Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Plant Biol ; 24(1): 408, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38755583

RESUMEN

BACKGROUND: Grazing exclusion is an efficient practice to restore degraded grassland ecosystems by eliminating external disturbances and improving ecosystems' self-healing capacities, which affects the ecological processes of soil-plant systems. Grassland degradation levels play a critical role in regulating these ecological processes. However, the effects of vegetation and soil states at different degradation stages on grassland ecosystem restoration are not fully understood. To better understand this, desert steppe at three levels of degradation (light, moderate, and heavy degradation) was fenced for 6 years in Inner Mongolia, China. Community characteristics were investigated, and nutrient concentrations of the soil (0-10 cm depth) and dominant plants were measured. RESULTS: We found that grazing exclusion increased shoots' carbon (C) concentrations, C/N, and C/P, but significantly decreased shoots' nitrogen (N) and phosphorus (P) concentrations for Stipa breviflora and Cleistogenes songorica. Interestingly, there were no significant differences in nutrient concentrations of these two species among the three degraded desert steppes after grazing exclusion. After grazing exclusion, annual accumulation rates of aboveground C, N, and P pools in the heavily degraded area were the highest, but the aboveground nutrient pools were the lowest among the three degraded grasslands. Similarly, the annual recovery rates of community height, cover, and aboveground biomass in the heavily degraded desert steppe were the highest among the three degraded steppes after grazing exclusion. These results indicate that grazing exclusion is more effective for vegetation restoration in the heavily degraded desert steppe. The soil total carbon, total nitrogen, total phosphorus, available nitrogen, and available phosphorus concentrations in the moderately and heavily degraded desert steppes were significantly decreased after six years of grazing exclusion, whereas these were no changes in the lightly degraded desert steppe. Structural equation model analysis showed that the grassland degradation level mainly altered the community aboveground biomass and aboveground nutrient pool, driving the decrease in soil nutrient concentrations and accelerating nutrient transfer from soil to plant community, especially in the heavily degraded grassland. CONCLUSIONS: Our study emphasizes the importance of grassland degradation level in ecosystem restoration and provides theoretical guidance for scientific formulation of containment policies.


Asunto(s)
Pradera , Herbivoria , China , Clima Desértico , Suelo/química , Fósforo/metabolismo , Fósforo/análisis , Conservación de los Recursos Naturales , Nitrógeno/metabolismo , Poaceae , Carbono/metabolismo , Ecosistema , Nutrientes/metabolismo , Restauración y Remediación Ambiental/métodos , Animales
2.
J Am Chem Soc ; 146(19): 13093-13104, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38690763

RESUMEN

The cluster-based body-centered-cubic superlattice (cBCC SL) represents one of the most complicated structures among reported nanocrystal assemblies, comprised of 72 truncated tetrahedral quantum dots per unit cell. Our previous report revealed that truncated tetrahedral quantum dots within cBCC SLs possessed highly controlled translational and orientational order owing to an unusual energetic landscape based on the balancing of entropic and enthalpic contributions during the assembly process. However, the cBCC SL's structural transformability and mechanical properties, uniquely originating from such complicated nanostructures, have yet to be investigated. Herein, we report that cBCC SLs can undergo dynamic transformation to face-centered-cubic SLs in response to post-assembly molecular exposure. We monitored the dynamic transformation process using in situ synchrotron-based small-angle X-ray scattering, revealing a dynamic transformation involving multiple steps underpinned by interactions between incoming molecules and TTQDs' surface ligands. Furthermore, our mechanistic study demonstrated that the precise configuration of TTQDs' ligand molecules in cBCC SLs was key to their high structural transformability and unique jelly-like soft mechanical properties. While ligand molecular configurations in nanocrystal SLs are often considered minor features, our findings emphasize their significance in controlling weak van der Waals interactions between nanocrystals within assembled SLs, leading to previously unremarked superstructural transformability and unique mechanical properties. Our findings promote a facile route toward further creation of soft materials, nanorobotics, and out-of-equilibrium assemblies based on nanocrystal building blocks.

3.
J Am Chem Soc ; 146(12): 8598-8606, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38465613

RESUMEN

This study outlines the preparation and characterization of a unique superlattice composed of indium oxide (In2O3) vertex-truncated nano-octahedra, along with an exploration of its response to high-pressure conditions. Transmission electron microscopy and scanning transmission electron microscopy were employed to determine the average circumradius (15.2 nm) of these vertex-truncated building blocks and their planar superstructure. The resilience and response of the superlattice to pressure variations, peaking at 18.01 GPa, were examined using synchrotron-based wide-angle X-ray scattering (WAXS) and small-angle X-ray scattering (SAXS) techniques. The WAXS data revealed no phase transitions, reinforcing the stability of the 2D superlattice composed of random layers in alignment with a p31m planar symmetry as discerned by SAXS. Notably, the SAXS data also unveiled a pressure-induced, irreversible translation of octahedra and ligand interaction occurring within the random layer. Through our examination of these pressure-sensitive behaviors, we identified a distinctive translation model inherent to octahedra and observed modulation of the superlattice cell parameter induced by pressure. This research signifies a noteworthy advancement in deciphering the intricate behaviors of 2D superlattices under a high pressure.

4.
Adv Mater ; : e2400089, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38498771

RESUMEN

Organic field-effect transistors (OFETs) have broad prospects in biomedical, sensor, and aerospace applications. However, obtaining temperature-immune OFETs is difficult because the electrical properties of organic semiconductors (OSCs) are temperature-sensitive. The zero-temperature coefficient (ZTC) point behavior can be used to achieve a temperature-immune output current; however, it is difficult to achieve in organic devices with thermal activation characteristics, according to the existing ZTC point theory. Here, the Fermi pinning in OSCs is eliminated using the defect passivation strategy, making the Fermi level closer to the tail state at low temperatures; thus threshold voltage (VT) is negatively correlated with temperature. ZTC point behaviors in OFETs are achieved by compensation between VT and mobility at different temperatures to improve its temperature immunity. A temperature-immune output current can be realized in a variable-temperature bias voltage test over 50000 s by biasing the device at the ZTC point. This study provides an effective solution for temperature-immune OFETs and inspiration for their practical application.

5.
Nat Commun ; 15(1): 626, 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38245526

RESUMEN

Optoelectronic properties of semiconductors are significantly modified by impurities at trace level. Oxygen, a prevalent impurity in organic semiconductors (OSCs), has long been considered charge-carrier traps, leading to mobility degradation and stability problems. However, this understanding relies on the conventional deoxygenation methods, by which oxygen residues in OSCs are inevitable. It implies that the current understanding is questionable. Here, we develop a non-destructive deoxygenation method (i.e., de-doping) for OSCs by a soft plasma treatment, and thus reveal that trace oxygen significantly pre-empties the donor-like traps in OSCs, which is the origin of p-type characteristics exhibited by the majority of these materials. This insight is completely opposite to the previously reported carrier trapping and can clarify some previously unexplained organic electronics phenomena. Furthermore, the de-doping results in the disappearance of p-type behaviors and significant increase of n-type properties, while re-doping (under light irradiation in O2) can controllably reverse the process. Benefiting from this, the key electronic characteristics (e.g., polarity, conductivity, threshold voltage, and mobility) can be precisely modulated in a nondestructive way, expanding the explorable property space for all known OSC materials.

6.
Sci Adv ; 9(49): eadj4656, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38055810

RESUMEN

Intrinsic gain is a vital figure of merit in transistors, closely related to signal amplification, operation voltage, power consumption, and circuit simplification. However, organic thin-film transistors (OTFTs) targeted at high gain have suffered from challenges such as narrow subthreshold operating voltage, low-quality interface, and uncontrollable barrier. Here, we report a van der Waals metal-barrier interlayer-semiconductor junction-based OTFT, which shows ultrahigh performance including ultrahigh gain of ~104, low saturation voltage, negligible hysteresis, and good stability. The high-quality van der Waals-contacted junctions are mainly attributed to patterning EGaIn liquid metal electrodes by low-energy microfluidic processes. The wide-bandgap semiconductor Ga2O3 as barrier interlayer is achieved by in situ surface oxidation of EGaIn electrodes, allowing for an adjustable barrier height and expected thermionic emission properties. The organic inverters with a high gain of 5130 and a simplified current stabilizer are further demonstrated, paving a way for high-gain and low-power organic electronics.

7.
J Environ Manage ; 347: 119112, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37778075

RESUMEN

The mechanisms through which stocking rates affect soil organic carbon in desert steppe landscapes are not fully understood. To address this research gap, we investigated changes in the biomass of Stipa breviflora plant communities and soils in a desert steppe. Through our research findings, we can establish an appropriate stocking rate for Stipa breviflora desert steppe. The establishment serves as a theoretical foundation for effectively maintaining elevated productivity levels and increasing the carbon sink, thereby offering a valuable contribution towards mitigate climate change. This study examined the effects of different stocking rates on soil organic carbon input, sequestration, and output and found: (1) For soil organic carbon input, the aboveground and litter biomass of plant communities decreased with increasing stocking rate. (2) Grazing treatments did not affect soil organic carbon retention. (3) Regarding soil organic carbon output, the grazing treatments exhibited no significant alteration in soil respiration when compared to the no grazing. In summary, the primary mechanisms through which increasing stocking rates affect the soil organic carbon pool are decreased inputs from plants and increased output through wind erosion. Therefore, decreasing grazing intensity is key to improving soil organic carbon retention in the desert steppe.


Asunto(s)
Ecosistema , Suelo , Biomasa , Carbono/análisis , Plantas , Poaceae , China , Pradera
8.
Ecol Evol ; 13(10): e10581, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37809361

RESUMEN

Cleistogenes songorica, as a clustered grass, is the main grassland flora of the Stipa breviflora desert grassland. Some studies have shown that the constructive species of S. breviflora (sparse cluster type) is prone to cluster fragmentation; however, research on C. songorica is relatively rare. Then will the C. songorica plant population (dense cluster type) also have cluster fragmentation under the influence of intense grazing? To answer this question, we used variance analysis and geo-statistical methods. The spatial distribution of C. songorica in S. breviflora desert steppe in Inner Mongolia was measured under four grazing intensities (no grazing, CK, 0 sheep·ha-1·half year-1; light grazing, LG, 0.93 sheep·ha-1·half year-1; moderate grazing, MG, 1.82 sheep·ha-1·half year-1; and heavy grazing, HG, 2.71 sheep·ha-1·half year-1) and four scales (10 cm × 10 cm, 20 cm × 20 cm, 25 cm × 25 cm, 50 cm × 50 cm). We then analyzed C. songorica whether fragmentation was present. The results showed that increased grazing intensity is associated with increased density and decreased height, coverage, and standing crop of C. songorica. The spatial distribution of C. songorica was affected by structural factors, and spatial heterogeneity decreased with increased spatial scale. With increased grazing intensity and spatial scale, the patch area of C. songorica gradually increased and tended toward band distribution. In summary, increased grazing intensity and spatial scale led to weakened heterogeneity of C. songorica spatial distribution and increased consistency.

9.
Front Plant Sci ; 14: 1211182, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37711301

RESUMEN

Background: Changes in rainfall induced by climate change will likely influence the utilization of water resources and affect the nutrient cycle in plants in the water-limited desert steppe. In order to understand the response of nitrogen and phosphorus resorption characteristics of plant leaves to precipitation changes, this study compared the nitrogen (N) resorption efficiency, phosphorus (P) resorption efficiency and influencing factors of plants in a desert steppe through water treatment experiments. Methods: A 4-year field experiment was performed to examine the response and influencing factors of nitrogen (N) and phosphorus resorption efficiency of five dominant plants in Stipa breviflora desert steppe to simulated precipitation change in Inner Mongolia, with four simulated precipitation gradients including reducing water by 50%, natural precipitation, increasing water by 50%, increasing water by 100%. Results: Compared with natural precipitation, increasing water by 100% significantly increased soil moisture, and significantly increased the aboveground biomass of S. breviflora, C. songorica, A. frigida, decreased the N concentrations in green leaves of S. breviflora, Cleistogenes songorica, Artemisia frigida, Kochia prostrata, decreased the N concentrations in senesced leaves of C. songorica, decreased the P concentrations in green leaves of K. prostrata and Convolvulus ammannii, decreased the NRE of S. breviflora. NRE was significantly negatively correlated with N concentration in senesced leaves, and PRE was significantly negatively correlated with P concentration in senesced leaves. Conclusions: Increasing water indirectly reduces NRE by reducing plant leaf green leaves nitrogen concentration, and decreasing water indirectly reduces PRE by reducing soil moisture.

10.
Adv Mater ; 35(52): e2306975, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37776045

RESUMEN

Integrating the merits of low cost, flexibility, and large-area processing, organic semiconductors (OSCs) are promising candidates for the next-generation electronic materials. The mobility and stability are the key figures of merit for its practical application. However, it is greatly challenging to improve the mobility and stability simultaneously owing to the weak interactions and poor electronic coupling between OSCs molecules. Here, an oxygen-induced lattice strain (OILS) strategy is developed to achieve OSCs with both high mobility and high stability. Utilizing the strategy, the maximum mobility of dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene (DNTT) organic field-effect transistor (OFET) rises to 15.3 cm2  V-1  s-1 and the contact resistance lowers to 25.5 Ω cm. Remarkably, the thermal stability of DNTT is much improved, and a record saturated power density of ≈3.4 × 104  W cm-2 is obtained. Both the experiments and theoretical calculations demonstrate that the lattice compressive strain induced by oxygen is responsible for their high performance and stability. Furthermore, the universality of the strategy is manifested in both n-type and p-type small OSCs. This work provides a novel strategy to improve both the mobility and the stability of OSCs, paving the way for the practical applications of organic devices.

11.
Small ; 19(50): e2304634, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37626464

RESUMEN

Suppressing the photoelectric response of organic semiconductors (OSs) is of great significance for improving the operational stability of organic field-effect transistors (OFETs) in light environments, but it is quite challenging because of the great difficulty in precisely modulating exciton dynamics. In this work, photostable OFETs are demonstrated by designing the micro-structure of OSs and introducing an electrical double layer at the OS/polyelectrolyte dielectric interface, in which multiple exciton dynamic processes can be modulated. The generation and dissociation of excitons are depressed due to the small light-absorption area of the microstripe structure and the excellent crystallinity of OSs. At the same time, a highly efficient exciton quenching process is activated by the electrical double layer at the OS/polyelectrolyte dielectric interface. As a result, the OFETs show outstanding tolerance to the light irradiation of up to 306 mW·cm-2 , which far surpasses the solar irradiance value in the atmosphere (≈138 mW·cm-2 ) and achieves the highest photostability ever reported in the literature. The findings promise a general and practicable strategy for the realization of photostable OFETs and organic circuits.

12.
ACS Nano ; 17(15): 15044-15052, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37487031

RESUMEN

Organic field-effect transistors (OFETs) have the advantages of low-cost, large-area processing and could be utilized in a variety of emerging applications. However, the generally large contact resistance (Rc) limits the integration and miniaturization of OFETs. The Rc is difficult to reduce due to an incompatibility between obtaining strong orbit coupling and the barrier height reduction. In this study, we developed an oxygen-induced barrier lowering strategy by introducing oxygen (O2) into the nanointerface between the electrodes and organic semiconductors layer and achieved an ultralow channel width-normalized Rc (Rc·W) of 89.8 Ω·cm and a high mobility of 11.32 cm2 V-1 s-1. This work demonstrates that O2 adsorbed at the nanointerface of metal-semiconductor contact can significantly reduce the Rc from both experiments and theoretical simulations and provides guidance for the construction of high-performance OFETs, which is conducive to the integration and miniaturization of OFETs.

14.
Small ; 19(38): e2301421, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37264765

RESUMEN

Organic semiconductor single crystals (OSSCs) are ideal materials for studying the intrinsic properties of organic semiconductors (OSCs) and constructing high-performance organic field-effect transistors (OFETs). However, there is no general method to rapidly prepare thickness-controllable and uniform single crystals for various OSCs. Here, inspired by the recrystallization (a spontaneous morphological instability phenomenon) of polycrystalline films, a spatial confinement recrystallization (SCR) method is developed to rapidly (even at several second timescales) grow thickness-controllable and uniform OSSCs in a well-controlled way by applying longitudinal pressure to tailor the growth direction of grains in OSCs polycrystalline films. The relationship between growth parameters including the growth time, temperature, longitudinal pressure, and thickness is comprehensively investigated. Remarkably, this method is applicable for various OSCs including insoluble and soluble small molecules and polymers, and can realize the high-quality crystal array growth. The corresponding 50 dinaphtho[2,3-b:2″,3″-f]thieno[3,2-b]thiophene (DNTT) single crystals coplanar OFETs prepared by the same batch have the mobility of 4.1 ± 0.4 cm2 V-1 s-1 , showing excellent uniformity. The overall performance of the method is superior to the reported methods in term of growth rate, generality, thickness controllability, and uniformity, indicating its broad application prospects in organic electronic and optoelectronic devices.

15.
ACS Appl Mater Interfaces ; 15(22): 27010-27017, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37233725

RESUMEN

Strain-induced aggregate state instability in organic semiconductor (OSC) films is a critical and bottleneck issue in the practicalization process of organic field-effect transistors (OFETs), but this issue lacks deep insight and effective solutions for a long time. Herein, we developed a novel and general strain balance strategy for stabilizing the aggregate state of OSC films and enhancing the robustness of OFETs. The charge transport zone in OSC films located at the OSC/dielectric interface always suffers from the intrinsic tensile strain induced by substrates and tends to dewet. By introducing a compressive strain layer, the tensile strain can be well balanced and OSC films attain a highly stable aggregate state. Consequently, the OFETs based on strain-balanced OSC heterojunction films exhibit excellent operational and storage stability. This work provides an effective and general strategy to stabilize OSC films and gives guidance in constructing highly stable organic heterojunction devices.

16.
J Am Chem Soc ; 145(8): 4500-4507, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36787491

RESUMEN

Diffusion-mediated assembly of octahedral PbS nanocrystals (NCs) in a confined antisolvent environment displays a primary burst nucleation and Ostwald ripening growth of rhombic bcc supercrystals, followed by a secondary seed-based nucleation and oriented attachment growth of triangle fcc supercrystals. As the diffusion proceeds from ethanol across a sharp interface into NC-suspended toluene, a burst nucleation of supercrystal seeds occurs, and such supercrystals are quickly developed into rhombic grains that have a bcc structure. At a critical size of 10 µm, an Ostwald ripening event appears to guide the supercrystal growth. Upon grain growth above 30 µm, the fcc supercrystals start a nucleation at two symmetrical tips of individual rhombic crystals. Such fcc supercrystals are developed with a triangle shape, and two triangles are combined with one bcc rhombus in-between to form a butterfly-like bowtie stacking structure. The fcc triangle wings grow larger at a reduction of bcc rhombus cores. As the bcc cores gradually fade, such butterfly-like bowtie crystals aggregate and undergo an oriented attachment process, leading to the formation of freestanding 3D triangle crystals that have a single fcc lattice. Analysis of experimental observations and defined diffusion parameters reveals that fast solvent diffusion and high-NC concentration promote the growth of rhombic bcc supercrystals, while slow solvent diffusion and low-NC concentration accelerate the development of triangle fcc supercrystals. Upon succeeding in designable growth of 3D fcc supercrystals, this study provides designing principles for controlled fabrication of supercrystals with desired superlattices for additional engineering and applications.

17.
Adv Sci (Weinh) ; 10(4): e2205694, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36461698

RESUMEN

Phase-change semiconductor is one of the best candidates for designing nonvolatile memory, but it has never been realized in organic semiconductors until now. Here, a phase-changeable and high-mobility organic semiconductor (3,6-DATT) is first synthesized. Benefiting from the introduction of electrostatic hydrogen bond (S···H), the molecular conformation of 3,6-DATT crystals can be reversibly modulated by the electric field and ultraviolet irradiation. Through experimental and theoretical verification, the tiny difference in molecular conformation leads to crystalline polymorphisms and dramatically distinct charge transport properties, based on which a high-performance organic phase-change memory transistor (OPCMT) is constructed. The OPCMT exhibits a quick programming/erasing rate (about 3 s), long retention time (more than 2 h), and large memory window (i.e., large threshold voltage shift over 30 V). This work presents a new molecule design concept for organic semiconductors with reversible molecular conformation transition and opens a novel avenue for memory devices and other functional applications.

18.
Science ; 377(6608): 870-874, 2022 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-35981022

RESUMEN

The ambient metastability of the rock-salt phase in well-defined model systems comprising nanospheres or nanorods of cadmium selenide, cadmium sulfide, or both was investigated as a function of composition, initial crystal phase, particle structure, shape, surface functionalization, and ordering level of their assemblies. Our experiments show that these nanocrystal systems exhibit ligand-tailorable reversibility in the rock salt-to-zinc blende solid-phase transformation. Interparticle sintering was used to engineer kinetic barriers in the phase transformation to produce ambient-pressure metastable rock-salt structures in a controllable manner. Interconnected nanocrystal networks were identified as an essential structure that hosted metastable high-energy phases at ambient conditions. These findings suggest general rules for transformation-barrier engineering that are useful in the rational design of next-generation materials.

19.
BMC Plant Biol ; 22(1): 337, 2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35831803

RESUMEN

BACKGROUND: Grazing disturbance plays an important role in the desert steppe ecosystem in Inner Mongolia, China. Previous studies found that grazing affected the spatial distribution of species in a community, and showed patchiness characteristics of species under different grazing treatments. Artemisia frigida is the dominant species and semi-shrub in desert steppe, and whether grazing interference will affect the spatial distribution of A. frigida is studied. In this study, geo-statistical methods were mainly used to study the spatial distribution characteristics of A. frigida population in desert steppe of Inner Mongolia at two scales (quadrat size 2.5 m × 2.5 m, 5 m × 5 m) and four stocking rates (control, CK, 0 sheep·ha-1·month-1; light grazing, LG, 0.15 sheep·ha-1·month-1, moderate grazing, MG, 0.30 sheep·ha-1·month-1, heavy grazing, HG, 0.45 sheep·ha-1·month-1). RESULTS: The results showed that the spatial distribution of A. frigida tended to be simplified with the increase of stocking rate, and tended to be banded with increased spatial scale. The density and height of A. frigida increased with increasing scale. With increased stocking rate, the density of A. frigida population decreased linearly, while its height decreased in a step-wise fashion. The spatial distribution of A. frigida was mainly affected by structural factors at different scales and stocking rate. The density of A. frigida was more sensitive to change in stocking rate, and the patchiness distribution of A. frigida was more obvious with increase in scale. CONCLUSIONS: Stocking rate has a strong regulatory effect on the spatial pattern of A. frigida population in the desert steppe. Heavy grazing reduced the spatial heterogeneity of A. frigida in the desert steppe. The smaller dominant populations are unfavourable for its survival in heavy grazing condition, and affects the stability and productivity of the grassland ecosystem.


Asunto(s)
Artemisia , Ecosistema , Animales , China , Poaceae , Ovinos , Suelo/química
20.
Nat Commun ; 13(1): 1480, 2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35296674

RESUMEN

The instability of organic field-effect transistors (OFETs) is one key obstacle to practical application and is closely related to the unstable aggregate state of organic semiconductors (OSCs). However, the underlying reason for this instability remains unclear, and no effective solution has been developed. Herein, we find that the intrinsic tensile and compressive strains that exist in OSC films are the key origins for aggregate state instability and device degradation. We further report a strain balance strategy to stabilize the aggregate state by regulating film thickness, which is based on the unique transition from tensile strain to compressive strain with increasing film thickness. Consequently, a strain-free and ultrastable OSC film is obtained by regulating the film thickness, with which an ultrastable OFET with a five-year lifetime is realized. This work provides a deeper understanding of and a solution to the instability of OFETs and sheds light on their industrialization.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...