Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 320
Filtrar
1.
BMC Genomics ; 25(1): 658, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956486

RESUMEN

BACKGROUND: The cashmere goat industry is one of the main pillars of animal husbandry in Inner Mongolia Autonomous Region, and plays an irreplaceable role in local economic development. With the change in feeding methods and environment, the cashmere produced by Inner Mongolia cashmere goats shows a tendency of coarser, and the cashmere yield can not meet the consumption demand of people. However, the genetic basis behind these changes is not fully understood. We measured cashmere traits, including cashmere yield (CY), cashmere diameter (CD), cashmere thickness (CT), and fleece length (FL) traits for four consecutive years, and utilized Genome-wide association study of four cashmere traits in Inner Mongolia cashmere goats was carried out using new genomics tools to infer genomic regions and functional loci associated with cashmere traits and to construct haplotypes that significantly affect cashmere traits. RESULTS: We estimated the genetic parameters of cashmere traits in Inner Mongolia cashmere goats. The heritability of cashmere yield, cashmere diameter, and fleece length traits of Inner Mongolia cashmere goats were 0.229, 0.359, and 0.250, which belonged to the medium heritability traits (0.2 ~ 0.4). The cashmere thickness trait has a low heritability of 0.053. We detected 151 genome-wide significantly associated SNPs with four cashmere traits on different chromosomes, which were very close to the chromosomes of 392 genes (located within the gene or within ± 500 kb). Notch3, BMPR1B, and CCNA2 have direct functional associations with fibroblasts and follicle stem cells, which play important roles in hair follicle growth and development. Based on GO functional annotation and KEGG enrichment analysis, potential candidate genes were associated with pathways of hair follicle genesis and development (Notch, P13K-Akt, TGF-beta, Cell cycle, Wnt, MAPK). We calculated the effective allele number of the Inner Mongolia cashmere goat population to be 1.109-1.998, the dominant genotypes of most SNPs were wild-type, the polymorphic information content of 57 SNPs were low polymorphism (0 < PIC < 0.25), and the polymorphic information content of 79 SNPs were moderate polymorphism (0.25 < PIC < 0.50). We analyzed the association of SNPs with phenotypes and found that the homozygous mutant type of SNP1 and SNP3 was associated with the highest cashmere yield, the heterozygous mutant type of SNP30 was associated with the lowest cashmere thickness, the wild type of SNP76, SNP77, SNP78, SNP80, and SNP81 was associated with the highest cashmere thickness, and the wild type type of SNP137 was associated with the highest fleece length. 21 haplotype blocks and 68 haplotype combinations were constructed. Haplotypes A2A2, B2B2, C2C2, and D4D4 were associated with increased cashmere yield, haplotypes E2E2, F1F1, G5G5, and G1G5 were associated with decreased cashmere fineness, haplotypes H2H2 was associated with increased cashmere thickness, haplotypes I1I1, I1I2, J1J4, L5L3, N3N2, N3N3, O2O1, P2P2, and Q3Q3 were associated with increased cashmere length. We verified the polymorphism of 8 SNPs by KASP, and found that chr7_g.102631194A > G, chr10_g.82715068 T > C, chr1_g.124483769C > T, chr24_g.12811352C > T, chr6_g.114111249A > G, and chr6_g.115606026 T > C were significantly genotyped in verified populations (P < 0.05). CONCLUSIONS: In conclusion, the genetic effect of single SNP on phenotypes is small, and SNPs are more inclined to be inherited as a whole. By constructing haplotypes from SNPs that are significantly associated with cashmere traits, it will help to reveal the complex and potential causal variations in cashmere traits of Inner Mongolia cashmere goats. This will be a valuable resource for genomics and breeding of the cashmere goat.


Asunto(s)
Estudio de Asociación del Genoma Completo , Cabras , Haplotipos , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Animales , Cabras/genética , Cabras/crecimiento & desarrollo , Fenotipo , China , Carácter Cuantitativo Heredable
2.
ACS Nano ; 18(26): 17111-17118, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38952326

RESUMEN

Establishing reliable electrical contacts to atomically thin materials is a prerequisite for both fundamental studies and applications yet remains a challenge. In particular, the development of contact techniques for air-sensitive monolayers has lagged behind, despite their unique properties and significant potential for applications. Here, we present a robust method to create contacts to device layers encapsulated within hexagonal boron nitride (hBN). This method uses plasma etching and metal deposition to create 'vias' in the hBN with graphene forming an atomically thin etch-stop. The resulting partially fluorinated graphene (PFG) protects the underlying device layer from air-induced degradation and damage during metal deposition. PFG is resistive in-plane but maintains high out-of-plane conductivity. The work function of the PFG/metal contact is tunable through the degree of fluorination, offering opportunities for contact engineering. Using the in situ via technique, we achieve ambipolar contact to air-sensitive monolayer 2H-molybdenum ditelluride (MoTe2) with more than 1 order of magnitude improvement in on-current density compared to previous literature. The complete encapsulation provides high reproducibility and long-term stability. The technique can be extended to other air-sensitive materials as well as air-stable materials, offering highly competitive device performance.

3.
Eur Radiol ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38940828

RESUMEN

OBJECTIVES: This study aimed to compare the safety and effectiveness of tunneled peripherally inserted central catheters (T-PICC) vs. conventional PICCs (C-PICC) in adult cancer patients. METHODS: A multicentre randomized controlled trial was conducted between April 2021 and January 2022 in seven hospitals in China. 564 participants were randomly assigned to T-PICC or C-PICC. These data were collected and compared: the baseline characteristics and catheterization-related characteristics, periprocedural complications, and long-term complications. RESULTS: Five-hundred fifty-three participants (aged, 52.6 ± 12.3 years; female, 39.1%) were ultimately analyzed. No significant differences in periprocedural complications were found between the T-PICC and C-PICC groups (all p > 0.05). Compared with C-PICC, T-PICC significantly reduced the incidence of long-term complications (26.4% vs. 39.9%, p < 0.001). Specifically, reduced complications were found in central line-associated bloodstream infection (1.8% vs. 5.1%, p = 0.04), thrombosis (1.1% vs. 4.0%, p = 0.03), catheter dislodgement (4.7% vs. 10.1%, p = 0.01), non-infectious oozing (17.3% vs. 28.6%, p = 0.002), local infection (3.6% vs. 7.6%, p = 0.04), skin irritation (6.1% vs. 10.9%, p = 0.046), and reduced unplanned catheter removal (2.2% vs. 7.2%, p = 0.005). No significant differences were found between T-PICC and C-PICC regarding catheter occlusion (6.5% vs. 5.8%, p = 0.73) or skin damage (2.2% vs. 2.9%, p = 0.58). CONCLUSION: T-PICC is safe and effectively reduces long-term complications. CLINICAL RELEVANCE STATEMENT: The tunneled technique is effective in reducing PICC-related long-term complications. Thus, it is recommended for cancer patients at high risk of PICC-related complications. TRIAL REGISTRATION: The registration number on https://www.chictr.org.cn/ is ChiCTR2100044632. The name of the trial registry is "A multicenter randomized controlled study of clinical use of tunneled vs. non-tunneled PICC". KEY POINTS: Cather-related complications are associated with the technique of catheterization. Compared with conventional PICC, tunneled PICC reduced catheter-related long-term complications. Tunneled PICC placement provides an alternative catheterization method for cancer patients.

4.
PLoS Negl Trop Dis ; 18(6): e0012216, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38848311

RESUMEN

Severe fever with thrombocytopenia syndrome virus (SFTSV) is a novel tick-borne viral pathogen that causes severe fever with thrombocytopenia syndrome (SFTS). The disease was initially reported in central and eastern China, then later in Japan and South Korea, with a mortality rate of 13-30%. Currently, no vaccines or effective therapeutics are available for SFTS treatment. In this study, three monoclonal antibodies (mAbs) targeting the SFTSV envelope glycoprotein Gn were obtained using the hybridoma technique. Two mAbs recognized linear epitopes and did not neutralize SFTSV, while the mAb 40C10 can effectively neutralized SFTSV of different genotypes and also the SFTSV-related Guertu virus (GTV) and Heartland virus (HRTV) by targeting a spatial epitope of Gn. Additionally, the mAb 40C10 showed therapeutic effect in mice infected with different genotypes of SFTSV strains against death by preventing the development of lesions and by promoting virus clearance in tissues. The therapeutic effect could still be observed in mice infected with SFTSV which were administered with mAb 40C10 after infection even up to 4 days. These findings enhance our understanding of SFTSV immunogenicity and provide valuable information for designing detection methods and strategies targeting SFTSV antigens. The neutralizing mAb 40C10 possesses the potential to be further developed as a therapeutic monoclonal antibody against SFTSV and SFTSV-related viruses.


Asunto(s)
Anticuerpos Monoclonales , Anticuerpos Antivirales , Ratones Endogámicos BALB C , Phlebovirus , Phlebovirus/inmunología , Phlebovirus/genética , Animales , Anticuerpos Monoclonales/inmunología , Ratones , Anticuerpos Antivirales/inmunología , Anticuerpos Neutralizantes/inmunología , Femenino , Síndrome de Trombocitopenia Febril Grave/inmunología , Síndrome de Trombocitopenia Febril Grave/virología , Epítopos/inmunología , Proteínas del Envoltorio Viral/inmunología , Proteínas del Envoltorio Viral/genética , Glicoproteínas/inmunología , Glicoproteínas/genética , Infecciones por Bunyaviridae/inmunología , Infecciones por Bunyaviridae/virología , Infecciones por Bunyaviridae/prevención & control , Humanos
5.
Int J Biol Macromol ; 275(Pt 1): 133458, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38945326

RESUMEN

The development of novel therapeutic approaches to facilitate endometrial repair and regeneration while preventing adhesion recurrence is a crucial research objective aimed at enhancing clinical outcomes for women with intrauterine adhesions (IUA). In this study, we introduced an injectable Alg-GMA/PTSB zwitterionic hydrogel, characterized by excellent biocompatibility, anti-protein adsorption properties, and biodegradability. In a rat model, the hydrogel significantly promoted the regeneration and angiogenesis of damaged endometrial tissue, leading to improved recovery of epithelial cells, glands, proliferation, and vascularization. Furthermore, it exhibited the ability to suppress cellular apoptosis and collagen deposition, thereby mitigating fibrosis. Additionally, the hydrogel restored the expression of estrogen/progesterone receptors and endometrial receptivity markers, contributing to enhanced embryo implantation and fertility. These findings underscore the potential of the hydrogel as a promising therapeutic strategy for addressing endometrial injury, reducing fibrosis, restoring fertility, and ultimately improving outcomes for women with IUA.

6.
Front Vet Sci ; 11: 1409084, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38872797

RESUMEN

Northwest Xizang White Cashmere Goat (NXWCG) is the first new breed of cashmere goat in the Xizang Autonomous Region. It has significant characteristics of extremely high fineness, gloss, and softness. Genome-wide association analysis is an effective biological method used to measure the consistency and correlation of genotype changes between two molecular markers in the genome. In addition, it can screen out the key genes affecting the complex traits of biological individuals. The aim of this study was to analyze the genetic mechanism of cashmere trait variation in NXWCG and to discover SNP locus and key genes closely related to traits such as superfine cashmere. Additionally, the key genes near the obtained significant SNPs were analyzed by gene function annotation and biological function mining. In this study, the phenotype data of the four traits (cashmere length, fiber length, cashmere diameter, and cashmere production) were collected. GGP_Goat_70K SNP chip was used for genotyping the ear tissue DNA of the experimental group. Subsequently, the association of phenotype data and genotype data was performed using Gemma-0.98.1 software. A linear mixed model was used for the association study. The results showed that four fleece traits were associated with 18 significant SNPs at the genome level and 232 SNPs at the chromosome level, through gene annotated from Capra hircus genome using assembly ARS1. A total of 107 candidate genes related to fleece traits were obtained. Combined with Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis, we can find that CLNS1A, CCSER1, RPS6KC1, PRLR, KCNRG, KCNK9, and CLYBL can be used as important candidate genes for fleece traits of NXWCG. We used Sanger sequencing and suitability chi-square test to further verify the significant loci and candidate genes screened by GWAS, and the results show that the base mutations loci on the five candidate genes, CCSER1 (snp12579, 34,449,796, A → G), RPS6KC1 (snp41503, 69,173,527, A → G), KCNRG (snp41082, 67,134,820, G → A), KCNK9 (14:78472665, 78,472,665, G → A), and CLYBL (12: 9705753, 9,705,753, C → T), significantly affect the fleece traits of NXWCG. The results provide a valuable basis for future research and contribute to a better understanding of the genetic structure variation of the goat.

8.
Yi Chuan ; 46(5): 421-430, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38763776

RESUMEN

Inner Mongolia cashmere goat is an excellent livestock breed formed through long-term natural selection and artificial breeding, and is currently a world-class dual-purpose breed producing cashmere and meat. Multi trait animal model is considered to significantly improve the accuracy of genetic evaluation in livestock and poultry, enabling indirect selection between traits. In this study, the pedigree, genotype, environment, and phenotypic records of early growth traits of Inner Mongolia cashmere goats were used to build multi trait animal model., Then three methods including ABLUP, GBLUP, and ssGBLUP wereused to estimate the genetic parameters and genomic breeding values of early growth traits (birth weight, weaning weight, average daily weight gain before weaning, and yearling weight). The accuracy and reliability of genomic estimated breeding value are further evaluated using the five fold cross validation method. The results showed that the heritability of birth weight estimated by three methods was 0.13-0.15, the heritability of weaning weight was 0.13-0.20, heritability of daily weight gain before weaning was 0.11-0.14, and the heritability of yearling weight was 0.09-0.14, all of which belonged to moderate to low heritability. There is a strong positive genetic correlation between weaning weight and daily weight gain before weaning, daily weight gain before weaning and yearling weight, with correlation coefficients of 0.77-0.79 and 0.56-0.67, respectively. The same pattern was found in phenotype correlation among traits. The accuracy of the estimated breeding values by ABLUP, GBLUP, and ssGBLUP methods for birth weight is 0.5047, 0.6694, and 0.7156, respectively; the weaning weight is 0.6207, 0.6456, and 0.7254, respectively; the daily weight gain before weaning was 0.6110, 0.6855, and 0.7357 respectively; and the yearling weight was 0.6209, 0.7155, and 0.7756, respectively. In summary, the early growth traits of Inner Mongolia cashmere goats belong to moderate to low heritability, and the speed of genetic improvement is relatively slow. The genetic improvement of other growth traits can be achieved through the selection of weaning weight. The ssGBLUP method has the highest accuracy and reliability in estimating genomic breeding value of early growth traits in Inner Mongolia cashmere goats, and is significantly higher than that from ABLUP method, indicating that it is the best method for genomic breeding of early growth weight in Inner Mongolia cashmere goats.


Asunto(s)
Cruzamiento , Cabras , Animales , Cabras/genética , Cabras/crecimiento & desarrollo , Fenotipo , Genómica/métodos , Femenino , Masculino , Peso al Nacer/genética , Modelos Genéticos
9.
Nature ; 630(8017): 636-642, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38811732

RESUMEN

Chemical vapour deposition (CVD) synthesis of graphene on copper has been broadly adopted since the first demonstration of this process1. However, widespread use of CVD-grown graphene for basic science and applications has been hindered by challenges with reproducibility2 and quality3. Here we identify trace oxygen as a key factor determining the growth trajectory and quality for graphene grown by low-pressure CVD. Oxygen-free chemical vapour deposition (OF-CVD) synthesis is fast and highly reproducible, with kinetics that can be described by a compact model, whereas adding trace oxygen leads to suppressed nucleation and slower/incomplete growth. Oxygen affects graphene quality as assessed by surface contamination, emergence of the Raman D peak and decrease in electrical conductivity. Epitaxial graphene grown in oxygen-free conditions is contamination-free and shows no detectable D peak. After dry transfer and boron nitride encapsulation, it shows room-temperature electrical-transport behaviour close to that of exfoliated graphene. A graphite-gated device shows well-developed integer and fractional quantum Hall effects. By highlighting the importance of eliminating trace oxygen, this work provides guidance for future CVD system design and operation. The increased reproducibility and quality afforded by OF-CVD synthesis will broadly influence basic research and applications of graphene.

10.
J Virol ; 98(6): e0023524, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38775478

RESUMEN

Baculoviruses enter insect midgut epithelial cells via a set of occlusion-derived virion (ODV) envelope proteins called per os infectivity factors (PIFs). P74 of Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV), which was the first identified PIF, is cleaved by an endogenous proteinase embedded within the occlusion body during per os infection, but the target site(s) and function of the cleavage have not yet been ascertained. Here, based on bioinformatics analyses, we report that cleavage was predicted at an arginine and lysine-rich region in the middle of P74. A series of recombinant viruses with site-directed mutants in this region of P74 were generated. R325 or R334 was identified as primary cleavage site. In addition, we showed that P74 is also cleaved by brush border membrane vesicles (BBMV) of the host insect at R325 or R334, instead of R195, R196, and R199, as previously reported. Simultaneous mutations in R195, R196, and R199 lead to instability of P74 during ODV release. Bioassays showed that mutations at both R325 and R334 significantly affected oral infectivity. Taken together, our data show that both R325 and R334 of AcMNPV P74 are the primary cleavage site for both occlusion body endogenous proteinase and BBMV proteinase during ODV release and are critical for oral infection. IMPORTANCE: Cleavage of viral envelope proteins is usually an important trigger for viral entry into host cells. Baculoviruses are insect-specific viruses that infect host insects via the oral route. P74, a per os infectivity factor of baculoviruses, is cleaved during viral entry. However, the function and precise cleavage sites of P74 remain unknown. In this study, we found that R325 or R334 between the N- and C-conserved domains of P74 was the primary cleavage site by proteinase either from the occlusion body or host midgut. The biological significance of cleavage seems to be the release of the potential fusion peptide at the N-terminus of the cleaved C-terminal P74. Our results shed light on the cleavage model of P74 and imply its role in membrane fusion in baculovirus per os infection.


Asunto(s)
Nucleopoliedrovirus , Animales , Nucleopoliedrovirus/metabolismo , Nucleopoliedrovirus/genética , Péptido Hidrolasas/metabolismo , Péptido Hidrolasas/genética , Internalización del Virus , Células Sf9 , Spodoptera , Proteínas del Envoltorio Viral/metabolismo , Proteínas del Envoltorio Viral/genética , Microvellosidades/metabolismo , Microvellosidades/virología , Virión/metabolismo , Cuerpos de Oclusión Viral/metabolismo
11.
Viruses ; 16(4)2024 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-38675904

RESUMEN

Currently, insecticides that target nicotinic acetylcholine receptors (nAChR) are widely used. Studies on the sublethal effects of insecticides have found that they can affect the amount of virus in insects. The mechanism by which insecticides affect insect virus load remain unclear. Here, we show that nAChR targeting insecticide can affect viral replication through the immune deficiency (IMD) pathway. We demonstrate that a low dose of spinosad (6.8 ng/mL), acting as an antagonist to Drosophila melanogaster nicotinic acetylcholine receptor α6 (Dα6), significantly elevates Drosophila melanogaster sigmavirus (DMelSV) virus titers in adults of Drosophila melanogaster. Conversely, a high dose of spinosad (50 ng/mL), acting as an agonist to Dα6, substantially decreases viral load. This bidirectional regulation of virus levels is absent in Dα6-knockout flies, signifying the specificity of spinosad's action through Dα6. Furthermore, the knockdown of Dα6 results in decreased expression of genes in the IMD pathway, including dredd, imd, relish, and downstream antimicrobial peptide genes AttA and AttB, indicating a reduced innate immune response. Subsequent investigations reveal no significant difference in viral titers between relish mutant flies and Dα6-relish double mutants, suggesting that the IMD pathway's role in antiviral defense is dependent on Dα6. Collectively, our findings shed light on the intricate interplay between nAChR signaling and the IMD pathway in mediating antiviral immunity, highlighting the potential for nAChR-targeting compounds to inadvertently influence viral dynamics in insect hosts. This knowledge may inform the development of integrated pest management strategies that consider the broader ecological impact of insecticide use.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Receptores Nicotínicos , Animales , Drosophila melanogaster/inmunología , Drosophila melanogaster/virología , Receptores Nicotínicos/metabolismo , Receptores Nicotínicos/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Combinación de Medicamentos , Macrólidos/farmacología , Replicación Viral/efectos de los fármacos , Inmunidad Innata , Insecticidas/farmacología , Carga Viral/efectos de los fármacos , Transducción de Señal
12.
BMC Genomics ; 25(1): 349, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589806

RESUMEN

The fleece traits are important economic traits of goats. With the reduction of sequencing and genotyping cost and the improvement of related technologies, genomic selection for goats has become possible. The research collect pedigree, phenotype and genotype information of 2299 Inner Mongolia Cashmere goats (IMCGs) individuals. We estimate fixed effects, and compare the estimates of variance components, heritability and genomic predictive ability of fleece traits in IMCGs when using the pedigree based Best Linear Unbiased Prediction (ABLUP), Genomic BLUP (GBLUP) or single-step GBLUP (ssGBLUP). The fleece traits considered are cashmere production (CP), cashmere diameter (CD), cashmere length (CL) and fiber length (FL). It was found that year of production, sex, herd and individual ages had highly significant effects on the four fleece traits (P < 0.01). All of these factors should be considered when the genetic parameters of fleece traits in IMCGs are evaluated. The heritabilities of FL, CL, CP and CD with ABLUP, GBLUP and ssGBLUP methods were 0.26 ~ 0.31, 0.05 ~ 0.08, 0.15 ~ 0.20 and 0.22 ~ 0.28, respectively. Therefore, it can be inferred that the genetic progress of CL is relatively slow. The predictive ability of fleece traits in IMCGs with GBLUP (56.18% to 69.06%) and ssGBLUP methods (66.82% to 73.70%) was significantly higher than that of ABLUP (36.73% to 41.25%). For the ssGBLUP method is significantly (29% ~ 33%) higher than that with ABLUP, and which is slightly (4% ~ 14%) higher than that of GBLUP. The ssGBLUP will be as an superiors method for using genomic selection of fleece traits in Inner Mongolia Cashmere goats.


Asunto(s)
Genoma , Cabras , Humanos , Animales , Cabras/genética , Genómica/métodos , Fenotipo , Genotipo , Modelos Genéticos
13.
Heliyon ; 10(8): e29515, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38638982

RESUMEN

Of all malignancies, pancreatic ductal adenocarcinoma (PDAC), constituting 90% of pancreatic cancers, has the worst prognosis. Glycolysis is overactive in PDAC patients and is associated with poor prognosis. Drugs that inhibit glycolysis as well as induce cell death need to be identified. However, glycolysis inhibitors often fail to induce cell death. We here found that FV-429, a derivative of the natural flavonoid wogonin, can induce mitochondrial apoptosis and inhibit glycolysis in PDAC in vivo and in vitro. In vitro, FV-429 inhibited intracellular ATP content, glucose uptake, and lactate generation, consequently leading to mitochondrial dysfunction and apoptosis in PDAC cells. Furthermore, it decreased the expression of PKM2 (a specific form of pyruvate kinase) through the ERK signaling pathway and enhanced PKM2 nuclear translocation. TEPP-46, the activator of PKM2, reversed FV-429-induced glycolysis inhibition and mitochondrial apoptosis in the PDAC cells. In addition, FV-429 exhibited significant tumor suppressor activity and high safety in BxPC-3 cell xenotransplantation models. These results thus demonstrated that FV-429 decreases PKM2 expression through the ERK signaling pathway and enhances PKM2 nuclear translocation, thereby resulting in glycolysis inhibition and mitochondrial apoptosis in PDAC in vitro and in vivo, which makes FV-429 a promising candidate for pancreatic cancer treatment.

14.
Stress Biol ; 4(1): 23, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38662136

RESUMEN

Geminiviruses are an important group of viruses that infect a variety of plants and result in heavy agricultural losses worldwide. The homologs of C4 (or L4) in monopartite geminiviruses and AC4 (or AL4) in bipartite geminiviruses are critical viral proteins. The C4 proteins from several geminiviruses are the substrates of S-acylation, a dynamic post-translational modification, for the maintenance of their membrane localization and function in virus infection. Here we initiated a screening and identified a plant protein ABAPT3 (Alpha/Beta Hydrolase Domain-containing Protein 17-like Acyl Protein Thioesterase 3) as the de-S-acylation enzyme of C4 encoded by BSCTV (Beet severe curly top virus). Overexpression of ABAPT3 reduced the S-acylation of BSCTV C4, disrupted its plasma membrane localization, inhibited its function in pathogenesis, and suppressed BSCTV infection. Because the S-acylation motifs are conserved among C4 from different geminiviruses, we tested the effect of ABAPT3 on the C4 protein of ToLCGdV (Tomato leaf curl Guangdong virus) from another geminivirus genus. Consistently, ABAPT3 overexpression also disrupted the S-acylation, subcellular localization, and function of ToLCGdV C4, and inhibited ToLCGdV infection. In summary, we provided a new approach to globally improve the resistance to different types of geminiviruses in plants via de-S-acylation of the viral C4 proteins and it can be extendedly used for suppression of geminivirus infection in crops.

15.
Anim Biosci ; 37(7): 1168-1176, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38575127

RESUMEN

OBJECTIVE: As a charismatic species, cashmere goats have rich genetic resources. In the Inner Mongolia Autonomous Region, there are three cashmere goat varieties named and approved by the state. These goats are renowned for their high cashmere production and superior cashmere quality. Therefore, it is vitally important to protect their genetic resources as they will serve as breeding material for developing new varieties in the future. METHODS: Three breeds including Inner Mongolia cashmere goats (IMCG), Hanshan White cashmere goats (HS), and Ujimqin white cashmere goats (WZMQ) were studied. IMCG were of three types: Aerbas (AEBS), Erlangshan (ELS), and Alashan (ALS). Nine DNA samples were collected for each population, and they were genomically re-sequenced to obtain high-depth data. The genetic diversity parameters of each population were estimated to determine selection intensity. Principal component analysis, phylogenetic tree construction and genetic differentiation parameter estimation were performed to determine genetic relationships among populations. RESULTS: Samples from the 45 individuals from the five goat populations were sequenced, and 30,601,671 raw single nucleotide polymorphisms (SNPs) obtained. Then, variant calling was conducted using the reference genome, and 17,214,526 SNPs were retained after quality control. Individual sequencing depth of individuals ranged from 21.13× to 46.18×, with an average of 28.5×. In the AEBS, locus polymorphism (79.28) and expected heterozygosity (0.2554) proportions were the lowest, and the homologous consistency ratio (0.1021) and average inbreeding coefficient (0.1348) were the highest, indicating that this population had strong selection intensity. Conversely, ALS and WZMQ selection intensity was relatively low. Genetic distance between HS and the other four populations was relatively high, and genetic exchange existed among the other four populations. CONCLUSION: The Inner Mongolia cashmere goat (AEBS type) population has a relatively high selection intensity and a low genetic diversity. The IMCG (ALS type) and WZMQ populations had relatively low selection intensity and high genetic diversity. The genetic distance between HS and the other four populations was relatively high, with a moderate degree of differentiation. Overall, these genetic variations provide a solid foundation for resource identification of Inner Mongolia Autonomous Region cashmere goats in the future.

16.
Front Oncol ; 14: 1328606, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38434684

RESUMEN

Cancer cells can alter their metabolism to meet energy and molecular requirements due to unfavorable environments with oxygen and nutritional deficiencies. Therefore, metabolic reprogramming is common in a tumor microenvironment (TME). Aryl hydrocarbon receptor (AhR) is a ligand-activated nuclear transcription factor, which can be activated by many exogenous and endogenous ligands. Multiple AhR ligands can be produced by both TME and tumor cells. By attaching to various ligands, AhR regulates cancer metabolic reprogramming by dysregulating various metabolic pathways, including glycolysis, lipid metabolism, and nucleotide metabolism. These regulated pathways greatly contribute to cancer cell growth, metastasis, and evading cancer therapies; however, the underlying mechanisms remain unclear. Herein, we review the relationship between TME and metabolism and describe the important role of AhR in cancer regulation. We also focus on recent findings to discuss the idea that AhR acts as a receptor for metabolic changes in tumors, which may provide new perspectives on the direction of AhR research in tumor metabolic reprogramming and future therapeutic interventions.

17.
Cancer Immunol Immunother ; 73(4): 71, 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38430394

RESUMEN

BACKGROUND: Due to individual differences in tumors and immune systems, the response rate to immunotherapy is low in lung adenocarcinoma (LUAD) patients. Combinations with other therapeutic strategies improve the efficacy of immunotherapy in LUAD patients. Although radioimmunotherapy has been demonstrated to effectively suppress tumors, the underlying mechanisms still need to be investigated. METHODS: Total RNA from LUAD cells was sequenced before and after radiotherapy to identify differentially expressed radiation-associated genes. The similarity network fusion (SNF) algorithm was applied for molecular classification based on radiation-related genes, immune-related genes, methylation data, and somatic mutation data. The changes in gene expression, prognosis, immune cell infiltration, radiosensitivity, chemosensitivity, and sensitivity to immunotherapy were assessed for each subtype. RESULTS: We used the SNF algorithm and multi-omics data to divide TCGA-LUAD patients into three subtypes. Patients with the CS3 subtype had the best prognosis, while those with the CS1 and CS2 subtypes had poorer prognoses. Among the strains tested, CS2 exhibited the most elevated immune cell infiltration and expression of immune checkpoint genes, while CS1 exhibited the least. Patients in the CS2 subgroup were more likely to respond to PD-1 immunotherapy. The CS2 patients were most sensitive to docetaxel and cisplatin, while the CS1 patients were most sensitive to paclitaxel. Experimental validation of signature genes in the CS2 subtype showed that inhibiting the expression of RHCG and TRPA1 could enhance the sensitivity of lung cancer cells to radiation. CONCLUSIONS: In summary, this study identified a risk classifier based on multi-omics data that can guide treatment selection for LUAD patients.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Multiómica , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/terapia , Inmunoterapia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Análisis por Conglomerados , Pronóstico
18.
Biosens Bioelectron ; 250: 116096, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38316089

RESUMEN

Fast and accurate detection of Cryptococcus and precise differentiation of its subtypes is of great significance in protecting people from cryptococcal disease and preventing its spread in populations. However, traditional Cryptococcus identification and detection techniques still face significant challenges in achieving high analysis speed as well as high sensitivity. In this work, we report an electric microfluidic biochip. Compared to conventional methods that take several hours or even a day, this chip can detect Cryptococcus within 20 min, and achieve its maximum detection limit within 1 h, with the ability to differentiate between the Cryptococcus neoformans (NEO) and rare Cryptococcus gattii (GAT) efficiently, which accounts for nearly 100%. This device integrated two functional zones of an electroporation lysis (EL) zone for rapid cell lysis (<30 s) and an electrochemical detection (ED) zone for sensitive analysis of the released nucleic acids. The EL zone adopted a design of microelectrode arrays, which obtains a large electric field intensity at the constriction of the microchannel, addressing the safety concerns associated with high-voltage lysis. The device enables a limit of detection (LOD) of 60 pg/mL for NEO and 100 pg/mL for GAT through the modification of nanocomposites and specific probes. In terms of the detection time and sensitivity, the integrated microfluidic biochip demonstrates broad potential in Cryptococcus diagnosis and disease prevention.


Asunto(s)
Técnicas Biosensibles , Criptococosis , Cryptococcus gattii , Cryptococcus neoformans , Humanos , Criptococosis/diagnóstico
19.
Front Vet Sci ; 11: 1325831, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38374988

RESUMEN

Introduction: Inner Mongolia Cashmere Goats (IMCGs) are famous for its cashmere quality and it's a unique genetic resource in China. Therefore, it is necessary to use genomic selection to improve the accuracy of selection for fleece traits in Inner Mongolia cashmere goats. The aim of this study was to determine the effect of methods (GBLUP, BayesA, BayesB, Bayesian LASSO, Bayesian Ridge Region) and the reference population size on accuracy of genomic selection in IMCGs. Methods: This study fully utilizes the pedigree and phenotype records of fleece traits in 2255 individuals, genotype of 50794 SNPs after quality control, and environmental data to perform genomic selection of fleece traits. Then GBLUP and Bayes series methods (BayesA, BayesB, Bayesian LASSO, Bayesian Ridge Region) were used to perform estimates of genetic parameter and genomic breeding value. And the accuracy of genomic estimated breeding value (GEBV) is evaluated using the five-fold cross validation method. And the analysis of variance and multiple comparison methods were used to determine the best method for genomic selection in fleece traits of IMCGs. Further the different reference population sizes (500, 1000, 1500, and 2000) was set. Then the best method was applied to estimate genome breeding values, and evaluate the impact of reference population sizes on the accuracy of genome selection for fleece traits in IMCGs. Results: It was found that the genomic prediction accuracy for each fleece trait in IMCGs by GBLUP method is highest, and it is significantly higher than that obtained by Bayesian method. The accuracy of breeding value estimation is 58.52% -68.49%. Also, it was found that the size of the reference population has a significant impact on the accuracy of genome prediction of fleece traits. When the reference population size is 2000, the accuracy of genomic prediction for each fleece trait is significantly higher than other levels, with accuracy of 55.47% -67.87%. This provides a theoretical basis for design a reasonable genome selection plan for Inner Mongolia cashmere goats in the later stag.

20.
ACS Nano ; 18(4): 2872-2884, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38236597

RESUMEN

Strategies for rapid, effective nucleic acid processing hold tremendous significance to the clinical analysis of circulating tumor DNA (ctDNA), a family of important markers indicating tumorigenesis and metastasis. However, traditional techniques remain challenging to achieve efficient DNA enrichment, further bringing about complicated operation and limited detection sensitivity. Here, we developed an ion concentration polarization microplatform that enabled highly rapid, efficient enrichment and purification of ctDNA from a variety of clinical samples, including serum, urine, and feces. The platform demonstrated efficiently separating and enriching ctDNA within 30 s, with a 100-fold improvement over traditional methods. Integrating an on-chip isothermal amplification module, the platform further achieved 100-fold enhanced sensitivity in ctDNA detection, which significantly eliminated false-negative results in the serum or urine samples due to the low abundance of ctDNA. Such a simple-designed platform offers a user-friendly yet powerful diagnosis technique with a wide applicability, ranging from early tumor diagnosis to infection screening.


Asunto(s)
ADN Tumoral Circulante , Neoplasias , Ácidos Nucleicos , Humanos , Neoplasias/diagnóstico , Neoplasias/genética , ADN Tumoral Circulante/genética , Carcinogénesis , Técnicas de Amplificación de Ácido Nucleico/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...