Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Bioeng Biotechnol ; 12: 1381685, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38638320

RESUMEN

The construction of an antibacterial biological coating on titanium surface plays an important role in the long-term stability of oral implant restoration. Graphene oxide (GO) has been widely studied because of its excellent antibacterial properties and osteogenic activity. However, striking a balance between its biological toxicity and antibacterial properties remains a significant challenge with GO. ε-poly-L-lysine (PLL) has broad-spectrum antibacterial activity and ultra-high safety performance. Using Layer-by-layer self-assembly technology (LBL), different layers of PLL/GO coatings and GO self-assembly coatings were assembled on the surface of titanium sheet. The materials were characterized using scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and contact angle test. The antibacterial properties of Porphyromonas gingivalis (P.g.) were analyzed through SEM, coated plate experiment, and inhibition zone experiment. CCK-8 was used to determine the cytotoxicity of the material to MC3T3 cells, and zebrafish larvae and embryos were used to determine the developmental toxicity and inflammatory effects of the material. The results show that the combined assembly of 20 layers of GO and PLL exhibits good antibacterial properties and no biological toxicity, suggesting a potential application for a titanium-based implant modification scheme.

2.
Histol Histopathol ; : 18707, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38293776

RESUMEN

Tuberous sclerosis complex (TSC) and focal cortical dysplasia (FCD) type IIb are the predominant causes of drug-refractory epilepsy in children. Dysmorphic neurons (DNs), giant cells (GCs), and balloon cells (BCs) are the most typical pathogenic profiles in cortical lesions of TSC and FCD IIb patients. However, mechanisms underlying the pathological processes of TSC and FCD IIb remain obscure. The Plexin-B2-Sema4C signalling pathway plays critical roles in neuronal morphogenesis and corticogenesis during the development of the central nervous system. However, the role of the Plexin-B2 system in the pathogenic process of TSC and FCD IIb has not been identified. In the present study, we investigated the expression and cell distribution characteristics of Plexin-B2 and Sema4C in TSC and FCD IIb lesions with molecular technologies. Our results showed that the mRNA and protein levels of Plexin-B2 expression were significantly increased both in TSC and FCD IIb lesions versus that in the control cortex. Notably, Plexin-B2 was also predominantly observed in GCs in TSC epileptic lesions and BCs in FCD IIb lesions. In contrast, the expression of Sema4C, the ligand of Plexin-B2, was significantly decreased in DNs, GCs, and BCs in TSC and FCD IIb epileptic lesions. Additionally, Plexin-B2 and Sema4C were expressed in astrocytes and microglia cells in TSC and FCD IIb lesions. Furthermore, the expression of Plexin-B2 was positively correlated with seizure frequency in TSC and FCD IIb patients. In conclusion, our results showed the Plexin-B2-Sema4C system was abnormally expressed in cortical lesions of TSC and FCD IIb patients, signifying that the Plexin-B2-Sema4C system may play a role in the pathogenic development of TSC and FCD IIb.

3.
BMC Med ; 21(1): 500, 2023 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-38110931

RESUMEN

BACKGROUND: More than half of patients with tuberous sclerosis complex (TSC) suffer from drug-resistant epilepsy (DRE), and resection surgery is the most effective way to control intractable epilepsy. Precise preoperative localization of epileptogenic tubers among all cortical tubers determines the surgical outcomes and patient prognosis. Models for preoperatively predicting epileptogenic tubers using 18F-FDG PET images are still lacking, however. We developed noninvasive predictive models for clinicians to predict the epileptogenic tubers and the outcome (seizure freedom or no seizure freedom) of cortical tubers based on 18F-FDG PET images. METHODS: Forty-three consecutive TSC patients with DRE were enrolled, and 235 cortical tubers were selected as the training set. Quantitative indices of cortical tubers on 18F-FDG PET were extracted, and logistic regression analysis was performed to select those with the most important predictive capacity. Machine learning models, including logistic regression (LR), linear discriminant analysis (LDA), and artificial neural network (ANN) models, were established based on the selected predictive indices to identify epileptogenic tubers from multiple cortical tubers. A discriminating nomogram was constructed and found to be clinically practical according to decision curve analysis (DCA) and clinical impact curve (CIC). Furthermore, testing sets were created based on new PET images of 32 tubers from 7 patients, and follow-up outcome data from the cortical tubers were collected 1, 3, and 5 years after the operation to verify the reliability of the predictive model. The predictive performance was determined by using receiver operating characteristic (ROC) analysis. RESULTS: PET quantitative indices including SUVmean, SUVmax, volume, total lesion glycolysis (TLG), third quartile, upper adjacent and standard added metabolism activity (SAM) were associated with the epileptogenic tubers. The SUVmean, SUVmax, volume and TLG values were different between epileptogenic and non-epileptogenic tubers and were associated with the clinical characteristics of epileptogenic tubers. The LR model achieved the better performance in predicting epileptogenic tubers (AUC = 0.7706; 95% CI 0.70-0.83) than the LDA (AUC = 0.7506; 95% CI 0.68-0.82) and ANN models (AUC = 0.7425; 95% CI 0.67-0.82) and also demonstrated good calibration (Hosmer‒Lemeshow goodness-of-fit p value = 0.7). In addition, DCA and CIC confirmed the clinical utility of the nomogram constructed to predict epileptogenic tubers based on quantitative indices. Intriguingly, the LR model exhibited good performance in predicting epileptogenic tubers in the testing set (AUC = 0.8502; 95% CI 0.71-0.99) and the long-term outcomes of cortical tubers (1-year outcomes: AUC = 0.7805, 95% CI 0.71-0.85; 3-year outcomes: AUC = 0.8066, 95% CI 0.74-0.87; 5-year outcomes: AUC = 0.8172, 95% CI 0.75-0.87). CONCLUSIONS: The 18F-FDG PET image-based LR model can be used to noninvasively identify epileptogenic tubers and predict the long-term outcomes of cortical tubers in TSC patients.


Asunto(s)
Epilepsia , Esclerosis Tuberosa , Humanos , Fluorodesoxiglucosa F18 , Esclerosis Tuberosa/complicaciones , Esclerosis Tuberosa/diagnóstico por imagen , Esclerosis Tuberosa/metabolismo , Reproducibilidad de los Resultados , Glucólisis , Estudios Retrospectivos
4.
Plant Physiol Biochem ; 202: 107986, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37651954

RESUMEN

To gain insights into the adaptive characteristics of ephemeral plants and enrich their potential for resource exploitation, the adaptive changes in two highly dominant species (Malcolmia scorpioides and Isatis violascens) to soil habitats (aeolian soil, AS; grey desert soil, GS) were investigated from the aspects of root morphology, physiology, and metabolism in this study. The results revealed that changes in root morphology and enzyme activity were affected by soil habitat. Total root length (TRL), root volume (RV) and root surface area (RSA) were higher in GS than in AS. The levels of proline (Pro), glutathione (GSH), soluble sugar (SS), and lysine (Lys) were higher in GS than in AS. Untargeted LC-MS metabolomics indicates that root metabolites of both species differed among the two soil habitats. Root responses to different soil habitats mainly affected some metabolic pathways. A total of 780 metabolites were identified, common differential metabolites (DMs) in both species included amino acids, fatty acids, organic acids, carbohydrates, benzene and derivatives, and flavonoids, which were mainly involved in carbohydrate metabolism, amino acid metabolism, flavonoid biosynthesis and fatty acid metabolism, and their abundance varied among different habitats and species. Some key DMs were significantly related to root morphology and enzyme activity, and indole, malonate, quercetin, uridine, tetrahydroharmine, and gluconolactone were important metabolites associated with root growth. Therefore, the response changes in root growth and metabolite of ephemeral plants in response to soil habitats reflect their ecological adaptation, and lay a foundation for the exploitation of plant resources in various habitats.


Asunto(s)
Brassicaceae , Metabolómica , Aminoácidos , Aclimatación , Benceno
5.
Front Pharmacol ; 14: 1033859, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37435496

RESUMEN

Introduction: Temporal lobe epilepsy (TLE) is the most common subtype of epilepsy in adults and is characterized by neuronal loss, gliosis, and sprouting mossy fibers in the hippocampus. But the mechanism underlying neuronal loss has not been fully elucidated. A new programmed cell death, cuproptosis, has recently been discovered; however, its role in TLE is not clear. Methods: We first investigated the copper ion concentration in the hippocampus tissue. Then, using the Sample dataset and E-MTAB-3123 dataset, we analyzed the features of 12 cuproptosis-related genes in TLEs and controls using the bioinformatics tools. Then, the expression of the key cuproptosis genes were confirmed using real-time PCR and immunohistochemical staining (IHC). Finally, the Enrichr database was used to screen the small molecules and drugs targeting key cuproptosis genes in TLE. Results: The Sample dataset displayed four differentially expressed cuproptosis-related genes (DECRGs; LIPT1, GLS, PDHA1, and CDKN2A) while the E-MTAB-3123 dataset revealed seven DECRGs (LIPT1, DLD, FDX1, GLS, PDHB, PDHA1, and DLAT). Remarkably, only LIPT1 was uniformly upregulated in both datasets. Additionally, these DECRGs are implicated in the TCA cycle and pyruvate metabolism-both crucial for cell cuproptosis-as well as various immune cell infiltrations, especially macrophages and T cells, in the TLE hippocampus. Interestingly, DECRGs were linked to most infiltrating immune cells during TLE's acute phase, but this association considerably weakened in the latent phase. In the chronic phase, DECRGs were connected with several T-cell subclasses. Moreover, LIPT1, FDX1, DLD, and PDHB were related to TLE identification. PCR and IHC further confirmed LIPT1 and FDX1's upregulation in TLE compared to controls. Finally, using the Enrichr database, we found that chlorzoxazone and piperlongumine inhibited cell cuproptosis by targeting LIPT1, FDX1, DLD, and PDHB. Conclusion: Our findings suggest that cuproptosis is directly related to TLE. The signature of cuproptosis-related genes presents new clues for exploring the roles of neuronal death in TLE. Furthermore, LIPT1 and FDX1 appear as potential targets of neuronal cuproptosis for controlling TLE's seizures and progression.

6.
Small ; 19(33): e2301438, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37086125

RESUMEN

Electrocatalytic nitrogen oxidation reaction (NOR) into nitrate under ambient conditions, as an alternative to replace traditional industrial method, is a promising artificial N2 fixation strategy, especially powered by renewable energy. Here, through skillfully balancing competitive relationships between NOR and oxygen evolution reaction (OER), the nickel oxyhydroxide decorated Cu(OH)2 hybrid electrocatalyst with Cu:Ni molar ratio of 1:1 is developed, which achieves outstanding Faradaic efficiency (FE) of 18.7% and yield rate of 228.24 µmol h-1  gcat -1 at 2.0 V versus reversible hydrogen electrode (RHE) in the electrolyte of 0.1 m Na2 SO4 . Also, the hybrid catalyst maintained over five cycles (10 h each cycle) with negligible decay in performance. The synergetic effect between the components of nickel oxyhydroxide and Cu(OH)2 is found to remarkably activate N2 and suppress the activity of competitive OER, which enhances NOR performance eventually. Moreover, the conversion efficiency of solar-to-nitrate (STN) with 0.025% was obtained by coupling with a commercial solar cell. This work provides a novel avenue of rational catalysts design strategies and realizes solar-to-nitrate synthesis.

7.
J Environ Manage ; 332: 117375, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36716547

RESUMEN

Root-associated microorganisms regulate plant growth and development, and their distribution is likely influenced by habitat conditions. In this study, the responses of rhizosphere and root-endophytic fungi of dominant ephemeral plants to aeolian soil (AS) and grey desert soil (DS) in the Gurbantünggüt Desert were analyzed using high-throughput sequencing. This was done to understand the adaptation strategies of this vegetation in typical habitat soils from a microbial perspective. We found that the diversity of root-associated fungi of ephemeral plants differed in the two habitat soils. The diversity of rhizosphere fungi was relatively low in AS compared to DS, whereas the diversity of root-endophytic fungi was higher in AS. The community structure of root-associated fungi and relative abundances of some dominant taxa differed between the two soils. A co-occurrence network showed that the degree of coupling and interaction between root-associated fungal taxa were closer in AS than in DS and that most of the fungal taxa were cooperative in the two habitat soils. Additionally, the network properties of the root-endophytic fungi were apparent different between the two soils. Environmental factors, including electrical conductivity, soil organic carbon, carbon/nitrogen, and carbon/phosphorus ratios, were found to be key factors affecting rhizosphere fungi in DS, whereas soil available phosphorus was the main factor in AS. Several factors affect the root-endophytic fungal community and are more influential in DS than in AS. Overall, the root-associated fungal communities of ephemeral plants had different adaptation strategies to the two soils: increasing the diversity of rhizosphere fungi and their relationship with environmental factors in DS, and increasing the diversity and network relationships of root-endophytic fungi in AS. These findings provide insight into the assemblage of ephemeral plant root-associated microbial communities and the underlying environmental factors, which allows for a deeper understanding of how to construct an artificial core root microbiota to promote plant growth and resistance.


Asunto(s)
Micobioma , Suelo , Suelo/química , Carbono , Hongos , Microbiología del Suelo , Raíces de Plantas , Plantas , Rizosfera , Fósforo
8.
Immun Inflamm Dis ; 10(11): e706, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36301030

RESUMEN

BACKGROUND: Focal cortical dysplasia type IIb (FCDIIb) and tuberous sclerosis complex (TSC) show persistent neuroinflammation, which promotes epileptogenesis and epilepsy progression, suggesting that endogenous resolution of inflammation is inadequate to relieve neuronal network hyperexcitability. To explore the potential roles of formyl peptide receptor 2 (FPR2), which is a key regulator of inflammation resolution, in epilepsy caused by FCDIIb and TSC, we examined the expression and cellular distribution of FPR2. METHOD: The expression of FPR2 and nuclear factor-κB (NF-κB) signaling pathway was examined by real-time PCR, western blots, and analyzed via one-way analysis of variance. The distribution of FPR2 was detected using immunostaining. The expression of resolvin D1 (RvD1, the endogenous ligand of FPR2) was observed via enzyme-linked immunosorbent assay. Pearson's correlation test was used to evaluate the correlation between the expression levels of FPR2 and RvD1 and the clinical variants. RESULTS: The expression of FPR2 was significantly lower in FCDIIb (p = .0146) and TSC (p = .0006) cortical lesions than in controls, as was the expression of RvD1 (FCDIIb: p = .00431; TSC: p = .0439). Weak FPR2 immunoreactivity was observed in dysmorphic neurons (DNs), balloon cells (BCs), and giant cells (GCs) in FCDIIb and TSC tissues. Moreover, FPR2 was mainly distributed in dysplastic neurons; it was sparse in microglia and nearly absent in astrocytes. The NF-κB pathway was significantly activated in patients with FCDIIb and TSC, and the protein level of NF-κB was negatively correlated with the protein level of FPR2 (FCDIIb: p = .00395; TSC: p = .0399). In addition, the protein level of FPR2 was negatively correlated with seizure frequency in FCDIIb (p = .0434) and TSC (p = .0351) patients. CONCLUSION: In summary, these results showed that the expression and specific distribution of FPR2 may be involved in epilepsy caused by FCDIIb and TSC, indicating that downregulation of FPR2 mediated the dysfunction of neuroinflammation resolution in FCDIIb and TSC.


Asunto(s)
Epilepsia , Malformaciones del Desarrollo Cortical , Esclerosis Tuberosa , Humanos , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Epilepsia/genética , Epilepsia/metabolismo , Inflamación/patología , Malformaciones del Desarrollo Cortical/metabolismo , Malformaciones del Desarrollo Cortical/patología , FN-kappa B/metabolismo , Receptores de Formil Péptido/genética , Receptores de Formil Péptido/metabolismo , Esclerosis Tuberosa/genética , Esclerosis Tuberosa/complicaciones , Esclerosis Tuberosa/metabolismo
9.
Microbiome ; 10(1): 160, 2022 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-36175956

RESUMEN

BACKGROUND: Although the lack of estrogen receptor ß (ERß) is a risk factor for the development of inflammatory bowel disease (IBD) and psychiatric disorders, the underlying cellular and molecular mechanisms are not fully understood. Herein, we revealed the role of gut microbiota in the development of IBD and related anxiety-like behavior in ERß-deficient mice. RESULTS: In response to dextran sodium sulfate (DSS) insult, the ERß knockout mice displayed significant shift in α and ß diversity in the fecal microbiota composition and demonstrated worsening of colitis and anxiety-like behaviors. In addition, DSS-induced colitis also induced hypothalamic-pituitary-adrenal (HPA) axis hyperactivity in ERß-deficient mice, which was associated with colitis and anxiety-like behaviors. In addition, RNA sequencing data suggested that ErbB4 might be the target of ERß that is involved in regulating the HPA axis hyperactivity caused by DSS insult. Gut microbiota remodeling by co-housing showed that both the colitis and anxiety-like behaviors were aggravated in co-housed wild-type mice compared to single-housed wild-type mice. These findings suggest that gut microbiota play a critical role in mediating colitis disease activity and anxiety-like behaviors via aberrant neural processing within the gut-brain axis. CONCLUSIONS: ERß has the potential to inhibit colitis development and anxiety-like behaviors via remodeling of the gut microbiota, which suggests that ERß is a promising therapeutic target for the treatment of IBD and related anxiety-like behaviors. Video Abstract.


Asunto(s)
Colitis , Receptor beta de Estrógeno , Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino , Animales , Ansiedad , Colitis/inducido químicamente , Sulfato de Dextran/efectos adversos , Modelos Animales de Enfermedad , Receptor beta de Estrógeno/genética , Receptor beta de Estrógeno/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Sistema Hipófiso-Suprarrenal/metabolismo
10.
PeerJ ; 10: e13552, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35673389

RESUMEN

Background: Populus euphratica is one of the most ancient and primitive tree species of Populus spp and plays an important role in maintaining the ecological balance in desert areas. To decipher the diversity, community structure, and relationship between rhizosphere fungi and environmental factors at different growth stages of P. euphratica demands an in-depth investigation. Methods: In this study, P. euphratica at different growth stages (young, medium, overripe, and decline periods) was selected as the research object, based on the determination of the physicochemical properties of its rhizosphere soil, the fungal community structure and diversity of P. euphratica and their correlation with soil physicochemical properties were comprehensively analyzed through high-throughput sequencing technology (internal transcribed spacer (ITS)) and bioinformatics analysis methods. Results: According to the analysis of OTU annotation results, the rhizosphere soil fungal communities identified in Populus euphratica were categorized into10 phyla, 36 classes, 77 orders, 165 families, 275 genera and 353 species. The alpha diversity analysis showed that there was no obvious change between the different growth stages, while beta diversity analysis showed that there were significantly differences in the composition of rhizosphere soil fungal communities between mature and overripe trees (R 2 = 0.31, P = 0.001), mature and deadwood (R 2 = 0.28, P = 0.001). Ascomycota and Basidiomycota were dominant phyla in the rhizosphere fungal community and the dominant genera were Geopora, Chondrostereum and unidentified_Sordariales_sp. The relative abundance of the top ten fungi at each classification level differed greatly in different stages. Canonical correspondence analysis (CCA) and Spearman's correlation analysis showed that conductivity (EC) was the main soil factor affecting the composition of Populus euphratica rhizosphere soil fungal community (P < 0.01), followed by total dissolvable salts (TDS) and available potassium (AK) (P < 0.05). Conclusions: Our data revealed that the rhizosphere fungal communities at the different growth stages of P. euphratica have differences, conductivity (EC) was the key factor driving rhizosphere fungi diversity and community structure, followed by total dissolvable salts (TDS) and available potassium (AK).


Asunto(s)
Agaricales , Micobioma , Populus , Humanos , Rizosfera , Ríos , Sales (Química) , Suelo/química , Árboles , Secuenciación de Nucleótidos de Alto Rendimiento
11.
J Environ Manage ; 316: 115288, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35594824

RESUMEN

The ecological environment of the Gurbantünggüt desert-oasis ecotone is extremely fragile. Ephemeral plants are an important part of the ecosystem and play an essential role in maintaining the ecological stability of the ecotone. However, few studies have focused on the growth, soil quality and system sustainability of ephemeral plants in different soils. This study was based on two typical soil types (grey desert soil, GS; aeolian soil, AS) in the aforementioned ecotone, considered four ephemeral plants (Tetracme recurvata, TR; Tetracme contorta, TC; Malcolmia scorpioides, MS; Isatis violascens, IV) as the research object, analysed plant characteristics and soil properties, and comprehensively evaluated the ephemeral plant system by analysing the soil quality index (SQI) and sustainability index (SI). The results showed that there were significant differences in biomass and nutrient accumulation between different ephemeral plants, which were significantly affected by soil types. In the two examined soils (GS and AS), the contents of nutrients and microbial carbon (MBC) and nitrogen (MBN) in the rhizosphere soil were higher than those in the bare soil (BS), and there were significant differences among different species. The key soil factors related to total biomass in GS and AS were also different. The SQI of ephemeral plants was significantly higher than that of the BS, and varied with soil types and plant species. The species with the highest SQI of the key factor data set in GS and AS were IV and TR, respectively. The SI analysis indicated that IV in GS and MS and IV in AS were sustainable, and the plant properties can be better used to assess the sustainability of ephemeral plant systems. In conclusion, ephemeral plants improved the soil quality and system sustainability of the study ecotone. Further, the growth of ephemeral plant and rhizosphere soil properties vary with plant species and soil types; thus, selecting suitable species for large-scale planting in different soil types is of great significance for improving the ecological stability of the ecotone.


Asunto(s)
Brassicaceae , Suelo , Biomasa , China , Ecosistema , Nitrógeno/análisis , Plantas , Microbiología del Suelo
12.
Micromachines (Basel) ; 13(4)2022 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-35457810

RESUMEN

With multi-foci laser cutting technology for sapphire wafer separation, the entire cross-section is generally scanned with single or multiple passes. This investigation proposes a new separation technique through partial thickness scanning. The energy effectivity and efficiency of the picosecond laser were enhanced through a two-zone partial thickness scanning by exploiting the internal reflection at the rough exit surface. Each zone spanned only one-third thickness of the cross-section, and only two out of three zones were scanned consecutively. A laser beam of 0.57 W and 50 kHz pulse repetition rate was split into 9 foci, each with a 2.20 µm calculated focused spot diameter. By only scanning the top two-thirds sample thickness, first its middle section then upper section, a cleavable sample could result. This was achieved with the lowest energy deposition at the fastest scanning speed of 10 mm/s investigated. Although with partial thickness scanning only, counter intuitively, the cleaved sample had a previously unattained uniform roughened sidewall profile over the entire thickness. This is a desirable outcome in LED manufacturing. As such, this proposed scheme could attain a cleavable sample with the desired uniformly roughened sidewall profile with less energy usage and faster scanning speed.

13.
Cereb Cortex ; 32(23): 5259-5272, 2022 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-35195262

RESUMEN

BACKGROUND: Temporal lobe epilepsy (TLE) is the most common drug-resistant epilepsy in adults, with pathological mechanisms remaining to be fully elucidated. Fibroblast Growth Factor 13 (FGF13) encodes an intracellular protein involved in microtubule stabilization and regulation of voltage-gated sodium channels (VGSCs) function. FGF13 mutation has been identified in patients with inherent seizure, suggesting a potential association between FGF13 and the etiology of TLE. Here, we set to explore the pathological role of FGF13 in the etiology of TLE. RESULTS: We found that the expression of FGF13 was increased in the cortical lesions and CA1 region of sclerotic hippocampus and correlated with the seizure frequency in TLE patients. Also, Fgf13 expression was increased in the hippocampus of chronic TLE mice generated by kainic acid (KA) injection. Furthermore, Fgf13 knockdown or overexpression was respectively found to attenuate or potentiate the effects of KA on axonal length, somatic area and the VGSCs-mediated current in the hippocampal neurons. CONCLUSIONS: Taken together, these findings suggest that FGF13 is involved in the pathogenesis of TLE by modulating microtubule activity and neuronal excitability.


Asunto(s)
Epilepsia del Lóbulo Temporal , Factores de Crecimiento de Fibroblastos , Animales , Ratones , Modelos Animales de Enfermedad , Epilepsia del Lóbulo Temporal/genética , Epilepsia del Lóbulo Temporal/patología , Factores de Crecimiento de Fibroblastos/genética , Hipocampo/metabolismo , Ácido Kaínico , Convulsiones
14.
Expert Opin Ther Targets ; 26(2): 171-186, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35132930

RESUMEN

BACKGROUND: Glucocorticoid receptors (GRs) and mineralocorticoid receptors (MRs) are involved in neuronal excitability, neurogenesis, and neuroinflammation. However, the roles of GRs and MRs in epilepsy in focal cortical dysplasia II (FCDII) have not been reported. RESEARCH DESIGN AND METHODS: We evaluated GRs and MRs expression and distribution in FCDII patients and methylazoxymethanol-pilocarpine-induced epilepsy model rats (MP rats), and the effects of a GR agonist on neurons in human FCDII and investigated the electrophysiological properties of rats' neurons after lentivirus-mediated GR knockdown or overexpression and GR agonist or antagonist administration. RESULTS: GR expression (not MR) was decreased in specimens from FCDII patients and model rats. GR agonist dexamethasone reduced neuronal excitatory transmission and increased neuronal inhibitory transmission in FCDII. GR knockdown increased the excitability of cultured neurons, and GR overexpression rescued the hyperexcitability of MP-treated neurons. Moreover, dexamethasone decreased neuronal excitability and excitatory transmission in MP rats, while GR antagonist exerted the opposite effects. Dexamethasone reduced the seizure number and duration by approximately 85% and 60% in MP rats within one to two hours. CONCLUSIONS: These results suggested that GRs play an important role in epilepsy in FCDII and GR activation may have protective and antiepileptic effects in FCDII.


Asunto(s)
Epilepsia , Malformaciones del Desarrollo Cortical , Animales , Epilepsia/tratamiento farmacológico , Humanos , Malformaciones del Desarrollo Cortical/tratamiento farmacológico , Neuronas , Ratas , Receptores de Glucocorticoides , Receptores de Mineralocorticoides
15.
J Colloid Interface Sci ; 605: 101-109, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34311304

RESUMEN

The development of nonprecious metal-based electrocatalysts for oxygen reduction reaction (ORR) is a central task in renewable electrochemical energy conversion and storage technologies. Iron-nitrogen doped carbon-based (Fe-N/C) materials are promising alternatives to Pt-based ORR electrocatalysts. Owing to large specific surface area and outstanding electrical conductivity, carbon black is an inborn support for electrocatalysts. Unfortunately, the direct incorporation of Fe-Nx moieties onto the surface of carbon black has not been realized to date. Herein, Fe-Nx moieties are directly incorporated onto the surface of carbon black through surface modification and the following Fe and N co-doping. The obtained Fe and N co-doped carbon back (Fe-N/CB) catalyst has very large specific surface area and abundant accessible Fe-Nx moieties. As a result, Fe-N/CB electrocatalyst exhibits a more positive half-wave potential (0.86 V) than Pt/C. The Fe-N/CB catalyst also displays better stability and methanol resistance than Pt/C. The Zn-air battery with Fe-N/CB as cathodic catalyst shows a maximum power density of 68 mW cm-2 and a specific capacity of 676 mAh gZn-1. Our finding provides a convenient and low-cost approach to fabricating efficient M-N/C-based catalysts and will be helpful to the development of renewable electrochemical energy conversion and storage technologies.

16.
Micromachines (Basel) ; 14(1)2022 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-36677178

RESUMEN

Laser ablation of semiconductor silicon has been extensively studied in the past few decades. In the ultrashort pulse domain, whether in the fs scale or ps scale, the pulse energy fluence threshold in the ablation of silicon is strongly dependent on the pulse width. However, in the ns pulse scale, the energy fluence threshold dependence on the pulse width is not well understood. This study elucidates the interaction energy dependency on pulse width in ns NIR laser ablation of silicon. The level of ablation or melting was determined by the pulse energy deposition rate, which was proportional to laser peak power. Shorter pulse widths with high peak power were likely to induce surface ablation, while longer pulse widths were likely to induce surface melting. The ablation threshold increased from 5.63 to 24.84 J/cm2 as the pulse width increased from 26 to 500 ns. The melting threshold increased from 3.33 to 5.76 J/cm2 as the pulse width increased from 26 to 200 ns, and then remained constant until 500 ns, the longest width investigated. Distinct from a shorter pulse width, a longer pulse width did not require a higher power level for inducing surface melting, as surface melting can be induced at a lower power with the longer heating time of a longer pulse width. The line width from surface melting was less than the focused spot size; the line appeared either as a continuous line at slow scanning speed or as isolated dots at high scanning speed. In contrast, the line width from ablation significantly exceeded the focused spot size.

17.
Micromachines (Basel) ; 12(11)2021 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-34832740

RESUMEN

The multi-foci division of through thickness nonlinear pulse energy absorption on ultrashort pulse laser singulation of single side polished sapphire wafers has been investigated. Firstly, it disclosed the enhancement of energy absorption by the total internal reflection of the laser beam exiting from an unpolished rough surface. Secondly, by optimizing energy distribution between foci and their proximity, favorable multi-foci energy absorption was induced. Lastly, for effective nonlinear energy absorption for wafer separation, it highlighted the importance of high laser pulse energy fluence at low pulse repetition rates with optimized energy distribution, and the inadequacy of increasing energy deposition through reducing scanning speed alone. This study concluded that for effective wafer separation, despite the lower pulse energy per focus, energy should be divided over more foci with closer spatial proximity. Once the power density per pulse per focus reached a threshold in the order of 1012 W/cm2, with approximately 15 µm between two adjacent foci, wafer could be separated with foci evenly distributed over the entire wafer thickness. When the foci spacing reduced to 5 µm, wafer separation could be achieved with pulse energy concentrated only at foci distributed over only the upper or middle one-third wafer thickness.

18.
Trials ; 22(1): 761, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34724966

RESUMEN

BACKGROUND: Sleep deprivation (SD) among young adults is a major public health concern. In humans, it has adverse effects on mood and results in serious health problems. Faced with SD, persons may take precautionary measures to try and reduce their risk. The aim of this study is to evaluate the efficacy and safety of electroacupuncture (EA) for the prevention of negative moods after SD. In addition, we will do a comparison of the effects of EA on mood after SD at different time points. METHODS: This randomized controlled trial (RCT) will be performed at the First Affiliated Hospital of Changchun University of Chinese Medicine in China. The Standards for Reporting Interventions in Clinical Trials of Acupuncture 2010 will be strictly adhered to. Forty-two healthy male volunteers will be distributed into acupoints electroacupuncture (AE) group, non-acupoints electroacupuncture (NAE) control group, or blank control group. This trial will comprise 1-week baseline (baseline sleep), 1-week preventative treatment, 30-h total sleep deprivation (TSD), and 24-h after waking follow-up period. Participants in the AE group and the NAE control group during the preventative treatment period will be administered with EA treatment once daily for 1 week. Participants in the blank control group will not be administered with any treatment. The primary outcome will be the Profile of Mood States (POMS) Scale. Secondary outcome measures will include changes in the Noldus FaceReader (a tool for automatic analysis of facial expressions) and Positive and Negative Affect Schedule (PANAS) Scale. Total sleep deprivation will be 30 h. During the 30-h TSD period, participants will be subjected to 11 sessions of assessment. Adverse events will be recorded. DISCUSSION: This study is designed to evaluate the efficacy and safety of EA for the prevention of negative moods after SD. The results of this trial will allow us to compare the effects of EA on mood after SD at different time points. Moreover, the findings from this trial will be published in peer-reviewed journals. TRIAL REGISTRATION: Chinese Clinical Trial Registry Chi2000039713 . Registered on 06 November 2020.


Asunto(s)
Electroacupuntura , Puntos de Acupuntura , Electroacupuntura/efectos adversos , Humanos , Masculino , Ensayos Clínicos Controlados Aleatorios como Asunto , Método Simple Ciego , Privación de Sueño/diagnóstico , Privación de Sueño/etiología , Privación de Sueño/prevención & control , Resultado del Tratamiento , Adulto Joven
19.
EBioMedicine ; 70: 103537, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34391093

RESUMEN

BACKGROUND: Temporal lobe epilepsy (TLE) is the most common intractable epilepsy in adults, and elucidation of the underlying pathological mechanisms is needed. Voltage-gated chloride channels (ClC) play diverse physiological roles in neurons. However, less is known regarding their functions in the epilepogenesis of TLE. METHODS: ClC-mediated current and the spontaneous inhibitory synaptic currents (sIPSC) in hippocampal neurons of epileptic lesions were investigated by electrophysiological recording. The EEG data were analyzed by Z-scored wavelet and Fourier transformations. The expression of ClC-3, a member of ClC gene family, was detected by immunostaining and western blot. FINDINGS: ClC-mediated current was increased in the hippocampal neurons of chronic TLE mice. Application of chloride channel blockers, NPPB (5-Nitro-2- [3-phenylpropylamino] benzoic acid) and DIDS (4,4'-Diisothiocyanato-2,2'-stilbenedisulfonic acid disodium salt) reduced ClC-mediated current and increased inhibitory synaptic transmission in TLE mice. NPPB and DIDS reduced the seizure frequency and the average absolute power of ictal high-frequency oscillations (HFOs, 80-500 Hz) in TLE mice. In addition, both drugs induced outwardly rectified currents, which might be tonic inhibitory currents in the hippocampal neurons of TLE patients. Furthermore, the expression of ClC-3 was increased in the hippocampus of TLE mice and patients and positively correlated with both the absolute power and number of ictal HFOs per seizure in the sclerotic hippocampus. INTERPRETATION: These data suggest that ClC participate in the epilepogenetic process of TLE and the inhibition of ClC may have anti-epileptic effect. FUNDING: This work was supported by National Natural Science Foundation of China (No. 81601143, No. 81771217).


Asunto(s)
Canales de Cloruro/metabolismo , Epilepsia del Lóbulo Temporal/metabolismo , Adulto , Animales , Epilepsia del Lóbulo Temporal/fisiopatología , Femenino , Hipocampo/metabolismo , Hipocampo/fisiopatología , Humanos , Potenciales Postsinápticos Inhibidores , Masculino , Ratones , Ratones Endogámicos C57BL
20.
Front Cell Dev Biol ; 9: 688655, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34327201

RESUMEN

Transient Receptor Potential Canonical 6 (TRPC6) has been suggested to be involved in synapse function and contribute to hippocampal-dependent cognitive processes. Gene silencing of TRPC6 was performed by injecting adeno-associated virus (AAV) expressing TRPC6-specific shRNA (shRNA-TRPC6) into the hippocampal dentate gyrus (DG). Spatial learning, working memory and social recognition memory were impaired in the shRNA-TRPC6 treated mice compared to control mice after 4 weeks. In addition, gene ontology (GO) analysis of RNA-sequencing revealed that viral intervention of TRPC6 expression in DG resulted in the enrichment of the process of synaptic transmission and cellular compartment of synaptic structure. KEGG analysis showed PI3K-Akt signaling pathway were significantly down-regulated. Furthermore, the shRNA-TRPC6 treatment reduced dendritic spines of DG granule neurons, in terms of spine loss, the thin and mushroom types predominated. Accompanying the spine loss, the levels of PSD95, pAkt and CREB in the hippocampus were decreased in the shRNA-TRPC6 treated animals. Taken together, our results suggest that knocking down TRPC6 in the DG have a disadvantageous effect on cognitive processes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...