Glu/CpG complexes showed potent immunostimulatory activity. Contributed by the inherent immunostimulatory and antitumor activity, yeast ß-D-glucan functioned synergistically with CpG ODNs in inducing antitumor immunity. NH2-Glu/CpG complexes remarkably inhibited tumor growth without causing toxic effect. In summary, this work provides a facile yet efficient macrophage-targeted CpG ODNs delivery system for cancer immunotherapy.


Asunto(s)
Adyuvantes Inmunológicos , Neoplasias , Humanos , Adyuvantes Inmunológicos/farmacología , Saccharomyces cerevisiae , Glucanos/farmacología , Macrófagos , Inmunoterapia , Oligodesoxirribonucleótidos/farmacología
18.
Viruses ; 15(8)2023 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-37632015

RESUMEN

Antibiotic resistance poses a growing risk to public health, requiring new tools to combat pathogenic bacteria. Contractile injection systems, including bacteriophage tails, pyocins, and bacterial type VI secretion systems, can efficiently penetrate cell envelopes and become potential antibacterial agents. Bacteriophage XM1 is a dsDNA virus belonging to the Myoviridae family and infecting Vibrio bacteria. The XM1 virion, made of 18 different proteins, consists of an icosahedral head and a contractile tail, terminated with a baseplate. Here, we report cryo-EM reconstructions of all components of the XM1 virion and describe the atomic structures of 14 XM1 proteins. The XM1 baseplate is composed of a central hub surrounded by six wedge modules to which twelve spikes are attached. The XM1 tail contains a fewer number of smaller proteins compared to other reported phage baseplates, depicting the minimum requirements for building an effective cell-envelope-penetrating machine. We describe the tail sheath structure in the pre-infection and post-infection states and its conformational changes during infection. In addition, we report, for the first time, the in situ structure of the phage neck region to near-atomic resolution. Based on these structures, we propose mechanisms of virus assembly and infection.


Asunto(s)
Bacteriófagos , Myoviridae , Myoviridae/genética , Bacteriófagos/genética , Antibacterianos , Membrana Celular , ADN
19.
Adv Healthc Mater ; 12(27): e2301230, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37632840

RESUMEN

As cancer markers, hydrogen peroxide (H2 O2 ) and viscosity play an essential role in the development of tumors. Meanwhile, based on the performance of near-infrared (NIR) fluorescence imaging and the high efficiency of photodynamic therapy (PDT) and photothermal therapy (PTT) synergistic therapy, it is urgent to develop a dual-key (H2 O2 and viscosity) activated fluorescence probe for cancer phototherapy. Herein, a NIR-I/II fluorescence probe named BX-B is reported. In the presence of both H2 O2 and viscosity, the fluorescence signal of NIR-I (810 nm) and NIR-II (945 nm) can be released. In the presence of H2 O2 , the PDT and PTT effects are observed. BX-B is used to monitor its therapeutic effects in cancer cells and tumor-bearing mice due to the increased viscosity caused by PDT and PTT. In addition, the tumors of mice treated with BX-B are almost completely ablated after the laser irradiation based on its PDT and PTT synergistic therapy. This work provides a reliable platform for effective cancer treatment and immediate evaluation of therapeutic effects.


Asunto(s)
Nanopartículas , Neoplasias , Fotoquimioterapia , Animales , Ratones , Terapia Fototérmica , Fluorescencia , Neoplasias/terapia , Neoplasias/tratamiento farmacológico , Fototerapia , Línea Celular Tumoral , Fármacos Fotosensibilizantes/farmacología
20.
Chem Sci ; 14(33): 8914-8923, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37621427

RESUMEN

Recently, the polarization effect has been receiving tremendous attention, as it can result in improved stability and charge transfer efficiency of metal-halide perovskites (MHPs). However, realizing the polarization effect on CsPbX3 NCs still remains a challenge. Here, metal ions with small radii (such as Mg2+, Li+, Ni2+, etc.) are introduced on the surface of CsPbX3 NCs, which facilitate the arising of electric dipole and surface polarization. The surface polarization effect promotes redistribution of the surface electron density, leading to reinforced surface ligand bonding, reduced surface defects, near unity photoluminescence quantum yields (PLQYs), and enhanced stability. Moreover, further introduction of hydroiodic acid results in the in situ formation of tert-butyl iodide (TBI), which facilitates the successful synthesis of pure iodine-based CsPbI3 NCs with high PLQY (95.3%) and stability under ambient conditions. The results of this work provide sufficient evidence to exhibit the crucial role of the surface polarization effect, which promotes the synthesis of high-quality MHPs and their applications in the fields of optoelectronic devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...